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Abstract: Detection of small-sized maritime targets is an important task for a marine surveillance
radar. Recently, with the emergence of a marine surveillance radar system that has a narrow azimuth
beamwidth and rapidly rotating antennas, the available dwell time for detecting a maritime target is
usually very short. This short dwell time considerably degrades the performance of conventional
detectors, especially those focusing on small-sized targets. In this paper, we propose an efficient
detector for small-sized maritime targets to provide a reliable detection performance, even in short
dwell times. The proposed scheme is based on a new joint metric, which results from the product
of the magnitude and difference features in the Doppler spectra. We discriminate the target bins
from sea clutter bins using a statistical discriminator based on the joint metric, whose probability
density function follows the product distribution of standard gamma distributions. Compared to
conventional detectors, the proposed scheme can provide a robust performance in terms of the
average signal-to-clutter ratio as well as the detection rate, especially in shorter dwell times.

Keywords: dwell time; maritime target detection; range-doppler; surveillance radar; statistical
discriminator

1. Introduction

Marine radars have been widely used for defense and rescue missions because they
can operate in day and night conditions, as well as under severe weather conditions.
Real-time monitoring (i.e., surveillance) of unknown floating targets on a sea surface is
the most important task among the various functions of a maritime radar. In the past
decades, several statistical detectors were developed to detect objects on the sea surface.
Experimental evidence from early studies showed that the distribution of magnitude
(intensity) of returned echoes from high-resolution sea clutter at low grazing angles follows
non-Gaussian models, such as Weibull, log-normal, and k-distribution [1,2]. Constant
false-alarm rate (CFAR) detectors have been developed based on these statistical models,
and they have been widely used to detect maritime targets [3,4]. To provide reliable
performance using detectors based only on the magnitude of radar returns, a high signal-
to-clutter ratio (SCR) is typically required [5]. However, small objects, such as small
boats, buoys, periscopes, and floating mines often exhibit a very low SCR because of their
low radar cross-section (RCS). Consequently, it remains very challenging for maritime
surveillance radars to identify small sea-surface targets with a very low RCS, especially for
high-sea states in which the magnitude of clutter returns from high sea spikes dominate.

To overcome the limitations of the aforementioned CFAR detectors based on statistical
models of the magnitude of returned echoes, various approaches for small maritime targets
have been developed. These detectors can be divided into several classes [6]: (1) Fractal-
based [7,8], (2) joint time-frequency (JTF)-based [9,10], (3) track-before-detect-based [11,12],
(4) neural network-based [13,14], and (5) discriminant-feature-based [3]. Returns from
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sea clutter have a fractal characteristic resulting from the energy transfer between small-
scale and large-scale sea surface waves [7]. Artificial targets, such as the aforementioned
boats and buoys, do not produce fractal patterns in radar echoes. To analyze the fractal
pattern from radar returns, the Hurst parameter, related to the autocorrelation of the time
series radar echo, is widely employed. Radar returns from an artificial manufactured
target produce a high value in the Hurst parameter, irrespective of the size of the target,
whereas sea clutter produces smaller ones [7,15]. In addition, the computational complexity
for fractal analysis is sufficiently low to be suitable for real-time marine surveillance.
However, it is well known that a long observation time is inevitable to maintain the robust
performance of a fractal-based detector [10].

For the time–frequency-based detector, Chunsheng [9] adopted the empirical mode
decomposition (EMD) technique based on the Hilbert–Huang transform (HHT). The de-
tector in [9] has been applied to the time-series returns of each range bin, producing an
associated residue signal. Since the power of the residual signal corresponding to the
floating target is considerably larger than that of sea clutter, the maritime targets can be
easily discriminated. Furthermore, this discriminant metric can perform well, even with
low RCS targets, and it has a good performance in detecting maritime targets. However,
EMD requires a long observation time (usually approximately a few seconds) to decompose
the signal properly into several intrinsic components and the associated residual, which
can provide a robust detection metric. In addition, McDonald [10] devised a well-known
time-frequency-based detector—the adaptive matched filter (AMF)—and employed the
structure of space-time adaptive processing (STAP) in maritime target detection. The sys-
tem is effective in attenuating the clutter signal to enable the detection of maritime targets.
It requires the inversion of the covariance matrix whose dimension is usually very large,
which involves high computational complexity. It is therefore not suitable for real-time
surveillance. Furthermore, AMF requires a sophisticated phased-array antenna system
with multiple receiving channels.

The track-before-detect (TBD) approaches have been proposed and developed, which
are one of the effective techniques for detecting small targets. In [11], Orlando suggested a
fine detector using TDB strategies for STAP radar, providing a much improved detection
performance. However, as with the aforementioned AMF approach, this technique requires
not only a heavy computational load due to the STAP algorithm but also the phased-array
antennas. Even for other TBD methods without STAP procedure, it usually performs target
detection through repeated scanning, requiring multi-scanning time [12,16,17].

Meanwhile, the neural-network-based approach has been used effectively for the
detection of maritime targets. In particular, Hennessey [14] utilized a radial basis function
(RBF) neural network to discriminate maritime targets from sea clutter. Using the former
part of time-series echoes against sea clutter as the input for the network, the RBF network
predicts the latter part of the time-series echoes as the output. If the network is trained
properly to predict echoes from the sea clutter, the echoes without maritime targets may
produce a small output (error), and vice versa. The detector based on the output of the RBF
network in [14] can operate in real time however, it requires a sufficiently long observation
time (a large amount of training data) to ensure the convergence of the network. If the
observation time is too short (an insufficient amount of training data), an overfitting
problem occurs, causing a degradation of the detection performance.

In terms of the discriminant-feature-based detector, Shui devised three different
features to improve its performance in small maritime target detection, thereby constituting
novel techniques [5]. The first feature is based on the amplitude of the received radar pulses,
the second is related to the Doppler peak value, and the third feature is the relative vector
entropy. In the three-dimensional (3D) feature space, a support vector machine (SVM)
was employed to set the threshold for discrimination. Even with a short measurement
time, the method in [5] is effective as long as a large amount of training data is available
for many scenarios, including the various sea states and wave directions, as well as
the many maritime targets to be detected. However, it is nearly impossible to gather a
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very large number of training samples for various scenarios and maritime targets in a
practical situation.

Recently, fan-beam antennas with narrow horizontal (i.e., azimuth) beamwidths have
been widely employed in maritime surveillance radars [18,19]. The beam direction can be
rapidly rotated by using an electronically scanned array (ESA). Consequently, the short
dwell time on a maritime target (i.e., the time duration in which the antenna beam focuses
on a maritime target) is unavoidable because the antenna beam rotates at a high speed,
causing performance degradation of the above conventional maritime target detectors.
In addition, multifunction radars (MFRs), which are widely used in recent naval vessels,
have been devised to perform multiple missions simultaneously in near real time, such as
surveillance, tracking, and classification [20]. Even with an efficient resource management
strategy, the affordable dwell time for monitoring (i.e., surveillance) a maritime target is
very limited in the MFR system.

In this paper, we propose an efficient and robust solution for detecting low RCS
maritime targets, such as small boats, periscopes, buoys, and mines on a sea surface, even
within a short dwell time. The proposed scheme is based on two discriminant features of
the Doppler spectra, that is, the magnitude feature (MF) and the difference feature (DF).
The MF in this study is provided by calculating the square-root power of the Doppler
spectra to enhance the SCR of the magnitude of radar echoes. Even with the small size of
the maritime targets, it often offers good detection results, unless they are under a high sea
state with strong sea spikes. Moreover, we present an additional feature, DF, to compensate
for the drawback of using only the MF. The DF is obtained by subtracting the mean Doppler
spectra from the respective Doppler spectra at each range bin. The difference in Doppler
spectra between maritime targets and sea clutter is due to the difference in the radial
velocities between the maritime targets and sea clutter. This difference is leveraged to
detect low RCS maritime targets in high sea states. Contrary to the conventional moving
target indication (MTI)-based detector, DF is devised to detect not only moving targets but
also stationary ones within the moving sea waves. With adjusting these two features, whose
distribution is gamma distribution, to have their scale parameters be one, we provide a
new joint metric by the product of the scaled MF and scaled DF. Through this product,
the metric is devised to suppress the randomly occurring false peaks at clutter range bins
in MF and DF. Based on the probability density function (PDF) of the proposed metric,
which is the product distribution of two standard gamma distributions, it results in optimal
discrimination metric in terms of a constant false alarm rate. As a result, contrary to
conventional detectors, such as statistical detectors, fractal-based detectors, and JTF-based
methods, the proposed scheme provides robust detection results even in high sea states
and with a very short dwell time. Furthermore, it does not require a large amount of
training data, which is essential in both the above-mentioned feature-based and neural
network-based detectors.

We evaluated the performance of the proposed detector using real measured data
from the Council for Scientific and Industrial Research (CSIR) database [21], including a
dataset on a small boat floating in sea clutter. The results show that the proposed detector
has robust detection performance in terms of the average signal-to-clutter ratio (ASCR),
detection rate, and processing time, especially for a short dwell time, compared to three
conventional detectors based on EMD, fractal analysis, and RBF neural network.

The remainder of this paper is organized as follows. Section 2 describes how the
detection performance of the three conventional approaches deteriorates as the dwell
time decreases. In Section 3, the proposed detector is presented. We demonstrate the
performance of the proposed scheme using the CSIR dataset in Section 4. Finally, the
conclusions are presented in Section 5.
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2. Motivation
2.1. Dwell Time on Marine Surveillance Radar

Recently, marine surveillance radars have adopted a fan-beam antenna, which pro-
duces very narrow and wider beamwidths in horizontal and vertical directions, respectively.
The wide vertical beamwidth of the fan beam is employed to extend the detection range of
a target at high and low altitudes. Meanwhile, the fine resolution resulting from the sharp
beamwidth in the horizontal direction leads to the effective discrimination of multiple
targets along the azimuth angles. In particular, a recent ESA-based surveillance system,
such as MFR, as well as the conventional system based on a mechanically rotating antenna
on a naval vessel, often forms a narrow horizontal beamwidth (HBW).

For example, in [18], recent surveillance radars based on the x-band offer HBW
somewhere between 0.65◦–2◦ meanwhile, radars based on the S-band has a HBW of
1.7◦–2◦. For a point target at a specific azimuth angle, the dwell time per antenna rotation
T is given by:

T =
HBW

ω
=

HBW
RPM× 360◦/60 s

, (1)

where ω denotes the angular velocity of the rotating antenna [◦/s], and RPM represents
the revolutions per minute. The RPM is determined by the use. It is typically selected
in the range of 16–48, resulting in T = [3 ms–21 ms], according to [18]. The range of T
in [18] is similar to that in other marine surveillance radar systems, as shown in [19,22].
Furthermore, the number of radar pulses within the dwell time is:

NP = T × PRF, (2)

where NP denotes the number of radar pulses within the dwell time, and PRF is the pulse
repetition frequency. For example, if a radar system is operated with PRF = 1000 Hz, the
number of received radar pulses for a point target within the aforementioned T is calculated
as NP = [3-pulses–21-pulses]. Hence, it is necessary to develop improved maritime target
detectors under these constraints on T and NP for recent surveillance radars. Even though
it is possible to increase T by using active phased arrays during the mechanical rotation,
especially in TBD strategies or tracking, it usually does not apply to general maritime
surveillance mode.

2.2. Conventional Maritime Target Detectors

Conventional CFAR detectors based on only the magnitude of radar returns have been
utilized in maritime target detection. To achieve good detection performance, it requires a
high SCR however, the high SCR is rarely provided from echoes for small-sized maritime
targets in high sea spikes. Even though the pulse integration can enhance SCR in the
magnitude of radar returns, the magnitude of radar returns with a short dwell time may
have low SCR on account of the small number of pulses for integration, resulting in poor
detection performance.

Meanwhile, the HHT method has been widely exploited in small-sized maritime target
detection to decompose the received time-series signal, thereby producing the residue func-
tion and intrinsic mode function (IMF). The latter has a significant instantaneous frequency
component with symmetric local waveforms of a zero mean value. It is derived as:

S(t) = r0(t) = c1(t) + r1(t), (3)

where S(t) (i.e., r0(t)) denotes the received time-series radar echo corresponding to a
range bin, and c1(t) and r1(t) are the IMF and residue functions from r0(t), respectively.
Decomposition is repeatedly applied to make rn(t) a constant or monotone function [9,23].

rn(t) = rn−1(t)− cn(t), (4)
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where:

rn−1(t) = rn−2(t)− cn−1(t)
...

r1(t) = S(t)− c1(t)

where rn(t) is the final residue function. An EMD-based detector utilizes the power of rn(t)
as a detection metric, which produces a much larger value for the maritime target than sea
clutter [9]. In particular, a sufficient measurement time enables the production of a fine
Doppler frequency resolution, resulting in accurate decomposition of the received signal.
As a result, a longer measurement time leads to good detection performance in EMD-based
detectors, and vice versa.

The fractal pattern is revealed in a natural clutter signal, whereas it is not in an
artificial target [7]. The patterns are quantified by an analytic parameter, which is output
by fluctuation analysis and can be utilized in floating target detection in wide sea clutter.
The parameter H(q) is calculated as:

Hq = logkF(q)(k), (5)

where:

F(q)(k) =
〈
|y(n + k)− y(n)|q

〉1/q, (6)

and

y(n) =
n

∑
i=1

xi, (7)

and

xi = Xi − µ. (8)

In (8), Xi denotes the magnitude of the received time-series signal in the ith range bin,
k denotes the multifractal dimension, and µ denotes the mean of the received signal. With
q = 2, H(2) is often called the “Hurst parameter” [7], which has been widely employed as a
discriminant metric. Several studies have demonstrated that the echoes of a maritime target
usually produce larger H(2) than those of sea clutter, as observed in [7,8,15]. In addition,
as the measurement time increases, it usually drives sophisticated analysis results on the
fractal pattern, resulting in good detection results [15]. In other words, the fractal-based
detector operating in a short dwell time generally shows poor detection performance.

Meanwhile, under the assumption of chaotic natural characteristics of sea clutter, a
detection algorithm based on a neural network structure can be effectively exploited to
detect maritime targets. In particular, it is widely known that RBF neural networks can
conduct fast learning on sea clutter. The network is trained to accurately predict the current
value using previous m values. The predicted current value x̂(t), obtained by a network
consisting of m input neurons, one output neuron, and a hidden layer of H units can be
represented as [14]:

x̂(t) =
H

∑
k=1

ωkRk(x̄(t− 1)), (9)

where:

x̄(t− 1) = [x(t− 1), x(t− 2), · · · x(t−m))]. (10)
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In (9), ωk is the trained weight in the network, and x̄(t− 1) is a time-series radar echo
consisting of previous m values, as in (10). In particular, Rk is the mapping function in the
RBF neural network, which can be represented as:

Rk(x̄(t− 1)) = exp

[
−‖x̄(t− 1)− ck‖

σ2
k

]
, (11)

where:

σ2
k = d2/H. (12)

ck denotes the center of the input vector x̄(t− 1), and d is the maximum distance between
cks. In particular, the training of the RBF neural network is performed with only sea clutter
data, generating the predicted modeling for the observed sea clutter. Hence, the prediction
error between the predicted value x̂(t) and real value x(t) can be employed as a detection
metric in a maritime target detector based on an RBF neural network. The error ε(t) can be
obtained as follows [13,14]:

ε(t) = |x(t)− x̂(t)|. (13)

Note that ε(t) of a maritime target may be much larger than that of sea clutter. How-
ever, it is clear that a very small number of input neurons, m, leads to an unreliable
estimated output in neural networks, resulting in poor detection results. Therefore, to
achieve good performance, a sufficiently large m (i.e., the number of echoes used for train-
ing among received Np ones) is required. Since a large Np for large m is usually obtained
by long T, as in (2), a maritime target detector based on a RBF neural network also requires
a sufficiently long T to provide a reliable detection performance.

Considering the above findings, it is evident that such conventional maritime target
detectors may not provide robust detection performance unless T is sufficiently long. In
the next section, we present an efficient method to detect maritime targets, which can
overcome the above drawbacks of conventional techniques.

3. Proposed Maritime Target Detector

We suggest a method to detect floating maritime targets, even with a short dwell time.
The proposed method consists of four steps:

Step 1 : Perform automatic gain control (AGC) and extract Doppler spectra of
all range bins, DS( f ) = [ds1( f ), ds2( f ), · · · , dsN( f )], using a 1-D fast Fourier
transform (FFT) on radar echoes, S(t) = [s1(t), s2(t), · · · , sN(t)].

Step 2 : Provide magnitude feature m by calculating the squared-root power of
dsi( f )s .

Step 3.a : Conduct power normalization on dsi( f )→ d̂si( f ).

Step 3.b : Employ the difference spectrum dvi( f ) = d̂si( f )− dsi( f ), where dsi( f )
is the mean Doppler spectrum.

Step 3.c : Provide difference feature d by calculating the power of dvi( f )s.

Step 4 : Construct the new joint metric j = m̂ · d̂, based on scaled m and d, and
determine the range bin ji > TFAR using an adaptive statistical detector.

The overall flowchart of the proposed maritime target scheme is illustrated in Figure 1.
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Figure 1. Flowchart illustrating steps of the proposed maritime target detector.

3.1. Step1: Range-Doppler Map Formation

First, to compensate for the dependence of receiving power on the distance between
radar and target reference, we utilized a simple AGC process on received radar returns
s0

i (t). If it is set to have the same antenna gain for all range bins, AGC can be simply
defined as:

si(t) = s0
i (t)×

( ri
r

)2
, (14)

where si(t) denotes the time-series radar signal after AGC received in the ith range bin,
ri denotes the distance (i.e., range) corresponding to the ith range bin, and r denotes the
distance for normalization. In this study, we select r as the mean distance of all ris.

Next, the Doppler spectrum at the ith range bin, dsi( f ), is computed using the 1-D
FFT on the received time-series signal si(t). If the target moves with a radial velocity vR,
the Doppler spectrum is obtained with a shifted center at fD as:

fD = −2vR · fc

c
= −2vR

λc
, (15)

i.e.,

vR = − fD · λc

2
, (16)

where fc, c, and λc denote the center frequency of the transmit signal, the velocity of
light, and the wavelength of the transmit signal, respectively. In particular, as the observa-
tion time T increases to approximately a few seconds, pixel migration for the scatters of
fast-moving maritime targets is unavoidable and produces a blurred Doppler spectrum.
However, pixel migration may not occur in a short measurement time T of approximately a
few milliseconds, even for fast-moving maritime targets. Therefore, for a short dwell time
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T, the Doppler spectrum with the center frequency of fD is clearly observed. In particular,
the 4 dB resolution of the Doppler spectrum ∆ f 4dB

D is given by:

∆ f 4dB
D =

1
T

. (17)

As in (17), the short dwell time T inevitably produces large ∆ f 4dB
D , which is disadvan-

tageous in discrimination of maritime targets from sea clutter, especially for subsequent
Step 3. Meanwhile, the frequency spacing ∆ fD and radial velocity spacing ∆vR in the
discretized Doppler spectrum can be induced regardless of T as:

∆ fD =
PRF

K
, (18)

and

∆vR =
∆ fD · λc

2
=

PRF · λc

2K
. (19)

K denotes the number of frequency bins in the discretized Doppler spectrum. However,
without zero-padding, it should be noted that K = NP, resulting in a wide frequency
spacing in the discretized Doppler spectrum in the short dwell time T. For this reason, we
employ zero-padding for reducing ∆vR to have K ≥ Kreq, which is the required minimum
number of frequency bins, as follows:

Kreq = Ceil
[
λc · PRF/(2∆vreq

R )
]
, (20)

where Ceil[·] denotes the round-up operator and ∆vreq
R is the required spacing of radial

velocities. Even with the poor ∆ f 4dB
D from the long T, it can have the fine interval between

the peak locations in the Doppler spectrum, via zero-padding.

3.2. Step2: Magnitude Feature

It is widely known that radar echoes from small maritime targets have a larger intensity
than non-spiky clutter signals in a wide ocean [24,25]. For this reason, the magnitude (i.e.,
intensity) of the received signal has been widely used as a feature in maritime target
detection [5,26]. To increase the signal-to-clutter ratio (SNR) of the magnitude of the
received signal, pulse integration can be adopted to suppress the magnitude of the sea
clutter echoes. In this study, we devised a metric based on the magnitude of the received
signal, named the magnitude feature (MF) and denoted as m. This is strongly related to the
integrated radar echoes with enhanced SNR as follows:

mi =

√√√√
Np

∑
n=1
|si(tn)2| =

√√√√ 1
K

K

∑
k=1
|dsi( fk)2|, (21)

where mi denotes m at the ith range bin. Under Parseval’s theorem, mi can be produced by
calculating the square-root power of dsi( f ). Via integration in (21), m can be regarded as the
texture component of sea clutter, which is called local clutter power [24]. The distribution
of texture component can be assumed to follow the generalized gamma distribution, as
m ∼ fG(x; αm, βm). fG(m; αm, βm) is the generalized gamma distribution with a PDF given
by [27,28]:

fG(x; αm, βm) =
xαm−1 · (βm)αm

Γ(αm)
exp(−βm · x). (22)

Γ(·) denotes the gamma function. αm and βm are the shape parameter and the scale param-
eter for the gamma distribution of m, respectively. The parameter of gamma distribution
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can be estimated by the method of moments (MoM), which is a commonly used technique
for parameter estimation by calculating the lower order moment [25,29].

3.3. Step3: Difference Feature

Even though the MF is useful for maritime target detection, high sea spikes, especially
in high sea states, often produce very poor detection results in small maritime target
detection, as discussed in [5–8]. To overcome the drawback of MF only, in this section, we
devise another discriminant metric based on the difference between the vRs of the target
and sea clutter, named the difference feature (DF).

In particular, maritime targets, such as small boats and periscopes, are controlled by a
pilot and produce their own moving velocity regardless of wave direction. Uncontrolled
maritime targets, such as buoys and floating mines, are usually stationary at a certain
position in the ocean, even under severe sea conditions (i.e., in a high sea state). For
this stationary maritime target, the conventional maritime target detector based on MTI
cannot provide the detection performance well. With regard to this characteristic, it can
be assumed that the vR of an interesting maritime target often differs from the vR of a
sea-wave around the target. In other words, the center frequency of the Doppler spectrum
of the target fD−target is usually far from that of sea-wave fD−wave.

In this step, DF, denoted as d, is obtained by extracting the difference in the Doppler
spectrum of the maritime target bin from those of the sea clutter bins and this feature is
devised to find not only moving maritime targets but also stationary ones in moving sea
waves. In Step 3.a, the power normalization on DS( f ) is conducted, as represented as:

d̂si( f ) = dsi( f )/mi. (23)

d̂si( f ) denotes the normalized Doppler spectrum at the ith range bin, and it is carried
out repeatedly for all bins, i = 1, 2, · · · , N. Via (23), d̂si( f ) is devised to be independent
of the magnitude of the received signal (i.e., MF), thereby performing maritime target
detections even at high sea-state conditions. D̂S( f ) = [d̂s1( f ), d̂s2( f ), · · · , d̂sN( f )] is the
range-Doppler (RD) map of the normalized spectra, which have the same power regardless
of the range bin.

In Step 3.b, we obtain the difference spectrum dvi( f ) by subtracting the mean Doppler
spectrum and taking the absolute value as:

dvi( f ) =
(∣∣∣d̂si( f )− dsi( f )

∣∣∣
)

, (24)

where:

dsi( f ) =
1

2B + 1

i+B

∑
j=i−B

∣∣∣d̂sj( f )
∣∣∣. (25)

dvi( f ) is the different spectrum at the ith range bin and dsi( f ) is the mean Doppler spectrum
at the ith range bin, which is obtained using d̂si( f )s at (2B + 1) consecutive range bins
of [i− B, · · · , i− 1, i, i + 1, · · · , i + B]. In particular, to cover the successive sea-wave in
(25), B is obtained by B = round[Rwave/2∆r], where round[·] denotes the round operation,
Rwave is the length of the successive sea-wave in the range dimension, and ∆r is the range
bin spacing in the RD map.

Furthermore, owing to the spreading wind with a very long fetch length (i.e., wind
fetch), the sea-wave is usually successive along the range dimension on the sea [30],
resulting in a nearly unchanged vR at the successive range bins of the sea wave. Hence,
the center frequencies of the Doppler spectra of the sea-wave are almost identical and
produce a dominant peak at fD−wave in each d̂si( f ) sea-wave. In addition, most of the
range bins among bins in (25) undoubtedly correspond to sea clutter, thus providing the
center frequency of dsi( f ) at fD−wave. As a result, via subtraction in (24), suppression of
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the peak at fD−wave is unavoidable for the range bin of sea clutter. This is because the
peaks of dsi( f ) and that of d̂si( f ) of sea clutter are located at the same frequency, fD−wave.

However, owing to the difference between the center frequency of dsi( f ) (i.e., fD−wave)
and that of d̂si( f ) at a maritime target range bin (i.e., fD−target), not only the peak at fD−wave
but also that at fD−target remain in dvi( f ), resulting in two high peaks.

In Step 3.c, d at the ith range bin, denoted as di, is defined by calculating the power of
dvi( f ) as follows:

di =
1
K

K

∑
k=1
|dvi( fk)|2. (26)

Figure 2 illustrates the procedure of Step 3, with CSIR data based on the x-band radar
with PRF = 2 kHz, NP = 8, and T = 4 ms. In Figure 2a, the normalized RD map has a
size of 101 range bins and 114 frequency elements (i.e., K = 114), induced by (20) with
∆vreq

R = 0.3 m/s. Even with ∆ f 4dB
D = 250 Hz, it has ∆ fD = 17.5 Hz in (18), thus providing the

fine resolution of the peak location. Among the 101 range bins, the 55th range bin belongs to
a maritime target bin, and the 35th range bin is one of the sea clutter bins. The solid ellipses
in Figure 2a indicate the highest peaks of d̂s55( f ) and d̂s35( f ) corresponding to the maritime
target and sea clutter, respectively. Meanwhile, on account of the continuous sea-wave,
most d̂si( f )s, especially from the sea clutter, has the center of the peaks at approximately
100 Hz. The dashed lines in Figure 2a illustrate the boundaries of the 3 dB width of the
Doppler spectrum from the sea-wave. The peak of d̂s35( f ) is located completely inside the
boundaries, whereas the location of the peak d̂s55( f ) is almost outside of the boundaries,
as shown in Figure 2a.

(a) D̂S( f ) (b) d̂si( f ) (c) dsi( f ) (d) dvi( f )

Figure 2. Doppler spectra of the target range bin and a clutter bin.

Figure 2b shows two normalized Doppler spectra, d̂s55( f ) and d̂s35( f ). d̂s55( f ), which
is for the maritime target and has the highest peak at fD = −168 Hz (vR = 2.87 m/s using
(16)). Meanwhile, d̂s35( f ), which is for the sea clutter, provides the highest peak at fD = 97
Hz (vR = −1.66 m/s), which is far from fD = −168 Hz of the maritime target.

Meanwhile, Figure 2c shows the mean Doppler spectra for each range bin with B = 33.
Both ds55( f ) and dsi( f ) have a clear and high peak around fD = 97 Hz. This is because the
range bins are surrounded by successive sea-waves with vR = −1.66 m/s.

As shown in Figure 2d, owing to the difference between the locations of high peaks in
ds55( f ) and d̂s55( f ), dv55( f ) is conferred with two very high peaks at fD = −168 Hz and
fD = 80 Hz. In particular, owing to the deepest valley of ds55( f ) at fD = 80 Hz in Figure 2b,
the location of the right-side peak dv55( f ) differs slightly from that of ds55( f ) at fD = 97 Hz.
On the other hand, ds35( f ) and d̂s35( f ) have an identical location of peaks, and therefore
dv35( f ) produces several very low peaks, as shown in Figure 2d.

As in (26), the two very high peaks dv55( f ) in Figure 2d lead to a large di in the range
bin of the maritime target, whereas the very low peaks in dv35( f ) yield a much smaller di
sea clutter. Furthermore, the PDF of d can be assumed to follow the Gamma distribution
d ∼ fG(x; αd, βd) in (22), which results from the randomly changed d̂si( f ) by heterogeneous
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wind [31,32]. This is later demonstrated in Section 4 and Figure 4. Under a sudden strong
gust of wind on a certain location, it may produce false peaks at the clutter range bin on d.

3.4. Step4: Proposed Joint Metric

Via Steps 1 to 3, two independent discriminant features, m (i.e., MF) and d (i.e., DF),
are extracted from the received signal in the short T. However, both are not robust features
for maritime target detection, producing many false peaks. In detail, false peaks in m and
those in d may be uncorrelated, therefore located often at different bins. For this reason, we
devise a more advanced detection metric via the product of these two features, to suppress
the false peaks of sea clutter in either m or d.

Before the product, scaling m and d should be employed to have their PDFs follow
each standard gamma distribution, as m̂ ∼ fG(x; αm, βm = 1) and d̂ ∼ fG(x; αd, βd = 1). m̂
is provided by scaling m to have αm as the mean value [33], and so does d to produce d̂, as
given by:

m̂ = m · αm

E[m]
, d̂ = d · αd

E[d]
. (27)

E[·] denotes expectation operator. Using m̂ and d̂, we yield a new joint metric j as:

j = m̂ · d̂. (28)

Since we provide the joint metric based on the product of m̂ and d̂, the distribution of
j can be regarded as a product distribution [34]. f J(x), which is the product distribution of
two random variables having independent standard gamma distributions, can be defined
as [35]:

f J(x) = f J(x; αm, αd) = c · x(αm+αd)/2−1 · Kαm−αd

(
2x1/2

)
, (29)

where:

c = 2 · Γ(αm)
−1 · Γ(αd)

−1. (30)

Kv(·) is the modified Bessel function of the second kind of order v.
Herein, a statistical adaptive threshold TFAR for the product distribution j ∼ f J(x; αm, αd)

can be determined by the following equation:

PFAR = 1−
∫ TFAR

0
f J(x; αm, αd)dx. (31)

PFAR is a constant false alarm rate, which is determined a priori by the user. With a
numerical calculation, the statistical adaptive threshold TFAR can be achieved. Finally, each
range bin with j is assigned to one of two classes.

{
ji > TFAR : Maritime target

otherwise : Sea clutter
, i = 1, 2, · · ·N. (32)

With the suppressed false peaks in ji, it can result in a robust detection performance.
Figure 3 illustrates m̂, d̂, and j for the 101 range bins from the data used in Figure 2.

The peaks marked as “ ∗ ” indicate the values at the target bin, that is, the 55th bin. The
red dashed lines indicate the adaptive thresholds induced by the CFAR detector with an
identical false alarm rate, PFAR = 10−3.
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(a) m̂ (b) d̂ (c) j

Figure 3. Discriminant feature of a target range bin (55th range bin) and clutter ones.

Figure 3a shows the plot of m̂ for 101 range bins with a calculated threshold, Tm̂ = 9.75,
which is based on a gamma distribution as in (22) with αm = 5.77. m̂ can be employed to
discriminate the maritime target bin from sea clutter, even in the short T. However, it is
observed that there are still many sea spikes owing to either a small-sized floating target or
strong sea clutter, often causing many false alarms.

Meanwhile, Figure 3b exhibits not only the plot of d̂ for 101 range bins having very
high peaks at the 21th and 55th bins, but also the CFAR threshold, Td̂ = 4.52, based on the
gamma distribution with αd = 1.07. Most of the range bins corresponding to sea clutter
have a small d̂, resulting from clutter suppression by Step 2. It can be shown that maritime
target detection using d̂ is conducted with fine detection results. However, abnormal
Doppler spectra of sea clutter due to a local gust of wind can occur, thus leading to false
peaks, such as the peak at the 21th range bin, as shown in Figure 3b.

As presented in Figure 3c, it is clear that the peak of j at the 21th range bin (i.e., j21) is
quite suppressed via the production of m̂ and d̂, especially compared with d̂ in Figure 3b.
However, the peak in j for the maritime target (i.e., j55) is still high. In terms of detection
performance Tj = TFAR = 55.37 induced in (31), this proposed scheme provides the best
and improved performance in maritime target detection.

4. Experimental Results
4.1. Performance Metric

To evaluate the detection performance of the proposed joint metric, we conducted
an experiment using CSIR. In particular, we compared the detection capabilities based
on four different discriminant metrics: (1) The proposed joint metric, (2) the power rn(t)
extracted by the EMD technique, (3) the Hurst parameter by fractal analysis, and (4) the
error estimated by the neural network using RBF, as addressed in Section II-B. For the sake
of notational brevity, in the following detection experiments, we refer to the proposed joint
metric as “J,” the metric based on EMD as “EMD,” that metric based on fractal analysis as
“Fractal,” and the metric based on the neural network using RBF as “RBF-NN.”

The detection performance indicators in this experiment are the ASCR, detection rate
PD (true-positive rate), false alarm rate PFA (false-positive rate), and processing time.

Firstly, ASCR is calculated as [36]:

ASCR = 10log10

(
PS

PC

)
= 10log10

(
E([s(n)]2)

E([c(n)]2)

)
, (33)

where PS and PC are the averaged power of the target and sea clutter, respectively. Further-
more, E[·] denotes an expectation operator, s(n) denotes the discriminant metric from each
detector—that is, (1) the proposed joint metric, (2) the power rn(t) extracted by the EMD
technique, (3) the Hurst parameter by fractal analysis, and (4) the error estimated by the
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neural network using the RBF—of the maritime target bins. Moreover, c(n) denotes those
from the range bins of sea clutter. If the target signal becomes stronger, the ASCR becomes
larger, thereby obviously leading to better performance in terms of the detection rate. As
a result, in this experiment, ASCR was adopted as an evaluation metric for assessing
detection performance.

The other indicators, the detection rate, PD and the false alarm rate PFA in the range
bin unit, are carried out as [37]:

PD = E
[

Ldt
Lt

]
, PFA = E

[
Ldc
Lc

]
, (34)

where Lt is the total number of target bins, and Ldt denotes the number of detected target
bins. Meanwhile, Lc and Ldc are the total number of bins of sea clutter and the number of
detected clutter bins, respectively.

4.2. Evaluation of Detection Performance Using Real Measured CSIR Data

In this section, we evaluate the detection performance of the maritime target detector
using real measured radar data. We chose radar data, which were obtained by a team led by
Herselman of the CSIR. This team collected real data on sea clutter and floating maritime
targets, such as small boats, in 2007. The data were collected at Cape Town Harbor in
South Africa using a radar deployed on Signal Hill [21]. In this experiment, five datasets
of the CSIR datasets were selected, operating with a carrier frequency of 8.8 GHz and a
range sampling interval of 15 m in HH polarization. Other specific parameters for the five
datasets are listed in Table 1. Each dataset was composed of thousands of radar echoes
measured in long T (approximately 30–90 s).

Table 1. Description of data sets used.

File
Name

Range (m) /
# of Range-Bins

Tracking
Range (m)

Total Duration
Time (sec)

Sea
State

Wave
Direction (◦)

PRF
(kHz)

Grazing
Angle (◦)

00-011 1499/101 2274.4 34.22 4.5 261.7 2.0 4.67–7.78

00-012 1499/101 2424.3 29.50 4.5 261.7 2.0 4.67–7.78

00-017 1499/101 4672.8 49.17 4.5 261.7 2.0 2.84–3.76

In this study, we randomly selected 200 samples of the short T in each dataset. Each
sample was composed of successive radar echoes of the short, whose range is T = [5 ms, 10
ms, 15 ms, 20 ms, and 25 ms]. The range of T was selected from those widely applied in
recent surveillance radars, as mentioned in section II-A. Consequently, the total number of
samples in this experiment was 3 datasets × 200 samples × 5 different Ts = 3000 samples.

Figure 4 shows the fitting results of “00-011”, “00-012”, and “00-017”, respectively,
illustrating PDFs of d (solid lines), Rayleigh (solid lines with circles), Log-normal (solid
lines with diamond), Normal (dotted lines), and Gamma (dashed lines) distributions. It is
shown that the Gamma distribution obviously fits to the PDF of d, compared to the other
PDFs. The parameters of the distributions are estimated by MoM methods. Furthermore,
Table 2 summarizes the fitting error value χ2 obtained by the chi-squared test [38]. χ2 from
Gamma distribution is the smallest among the values in Table 2-new, which indicates that
the Gamma distribution is best fitted with the PDF of d.
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Table 2. Fitting error using Chi-Squared test on d in Figure 4.

File Name
χ2

Rayleigh Log-Normal Normal Gamma

00-011 9.64 12.83 0.17 0.06
00-012 2.37 2.63 0.31 0.14
00-017 3.80 3.19 0.37 0.14

(a) 00-011 (b) 00-012 (c) 00-017

Figure 4. Comparison of the probability density function (PDF) of d with four distributions.

Figure 5 shows the fitting results with PDFs of j (solid lines) and f J(x; αm, αd) (dashed
lines) based on “00-011,” “00-012,” and “00-017,” respectively. Figure 5a depicts the PDF of
j from “00-011” with a good fit result obtained by f J(x; αm = 3.49, αd = 46.48). The fitting
result using the dataset ‘00-012’ is illustrated in Figure 5b, which shows good matching
results for the PDF of j and f J(x; αm, αd) with αm = 9.42 and αd = 47.58. In Figure 5c, it is
clearly shown that j obtained from ‘00-017’ provides the PDF with the shape of the product
distribution of αm = 4.15 and αd = 11.06. In short, it can be found that the PDF of J follows
the product distribution of gamma distributions, f J(x; αm, αd), not only mathematically, as
in (29), but also experimentally, as shown in Figure 5.

(a) 00-011 (b) 00-012 (c) 00-017

Figure 5. Comparison of the PDF of j with f J(x; αm, αd).

Figure 6 shows the plots of ASCR in the decibel scale at each for all four detectors, “J”
(solid line), “EMD” (dotted line), “Fractal” (solid line with marker “ ◦ ”), and “RBF-NN”
(solid line with marker “∗ ”). In this experiment, for the proposed detector, we assigned
∆vreq

R = 0.5 [m/s] in (20) and B = 16 in (25), obtained by Rwave = 500 m and ∆r = 15 m. In
addition, we chose k = 2 in (5) for “Fractal,” and m = NP/2 in (10) for “RBF-NN.”

Figure 6a shows the plots of ASCR in the range of T = [5 ms–25 ms], based on the
dataset “00-011.” The ASCRs of “J” and “EMD” remain nearly unchanged, regardless of
T. Meanwhile, the ASCRs of “Fractal” and “RBF-NN” obviously increase as T increases
however, they provide much lower ASCRs than those of “J” and “EMD” in the considered
range of T. Specifically, “J” and “EMD” produce a nearly 7 dB higher ASCR than those of
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“Fractal” and “RBF-NN at T = 5 ms, a nearly 2 dB higher ASCR than that of “RBF-NN,”
and 6 dB higher than that of “Fractal” at T = 25 ms.

In Figure 6b, the plots of ASCR versus T for the dataset “00-012” are shown. The
ASCRs of “EMD,” and “Fractal” are unchanged irrespective of T, whereas those of “RBF-
NN” drastically increase as T increases. Meanwhile, it is observed that “J” yields a slightly
decreasing ASCR along T, providing that ASCR = 7.7 dB at T = 5 ms and ASCR = 6.4 dB at
T = 25 ms. Despite this slight decrease, the proposed joint metric produces much higher
ASCRs in the considered range of T compared to those from the others.

Figure 6c shows the detection result using the dataset “00-017,” indicating the best
performance (i.e., the highest ASCR) of “J” among the four detection techniques. “RBF-NN”
and “Fractal” have an increasing ASCR over T but are much lower than “J”. Even for the
longest T in the range (i.e., T = 25 ms), “J” produces a nearly 3 dB higher ASCR than that
of “RBF-NN” and 7 dB higher than “Fractal.” The plot corresponding to “EMD” is nearly
unchanged, although it is nearly 3.5 dB lower than “J”.

(a) 00-011 (b) 00-012 (c) 00-017

Figure 6. Mean value of average signal-to-clutter ratio (ASCR) versus T using each dataset.

In Figure 7a, the plots for the mean value of the ASCR using all datasets above (i.e.,
3000 samples) are illustrated. “EMD” produces nearly unchanged ASCRs regardless of
T however, the ASCR of “EMD” is nearly 3 dB lower than that of “J” in the considered
range of T. In addition, “Fractal” provides a nearly 11 dB lower ASCR than “J”, despite
the slight increase as T increases. Meanwhile, it is clearly shown that the ASCR of the
“RBF-NN” drastically increases as T increases. However, in the considered range of T,
which is adopted for recent marine surveillance radar, “RBF-NN” a such poor performance
in terms of ASCR. Contrary to these conventional detectors, it is obvious that the proposed
“J” produces the highest ASCR in the considered range of T.
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Meanwhile, the ASCR of “J” decreases slightly as T increases. To investigate this
degradation, we analyzed ASCRs of m̂ and d̂ versus T, respectively, as shown in Figure 7b.
In fact, it represents the ASCRs of m and d, as well. The ASCR of m slightly increases as

Figure 7. Mean value of ASCR versus T using all datasets.

Meanwhile, the ASCR of “J” decreases slightly as T increases. To investigate this
degradation, we analyzed ASCRs of m̂ and d̂ versus T, respectively, as shown in Figure 7b.
In fact, it represents the ASCRs of m and d, as well. The ASCR of m slightly increases as
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T increases, which may result from the integration with the increasing number of radar
echoes, NP. Whereas, it is observed that the ASCR of d decreases slightly as T increases.

In Figure 8, the degradation in d (i.e., d̂) was investigated by illustrating the RD maps
in different Ts, T = 5 ms and T = 25 ms. The solid ellipses indicate the highest peaks of
d̂s( f ) and dv( f ) at the target bin, respectively. In Figure 8a,b, those in T = 5 ms are shown,
respectively. With T = 5 ms, ∆ f 4dB

D = 200 Hz is induced, as in (17). On the other hand, in
Figure 8c,d, those in T = 25 ms provide much smaller ∆ f 4dB

D = 40 Hz, which is usually
regarded as an advantage in discrimination. However, the remained peaks of dv( f ) in
T = 5 ms would offer a larger d, compared to those of T = 25 ms, especially at the target
bins. Whereas, regardless of ∆ f 4dB

D (i.e., T), the peaks of dv( f )s at clutter bins are totally
suppressed via (24), in ideal. Therefore, in terms of d, it results in a better performance in
T = 5 ms than that in T = 25 ms.

(a) d̂s( f ) in
T=5 ms

(b) dv( f ) in
T=5 ms

(c) d̂s( f ) in
T= 25 ms

(d) dv( f ) in
T=25 ms

Figure 8. RD maps of d̂s( f ) and dv( f ) in two different Ts.

In addition, we conducted further experiments in terms of PD and PFA, with plotting
receiver operating characteristic (ROC) curves. Figure 8 shows the ROC curves of four
different maritime target detectors in terms of PD on a linear scale and PFA on a decibel
scale based on the three Ts (T = 5 ms, T = 15 ms, and T = 25 ms). As shown in the three
figures in Figure 8, the plots of “J” is the closest to the upper left corner. It implies that
the proposed detector provides the higher PD compared to those of the other conventional
detectors, at the range of PFA. Therefore, it is clearly observed that “J” performs much
better than the conventional ones, in the considered range of T. Furthermore, Tables 3 and 4
summarize the PD results of these four detectors at PFA = 10−2 and PFA = 10−3, which are
the intersecting points of the dashed vertical lines and the ROC curves in Figure 9. As
shown in Table 3 for PFA = 10−2, PD of “J” in T = 25 ms is 0.684, which is much higher
than those of the conventional detectors. Even in the longer T, such as T = 15 ms and T =
25 ms, “J” provides much higher PD values than the others. In the case of PFA = 10−3, as
in Table 4, “J” produces a much higher PD than the conventional detectors. Specifically, PD
of the conventional detectors increases as T increases, as in Tables 3 and 4 however, they
have much worse detection performance in the considered range of T than “J”.

Finally, we compared the maritime target detectors in terms of computation time.
The running time was measured using MATLAB R2019 and a PC with an Intel i7–9700
K CPU processor and 64 GB RAM. Table 5 summarizes the processing time for differ-
ent maritime target detectors. The proposed detector “J” requires a processing time of
about 26 milliseconds. Due to the numerical calculation on (31), this proposed detector
requires a slightly longer processing time than those of "RBF-NN", whereas, it is obviously
shorter than those of "EMD" and "Fractal". Therefore, as shown in Figures 6 and 9, and
Tables 3 and 4, the proposed maritime target detector based on the new joint metric per-
forms considerably better than the conventional detectors in terms of ASCR and PD, with
quite a short processing time.



Remote Sens. 2021, 13, 1319 17 of 19

(a) T = 5 ms (b) T = 15 ms (c) T = 25 ms

Figure 9. Detection results using ROC curves.

Table 3. PD of detectors in various T at PFA = 10−2. (EMD: empirical mode decomposition, RBF-NN:
radial basis function-based neural network).

Detectors
PD

T = 5 ms T = 15 ms T = 25 ms

J 0.684 0.640 0.639
EMD 0.198 0.248 0.253

Fractal 0.027 0.100 0.142
RBF-NN 0.204 0.230 0.285

Table 4. PD of detectors in various T at PFA = 10−3.

Detectors
PD

T = 5 ms T = 15 ms T = 25 ms

J 0.296 0.295 0.295
EMD 0.083 0.102 0.109

Fractal 6.08 × 10−4 0.045 0.050
RBF-NN 0.018 0.046 0.061

Table 5. Processing time of each detector in various T.

Detectors
Processing Time [ms]

T = 5 ms T = 10 ms T = 15 ms T = 20 ms T = 25 ms

J 26.6 26.4 26.3 26.2 26.2
EMD 296.3 418.0 545.0 599.1 691.3

Fractal 86.3 87.8 89.3 96.5 99.1
RBF-NN 5.6 9.8 12.5 26.9 31.9

5. Conclusions

In this paper, we proposed a new maritime target detector that provides robust
performance in a short dwell time, which is usually inevitable in recent marine surveillance
radars. The proposed detector uses a new joint metric obtained by the product of the scaled
magnitude and difference features, whose scale parameters are adjusted to be one. The
difference feature is fundamentally based on the target radial velocities that are different
from those around the sea wave, devised to detect both stationary and moving maritime
targets. Since the PDF of the joint metric follows the product distribution of standard
gamma distributions, we adopted an adaptive threshold on the joint metric under and
a priori-determined false alarm rate. Our experimental results using the CSIR dataset
showed that the proposed metric can provide stable and much better maritime target
performance in terms of the ASCR and detection rate compared to conventional techniques,
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such as “EMD”, “Fractal”, and “RBF-NN”. Furthermore, it requires a comparatively short
processing time, which enables real-time marine surveillance radar for defense and rescue.
It is worth noting that it is straightforward to extend the proposed scheme to combine it
with other discriminant features from the maritime target.
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