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Abstract: Radar automatic target recognition is a critical research topic in radar signal processing.
Radar high-resolution range profiles (HRRPs) describe the radar characteristics of a target, that is, the
characteristics of the target that is reflected by the microwave emitted by the radar are implicit in it.
In conventional radar HRRP target recognition methods, prior knowledge of the radar is necessary
for target recognition. The application of deep-learning methods in HRRPs began in recent years,
and most of them are convolutional neural network (CNN) and its variants, and recurrent neural
network (RNN) and the combination of RNN and CNN are relatively rarely used. The continuous
pulses emitted by the radar hit the ship target, and the received HRRPs of the reflected wave seem
to provide the geometric characteristics of the ship target structure. When the radar pulses are
transmitted to the ship, different positions on the ship have different structures, so each range
cell of the echo reflected in the HRRP will be different, and adjacent structures should also have
continuous relational characteristics. This inspired the authors to propose a model to concatenate the
features extracted by the two-channel CNN with bidirectional long short-term memory (BiLSTM).
Various filters are used in two-channel CNN to extract deep features and fed into the following
BiLSTM. The BiLSTM model can effectively capture long-distance dependence, because BiLSTM can
be trained to retain critical information and achieve two-way timing dependence. Therefore, the
two-way spatial relationship between adjacent range cells can be used to obtain excellent recognition
performance. The experimental results revealed that the proposed method is robust and effective for
ship recognition.

Keywords: radar automatic target recognition (RATR); high-resolution range profile (HRRP); graph-
ics processing unit (GPU); convolutional neural networks (CNN); long short-term memory network
(LSTM); bidirectional long short-term memory network (BiLSTM)

1. Introduction

High-resolution range profiles (HRRPs) provide one-dimensional echo information of
a target. This information reflects the energy distribution of the target in each range cell
along the radar line of sight. The range cells of the target provide characteristic geometrical
information of the target structure. This information can be used for recognition. Further-
more, because of its small data, HRRP-based radar automatic target recognition (RATR)
has been widely applied in radar automatic target recognition.

Du et al. [1] revealed that the determination of time-shift invariant features is neces-
sary in HRRP-based RATR. This condition increases the complexity of HRRP-based RATR.
Therefore, to reduce the computational complexity and storage requirements, Du et al.
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proposed a method to calculate the Euclidean distance in the high-order spectra feature
space. Luo and Li [2] proposed a method for feature extraction and dimensionality re-
duction in extended high-order central moments to reduce HRRP dimensionality. The
features extracted from HRRP are normalized and smoothed, and a template matching
method based on the nearest neighbor rule of the kernels for pattern analysis is used to
classify the HRRPs of aircrafts. Lu et al. [3] proposed Fourier–Mellin transform (FMT)
to eliminate the time-shift and azimuth dependence of radar signals and used a binary
tree-based multiclass support vector machine for classification. Zhou et al. [4] proposed a
novel method using nonlinear subprofile space for determining HRRPs. They performed
nonlinear mapping to map HRRP samples into a high-dimensional feature space. Nonlin-
ear features were extracted through nonlinear discriminant analysis, and the minimum
hyperplane distance classifier was used for classification. Feng et al. [5] developed a robust
dictionary learning method for HRRP target recognition. In this method, the structural
similarity between the adjacent HRRPs was used to overcome the uncertainty of sparse
representation. Liu et al. [6] introduced a scale space theory to extract the multiscale
features of the range profiles. Although structural features exhibit excellent performance in
HRRP-based RATR, the classification method can be improved by combining other feature
extraction techniques. Du et al. [7] introduced a novel noise-robust recognition method for
HRRP data to enhance its recognition performance under low signal-to-noise ratios (SNRs).
In the aforementioned methods, feature extraction is the most critical step in HRRP target
recognition. Most radar-dynamic target features are based on the domain knowledge of
HRRP data, such as subspace features, high-order spectral features, central moments and
differential power spectrum features. The extraction of these features requires relevant
knowledge of the radar. Therefore, the recognition effect depends on the experience of
the researchers.

With the rapid development of high-performance computing hardware, deep neural
network technology has become popular and opened new research avenues for RATR. Most
of them are convolutional neural network (CNN) and its variants, and the recurrent neural
network (RNN) and the combination of RNN and CNN are relatively rarely used. In the
following, only two use concatenated networks. Lundén and Koivunen [8] used CNN to
automatically extract the features of HRRP targets from multiple static radar systems. This
method can achieve excellent recognition performance, even at low SNRs, and outperforms
traditional pattern recognition methods. Yuan [9] proposed a feature fusion algorithm
based on HRRP for ATR. In this algorithm, CNNs are used to automatically extract fusion
features from the time-frequency features of HRRP. Karabayır et al. [10] proposed stacking
one-dimensional HRRP data by copying to obtain an enhanced two-dimensional gray-scale
image. Liao et al. [11] proposed a deep neural network that concatenates multiple shallow
neural networks to identify targets. Furthermore, they proposed a secondary label coding
method to solve the angle sensitivity problem of the target. Song et al. [12] proposed a
multichannel CNN architecture for ground target HRRP recognition. This architecture
can be applied to various HRRP forms, such as real, complex, spectrum, polarization
and sequence. The proposed method exhibits a considerable improvement in recognition
accuracy. Zhang et al. [13] proposed a CNN–extreme learning machine (ELM) network
structure for ship HRRP target recognition. The input HRRP data of the network are
reordered to convert one-dimensional data into two-dimensional data. Jinwei et al. [14]
proposed a CNN–bidirectional recurrent neural network (BiRNN)-based method to identify
aircraft HRRPs. The main contribution of this method was the use of CNNs to investigate
the spatial correlation of raw HRRP data, extract the expression features, and then combine
BiRNN to fully consider the time dependence between distance units. Chen et al. [15]
proposed a two-dimensional HRRP data format and applied CNN to HRRP for ship
recognition. Experiments revealed that an effective HRRP data format as the input of
CNNs can achieve excellent recognition accuracy.

We concatenated a two-channel CNN with bidirectional long short-term memory
(BiLSTM). In this design, features were extracted through a two-channel CNN using
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various filters. These extracted features were used as the input for BiLSTM. Figure 1
displays the block diagram of the proposed approach. The method is as follows: first, the
real-life HRRP data of ship targets are merged into an HRRP dataset. Second, preprocessing
is performed on the dataset. The construction of the database and the preprocessing of data
are performed according to the methods previously proposed by Chen et al. [15]. Third,
the HRRP data are used as the input of the proposed CNN–BiLSTM model. Experimental
results revealed that the performance of the proposed approach is comparable to other
state-of-the-art HRRP target recognition approaches.
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Figure 1. Block diagram of the proposed approach.

The remainder of this paper is organized as follows. Section 2 describes the procedures
for preprocessing the HRRP of the target. Section 3 reviews deep neural networks. The
proposed two-channel CNN–BiLSTM model is presented in Section 4. The experimental
results and analysis are presented in Section 5. Finally, the conclusions are described in
Section 6.

2. Preprocessing

Preprocessing of HRRP is critical because it can enhance features, thereby enhancing
recognition performance. The data format of the input network is crucial for feature extraction.

2.1. Noncoherent Integration

The echo from a single target has a low SNR. Therefore, a small target may not easily
be detected. Furthermore, the echo from a single target causes a signal fluctuation because
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of the movement of the ship. This problem can be addressed using noncoherent integration
(NCI), which involves aligning consecutive pulses and accumulating N pulses. NCI can
reduce the target aspect and amplitude sensitivity and improve the stability of HRRPs. The
results from our experiments revealed a high recognition rate. Therefore, NCI results in
stable HRRP characteristics. Thus, HRRPs collected from various aspects exhibit stable
amplitude characteristics, which are easy to discriminate.

2.2. Elimination of Noisy Range Cells

The size of the target typically has a certain range. Therefore, to reduce the dimensions
of the feature vector and the computational load, after aligning the center of the range cell,
only 35 range cells are reserved for target recognition.

2.3. Data Format Transformation

In HRRPs, various ships can be identified using the echoes reflected by various targets.
A study [15] revealed that considering HRRPs as a two-dimensional image results in high
recognition accuracy (Figure 2). In this paper, a HRRP with 35 range cells is presented in a
bar graph, and the image is a binary map of size 130 × 35. The range cell is considered as
the X-axis, and the echo intensity is the Y-axis of the binary image. If the echo intensity of
the original data is r(x), it is a real number; x is the range cell number and is an integer. The
value f (x, y) of the pixel coordinate (x, y) defining the binary image is equal to 255 or 0; the
conversion relationship between r(x) and f (x, y) is expressed as follows:

f (x, y) =
{

0, 0 ≤ y ≤ r(x)
255, y > r(x)

. (1)
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3. Theory of Relevant Neural Network Models

This section presents the theory of relevant networks, including CNN, long short-term
memory (LSTM) and BiLSTM.

3.1. CNN

The CNN [16] is a popular neural network and one of the most representative algo-
rithms for deep learning. The CNN is a feedforward neural network with a deep structure
including convolution calculation. In CNNs, convolution operations are used in at least
one layer of the network instead of traditional matrix multiplication. CNNs are a variant of
the multilayer perceptron and are typically used to analyze visual images. CNNs imitate
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the structure of the human brain. First, low-level features are constructed from the bottom,
and then, high-level features are constructed from these low-level features.

CNNs are composed of the convolutional, pooling, fully connected and output layers.
Furthermore, to avoid overfitting during the training process of the model, the dropout
layer is typically added to the network. Figure 3 displays a simple CNN.
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The convolution kernels are used in the convolution layer to compute the convolution
of the input feature maps and add a bias. The following equation represents the operation
of the model:

xk
j = f

(
∑

i
wk

ij ∗ xk−1
i + bk

j

)
, (2)

where ∗ represents the convolution operation, xk
j is the jth output feature map of the kth

layer, xk−1
i is the ith output feature map of the (k−1)th layer, wk

ij is the weights between the

ith input map and the jth output map, bk
j is the bias, and f (·) represents the rectified linear

unit active function.
The pooling layer is used to reduce the number of CNN parameters. The pooling

layer is applied to each feature map and outputs the average or maximum value of the
input in a pooling window. The pooling layer can be expressed as follows:

xk
j = f

(
βk

j down
(

xk−1
j

)
+ bk

j

)
, (3)

where βk
j is the output weight, down(·) represents the max pooling operation, xk−1

j is the jth

input feature map of the kth layer, and bk
j is the bias.

3.2. LSTM and BiLSTM

LSTM [17] is a variant of recurrent neural networks (RNNs). LSTM can extract spatial
features from sequential data for prediction or classification and can effectively solve the
gradient vanishing and gradient explosion problems in the RNN model.

The LSTM cell is composed of four units, namely the input, output and forget gates
and the memory cell. The input (it), output (ot) and forget ( ft) gates are used for setting
the weights at the edge of the connection between the rest of the neural network and the
memory cell. Figure 4 presents the architecture of the LSTM cell.
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The cell state (Ct) indicates the status of the internal storage and data in the cell.
The cell state changes according to the status of the LSTM cell. As displayed in Figure 3,
few linear operations appear on the horizontal line running through the top of the graph.
Therefore, information can be easily retained during transmission.

First, the forget gate is used for controlling which elements of the previous cell state
(Ct−1) are forgotten.

ft = σ
(

W f ·[ht−1, xt] + b f

)
, (4)

where ft is the forget gate, which is an output vector of the sigmoid function (σ(·)) ranging
from 0 to 1 and is used to control the previous cell state (Ct−1). This gate is used to
control which information should be retained and which should be forgotten. Here, xt
is the present input vector, and W f and b f are the weight matrix and bias for the forget
gate, respectively.

Next, the input gate determines the value to be updated as follows:

it = σ(Wi·[ht−1, xt] + bi), (5)

where it is the input gate, which is an output variable ranging from 0 to 1; Wi and bi are the
weight matrix and bias for the input gate, respectively.

A potential vector of the cell state is computed by the present input (xt) and the
previous hidden state ht−1 using the following expression:

C̃t = tanh(WC·[ht−1, xt] + bC), (6)

where C̃t is the memory cell input, which is a vector with values ranging from 0 to 1;
tanh is the hyperbolic tangent; WC and bC are the weight matrix and bias for the updated
state, respectively.

The previous cell state Ct−1 is updated into the new cell state Ct as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t, (7)

where Ct is the memory cell output.
Finally, as indicated by Equation (8), the output gate determines the output through a

sigmoid function, and the output of the new hidden state ht is according to Equation (9).

ot = σ(Wo·[ht−1, xt] + bo), (8)
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ht = ot ∗ tanh(Ct), (9)

where ot is the output gate, which is a vector with values ranging from 0 to 1; Wo and bo
are the weight matrix and bias for the output gate, respectively.

As displayed in Figure 5, the neuron structure of BiLSTM models each sequence
in both forward and backward directions simultaneously, which can more abundantly
represent the long-term dependencies of timeseries data. The two direction hidden states
of BiLSTM are expressed as follows:

→
h t = LSTM

(
xt,
→
h t−1

)
, (10)

←
h t = LSTM

(
xt,
←
h t−1

)
. (11)
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4. Proposed Two-Channel CNN–BiLSTM Model

The authors propose a deep neural network composed of a two-channel CNN concate-
nated with a BiLSTM for recognizing the radar HRRP of ships. The proposed CNN–BiLSTM
model is illustrated in Figure 6.
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As shown in Figure 7, the model consists of a two-channel CNN architecture with var-
ious filters, namely, one input layer and three convolutional layers, and each convolutional
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layer is followed by a max pooling layer. Next, the two-channel CNNs are concatenated
with a BiLSTM layer and finally connected to a dense layer with a SoftMax function for
recognition. To avoid overfitting of the model, the dropout layer with a coefficient of 0.5
was added between the concatenate and BiLSTM layers.
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CNNs can learn relevant features from images of various levels in a manner similar
to the human brain. When the image is filtered, the filter performs a dot multiplication
with an area of the image. If a certain area of the image is similar to the feature detected
by the filter, when the filter passes through that area, the filter is activated and achieves
a high value. Therefore, a two-channel CNN is applied to provide multiple filter banks
that possess numerous filters to obtain deep features automatically. These deep features
are useful for recognition.

Numerous features are extracted through a two-channel CNN with various filters.
These features are concatenated with BiLSTM. HRRP features are reflected by the mi-
crowave emitted by the radar. Therefore, the continuously emitted pulses hit the target,
and the target reflect the echoes of consecutive range cell structures. This inspired us to
concatenate the features extracted by the two-channel CNN with BiLSTM.

In the BiLSTM network, the deep features extracted from the two-channel CNN
are concatenated and used as the input, and the learning process of each LSTM unit is
controlled by three gates, namely, the input gate (it), forget gate ( ft) and output gate (ot).

The input information of it and the memory state of the present cell are calculated by
inputting xt and the output state of the previous cell ht−1 to the sigmoid and hyperbolic
tangent function. The forget gate ft is formed through the sigmoid function with the
input xt and the previous hidden state ht−1, which determines whether information of the
previous cell is forgotten or retained in the present cell.

In Equation (7), the previous cell state Ct−1 and the forget gate ft are multiplied to
discard a part of the information, and then, the product of it and C̃t is added to generate
the current state cell Ct.
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In Equation (8), the output gate (ot) at the present cell is obtained by the input (xt) and
calculating the previous output state ht−1 with a sigmoid function. Then, the new cell state
Ct is passed through the hyperbolic tangent function and multiplied by ot to determine
whether long-term memory should be added to the output. The value is in the interval
[−1, 1]. Here, −1 indicates removing long-term memory. Finally, the output state ot of the
cell is the extracted feature in the BiLSTM network.

The output of the forward and backward directions in the bidirectional LSTM is
concatenated to obtain a new feature vector. Finally, the output is connected to the dense
layer using the SoftMax function for recognition.

5. Experiments and Results

We conducted experiments on the HRRP dataset to evaluate the effectiveness of
the proposed approach. The experiments are divided into two parts according to the
computing platforms.

The first parts of the test were performed on the CPU of a notebook equipped with
Intel®Core™ i5-7300HQ CPU @ 2.50 GHz × 2, 16 GB RAM and NVIDIA GeForce GTX
1050 GPU. The software was programmed using Python 3.6 and mainly based on the
deep-learning framework TensorFlow 1.9.0 + Keras 2.2.4.

The second parts of the test were performed on Colaboratory (or Colab) GPU resources
provided by Google. The free computing resources of Colab change over time to adapt to
fluctuations in demand, overall growth and other factors. Colab allows people to write
and execute an arbitrary Python code through a browser. The GPUs available in Colab
typically include NVIDIA K80s, T4s, P4s and P100s, and the available types change over
time. Selecting the type of the GPU that can be connected in Colab at any given time is not
possible [18].

Experiments 1 to 3 were executed on the CPU platform. According to various condition
settings, the parameter settings for which LSTM or BiLSTM exhibited a high recognition
accuracy were determined. Based on the results of Experiments 1–3, Experiment 4 was
performed to determine how to concatenate a two-channel CNN with LSTM or BiLSTM.
Then, the designed deep neural network was executed on the CPU and GPU platforms to
determine the highest recognition accuracy according to various condition settings and
analyze the time cost.

5.1. HRRP Dataset

The radar HRRP ship target dataset was prepared using the ship information col-
lected by radar and an automatic identification system (AIS). This dataset contains a large
amount of HRRP data, which were collected from real-life scenarios [15]. Table 1 lists the
distribution of the chips data of six ship types and reveals that this dataset was imbalanced.
The original dataset had the data of 207,610 chips, and the invalid chips data with echo
values of 0 were removed. The number of valid data items after selection was 207,545. The
six types of ships in the study are named Alpha, Beta, Gamma, Delta, Epsilon and Zeta
(Figure 8). The HRRP dataset exhibits three essential properties, namely reality, diversity
and large scale. Figure 9a,c display two ship types. Figure 9b,d show that each color
trajectory represents different continuous data collected. These data indicate that the ship
data collected are diverse and include various ranges and azimuths.

5.2. Experiments

The split rate of the dataset was divided into the training set and the test set and
affected the recognition accuracy of the training model. It is well known that the neural
networks usually perform well with a lot of training data. According to our previous
study [15], we have used different split ratios of the training and test datasets in the
experiments, which also confirm this result. Therefore, we will no longer discuss the split
ratio of training and test datasets in this study. In these experiments, all HRRP data were
randomly divided at a ratio of 7:3, which resulted in 145,282 samples of training dataset
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and 62,263 samples of test dataset. In the training process, 20% of the training dataset
was used as the validation dataset, and the accuracy of the validation dataset was used to
evaluate the quality of the model. The initial learning rate was set to 0.0001, and the batch
size was 300.

Experiment 1: The number of layers in LSTM was fixed as one layer, and the number
of neurons was increased in this layer for experiments. Table 2 lists that the overall test
accuracy was between 98% and 99%. When the number of hidden layer neurons gradually
increased, the accuracy also increased. When the number of neurons was 300, the test
accuracy was 98.77%. As the number of neurons increased to 500, the increase in test
accuracy was marginal. Therefore, an increase in neurons improved accuracy. Although
the optimal accuracy was achieved when the number of neurons was approximately 500,
the increment was not high. For similar experiments with BiLSTM, when the number of
neurons was 500, the highest test accuracy of 98.96% was achieved.

Table 1. Ship types and data chips distribution.

Ship Types Original Chips Valid Chips

Alpha 66,792 66,746
Beta 40,346 40,344

Gamma 21,697 21,680
Delta 53,082 53,082

Epsilon 11,493 11,493
Zeta 14,200 14,200
Total 207,610 207,545
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Table 2. Network performance of single-layer LSTM and BiLSTM architecture.

Number of Neuros #100 #300 #500

Network Arch. LSTM BiLSTM LSTM BiLSTM LSTM BiLSTM
Parameters 41,406 82,806 364,206 728,406 1,007,006 2,014,006

Training Time(s) 1333 2826 5907 12,293 12,986 27,702
Valid. Loss 3.85% 3.27% 3.21% 2.75% 2.63% 2.53%

Valid. Accuracy 98.56% 98.85% 99.18% 99.03% 99.09% 99.21%
Test Time(s) 7.43 13.37 19.66 37.46 43.03 89.11

Test Loss 3.91% 3.91% 3.42% 3.10% 3.81% 3.12%
Test Accuracy 98.63% 98.64% 98.77% 98.95% 98.81% 98.96%

Experiment 2: The previous experiment demonstrated that as the number of neurons
increased, the test accuracy increased. Therefore, the second experiment was performed
to investigate whether the use of multilayer LSTM affects the accuracy of the network.
Here, 300 neurons were evenly distributed in two, three and four layers of LSTM. Table 3
indicates that the test accuracy did not increase significantly as the number of LSTM layers
increased (the number of neurons in each layer decreased). Multiple LSTM layers required
more test time, which is not conducive to practical applications. When the number of
neurons was 100 and the three LSTM layers were used, the optimal accuracy of 98.85% was
achieved. Furthermore, the training time of a single-layer LSTM of 300 was longer than that
of a single-layer LSTM. Therefore, an overly complex architecture does not considerably
improve the test accuracy but increases the time cost. Experiments were conducted in a
similar manner with BiLSTM. When the number of neurons was 100 and LSTM was three
layered, the optimal test accuracy of 99.06% was achieved.
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Table 3. Network performance of a multilayer LSTM and BiLSTM architecture with the total number
of multilayer neurons fixed at 300.

Number of Neuros 2 Layers (#150 × 2) 3 Layers (#100 × 3) 4 Layers (#75 × 4)

Network Arch. LSTM BiLSTM LSTM BiLSTM LSTM BiLSTM
Parameters 272,706 725,406 202,206 564,406 159,456 453,906

Training Time(s) 2475 17,051 3856 16,358 7692 17,321
Valid. Loss 2.08% 2.56% 2.11% 2.76% 2.53% 2.86%

Valid. Accuracy 99.23% 99.13% 99.24% 99.11% 99.07% 99.08%
Test Time(s) 25.57 58.79 27.48 66.17 30.52 73.07

Test Loss 3.61% 3.15% 3.51% 2.84% 3.76% 3.36%
Test Accuracy 98.72% 98.95% 98.85% 99.06% 98.73% 98.89%

Experiment 3: The previous two experiments revealed that fixing the total number
of neurons and increasing the number of LSTM layers did not improve the accuracy
considerably. Although Experiment 1 revealed that the optimal test accuracy was achieved
for approximately 500 neurons, the benefit was not substantially higher than that for
300 neurons for various numbers of layers. In Experiment 3, the number of LSTM layers
was increased under a fixed 300 neurons in each layer. Table 4 displays that the highest
test accuracy was obtained when the number of neurons in each layer was 300. The test
accuracy did not increase with the number of LSTM layers. Overly complex architecture
does not improve the test accuracy but increases time constraints. However, Experiments 3
and 4 revealed that with two LSTM layers, the network with more neurons in each layer
had a higher test accuracy. Too many LSTM layers resulted in decreased test accuracy.

Table 4. Network performance of the multilayer LSTM and BiLSTM architecture with 300 neurons
per layer.

Number of Neuros 2 Layers (#300 × 2) 3 Layers (#300 × 3) 4 Layers (#300 × 4)

Network Arch. LSTM BiLSTM LSTM BiLSTM LSTM BiLSTM
Parameters 1,085,406 2,890,806 1,806,606 5,053,206 2,527,806 7,215,606

Training Time(s) 16,858 47,258 27,367 80,265 39,159 113,456
Valid. Loss 2.63% 2.60% 3.19% 2.68% 2.75% 3.26%

Valid. Accuracy 99.12% 99.12% 99.11% 99.05% 99.15% 99.07%
Test Time(s) 55.75 149.01 92.52 261.73 261.59 367.85

Test Loss 3.59% 2.87% 3.52% 3.95% 4.14% 3.46%
Test Accuracy 98.83% 99.09% 98.92% 98.72% 98.79% 98.96%

Experiment 4: The experiments were first simulated on the CPU to determine a
satisfactory concatenated network structure. The aforementioned experiments indicated
that optimal results were obtained when two layers of LSTM were used and the number of
neurons in each layer was 300. Therefore, we used a two-channel CNN to concatenate with
LSTM and BiLSTM, respectively. First, the number of neurons in each LSTM layer was set
to 300, and the number of LSTM layers was fixed to two. Then, a test accuracy of 99.15%
was obtained by concatenating the two-channel CNNs with the two-layer LSTM in 160.5 s,
which is high. Because the proposed network structure is complex, we speculate that an
overly complex network cannot considerably improve recognition accuracy. As displayed
in Table 5, we concatenated the two-channel CNN with one-layer LSTM and obtained a
test accuracy of 99.11%. This accuracy is not considerably lower than that for concatenating
two-layer LSTM. A similar experiment was conducted for the BiLSTM experiment. A
test accuracy of 99.21% was obtained when a two-channel CNN was concatenated with
a two-layer BiLSTM. When the number of BiLSTM layers was set to 1, the test accuracy
was 99.24%. For the final experiment, we concatenated a two-channel CNN with one-layer
LSTM and BiLSTM. As presented in Table 6, when the number of neurons was 300, the
two-channel CNN concatenated with one-layer BiLSTM achieved the optimal test accuracy
of 99.24%.
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Table 5. Network performance of the two-channel CNN concatenated with a single-layer LSTM ar-
chitecture.

Number of Neuros #100 #300 #500

Computing Env. CPU GPU CPU GPU CPU GPU
Parameters 577,970 577,970 1,591,170 1,591,170 2,924,370 2,924,370

Training Time(s) 62,631 3115 71,422 3330 79,112 3797
Valid. Loss 2.93% 2.50% 2.54% 2.55% 2.45% 2.54%

Valid. Accuracy 99.04% 99.25% 99.17% 99.23% 99.22% 99.23%
Test Time(s) 133.66 11.24 149.07 12.33 177.03 13.22

Test Loss 3.08% 2.81% 2.70% 2.86% 2.68% 2.62%
Test Accuracy 98.96% 99.07% 99.11% 99.12% 99.17% 99.16%

Table 6. Network performance of the two-channel CNN concatenated with a single-layer BiLSTM ar-
chitecture.

Number of Neuros #100 #300 #500

Computing Env. CPU GPU CPU GPU CPU GPU
Parameters 964,570 964,570 2,990,970 2,990,970 5,657,370 5,657,370

Training Time(s) 56,763 3251 71,846 4813 90,827 4545
Valid. Loss 2.76% 2.35% 2.44% 2.47% 3.26% 2.95%

Valid. Accuracy 99.23% 99.23% 99.27% 99.28% 99.26% 99.25%
Test Time(s) 139.65 13.44 179.79 18.38 227.37 17.54

Test Loss 3.19% 2.54% 2.73% 2.90% 3.32% 2.81%
Test Accuracy 99.14% 99.21% 99.24% 99.25% 99.20% 99.18%

Tables 5 and 6 indicate that the proposed model exhibited a superior recognition
accuracy, regardless of whether it was concatenated with LSTM or BiLSTM. The execution
results on the GPU differed slightly from those of the CPU. However, reproduction of the
accuracy was difficult despite repeated tests. However, the difference in the test result
when using the GPU was less than 0.1%. Studies have revealed that this phenomenon
could be attributed to the complex set of GPU libraries, some of which may introduce
their own randomness and prevent accurate reproduction of the results. Regarding time
cost evaluation, we analyzed the results from various execution platforms. Because our
model is complex, the data of 62,263 chips of HRRP ship data were tested in 178.65 s when
executed on the CPU, which indicates that approximately 2.87 ms are required to recognize
a chip of HRRP ship data. When executed on the GPU, testing was completed in 18.38 s,
which indicates that approximately 0.30 ms are required to recognize a chip of HRRP ship
data. For radar systems, a dwell time is typically 10–20 ms. Therefore, the time required for
the proposed deep-learning model for radar systems is feasible. System-on-chips equipped
with GPUs can be used in radar systems.

Figure 10 displays the confusion matrix of the recognition results using the proposed
two-channel CNN concatenated with BiLSTM model. Figure 10a presents the results for
the model running on the CPU, and Figure 10b displays the results for the model running
on the GPU. The results of the confusion matrix indicate that ships with similar HRRPs do
have higher chances of being confused.

For the CPU model, Delta ships were incorrectly predicted as Alpha ships 59 times;
Alpha ships were incorrectly predicted as Delta ships 69 times; Epsilon ships were incor-
rectly predicted as Delta ships in 94 cases; Delta ships were incorrectly predicted as Epsilon
ships in 41 cases.

For the GPU model, Delta ships were incorrectly predicted as Alpha ships 54 times;
Alpha ships were incorrectly predicted as Delta ships 74 times; Epsilon ships were incor-
rectly predicted as Delta ships in 70 cases; Delta ships were incorrectly predicted as Epsilon
ships in 60 cases.

From the analysis of the aforementioned results, although the confusion matrices of
the data in different environments were not the same, the results of ships easily confused
with each other were consistent and with no violation.
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Figure 11 illustrates the recognition accuracy curves of the proposed two-channel
CNN–BiLSTM model. Figure 11a presents the results for the model running on the CPU,
and Figure 10b displays the confusion matrix for the model running on the GPU. Figure 12
illustrates the loss curve of the proposed two-channel CNN–BiLSTM model. Figure 11a
displays the recognition accuracy curve of the model running on the CPU, and Figure 11b
displays the recognition accuracy of the model running on the GPU. Figures 11 and 12
indicate that the accuracy of the validation set did not increase considerably after approx-
imately 60 epochs, and the loss of the validation set did not decrease considerably after
approximately 60 epochs. According to our experimental records, when running on the
CPU, the highest accuracy of 99.27% was obtained in 63 epochs in the validation set, and
the loss in the validation set was 2.44%. When running on the GPU, the accuracy of the
validation set reached the highest accuracy of 99.29% in 73 epochs, and the loss of the
validation set was 2.47%.

Finally, the results were compared with some well-known network architectures. As
displayed in Table 7, we summarized all the experiments performed on the same HRRP
dataset and conducted with the same training and validation datasets. Comparisons
of LeNet, AlexNet, ZFNet and VGG16 revealed that deeper networks may not achieve
superior results. However, deeper layers exhibited superior results in the VGG architec-
ture. Table 7 indicates that the proposed approach outperformed the two-channel LeNet
and AlexNet.

Table 7. Network performance of all the experiments conducted on the constructed HRRP dataset.

Approach Description Recognition Accuracy

LeNet LeNet 99.05%
AlexNet AlexNet 98.94%
ZFNet ZFNet 98.85%

VGG-16 VGG-16 98.53%
LSTM 3-layer LSTM with 300 neurons per layer 98.92%

BiLSTM 2-layer BiLSTM with 300 neurons per layer 99.09%
2 CNN+LSTM Two-channel CNN concatenated with LSTM 99.17%

2 LeNet+BiLSTM Two-channel LeNet concatenated with BiLSTM 99.09%
2 AlexNet+BiLSTM Two-channel AlexNet concatenated with BiLSTM 98.97%

2 CNN+BiLSTM Two-channel CNN concatenated with BiLSTM 99.25%
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5.3. Comparison with State-of-the-Art Approaches

Table 8 summarizes experimental results in published papers using deep-learning
approaches. In Table 8, the datasets in [10,12–14] are established in a simulated manner,
and the datasets used in this paper are the data collected from real-life situations.

Table 8. Comparison of for HRRP recognition performance for various approaches.

Approach Dataset Description Recognition Accuracy
(%) Year

[10] Simulation data CNN-MatConvNet 93.90% 2017
[12] Simulation data CNN 94.30% 2019
[13] Simulation data CNN-ELM 99.50% 2019
[14] Simulation data CNN-BiRNN 93.30% 2020
[15] Our real-life data 3Conv+2FullyConnect CNN 99.20% 2020

2 CNN+BiLSTM Our real-life data Two-channel CNN+BiLSTM 99.25% 2021

Bold values indicate the optimal performance with real-life data.
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Karabayır et al. [10] proposed stacking a one-dimensional HRRP data by simply
copying to obtain an enhanced two-dimensional gray-scale image and directly feeding
the one-dimensional HRRP into the neural network. The difference in the recognition
rate was nonsignificant and was between 98% and 99%. Zhang et al. [13] proposed a
CNN–ELM network for ship HRRP target recognition. In the experiment, CNN–ELM
achieved a recognition rate of 99.50%. Wan et al. [14] proposed a CNN–BiRNN-based
method to identify aircraft HRRP and achieved an optimal recognition effect of 93.30%.
Chen et al. [15] proposed a two-dimensional HRRP data format and applied CNN to HRRP
for ship target recognition. Experiments revealed that the CNN exhibited an excellent
recognition rate of 99.20%.

Unlike the data collected under the real-life environment in this study, most studies
have simulated HRRP. Table 8 indicates that the studies using deep neural networks to
identify ships have exhibited excellent accuracy. Furthermore, the proposed approach is
comparable to the other state-of-the-art HRRP target recognition approaches.
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6. Conclusions

Radar HRRP target recognition is a critical target recognition problem in the RATR
field. In the past, most of the radar automatic target recognition methods use conventional
handcrafted features. These methods require prior knowledge of radar and can only achieve
limited effects. In recent years, many deep neural network-based recognition methods
have emerged. The use of deep neural networks for radar HRRP target recognition helps
to avoid excessive use of artificially designed rules to extract features, and deep learning
can automatically obtain the deep features of the target.

This study proposed a deep neural network-based two-channel CNN concatenated
with BiLSTM for ship target recognition based on radar HRRP. A two-channel CNN with
various filters can dig out more different features. These features can be used as the
input to BiLSTM to investigate the spatial relationship of adjacent range cells of HRRPs.
BiLSTM is a two-directional timeseries and is highly robust for timeseries data modeling.
The BiLSTM model can capture long-distance dependence and obtain superior two-way
timing dependence. Therefore, two-way continuous time sequential features of the ship
structure—that is, the two-way spatial relationship between adjacent range cells—can
be determined.

It can be seen from the experiments with a real-life HRRP dataset of ship targets that
the use of a timeseries neural network has good recognition accuracy. BiLSTM is slightly
better than LSTM, which indicates that the adjacent structure of ship targets should have
continuous relational characteristics, that is, adjacent range cells in HRRP have timeseries
features. In addition, it can be seen that the two-directional timeseries features are more
discriminative than the one-directional timeseries features. The proposed method is also
better than using BiLSTM or LSTM alone. It reveals that the use of two-channel CNN can
more effectively extract discriminative deep features.

The results of the proposed approach are comparable to those of other existing state-of-
the-art HRRP target recognition approaches. An experimental comparison of CPU and GPU
performance was performed, which revealed that on current high-speed GPU computing
platforms, the use of complex deep neural networks for radar HRRP target recognition
is feasible. The findings of this study can extend HRRP recognition technologies to the
applications of coastal surveillance, navigation channel management and military RATR.
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