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Abstract: This paper presents a novel method for atmospheric transmittance-temperature-emissivity
separation (AT2ES) using online midwave infrared hyperspectral images. Conventionally, tempera-
ture and emissivity separation (TES) is a well-known problem in the remote sensing domain. How-
ever, previous approaches use the atmospheric correction process before TES using MODTRAN in
the long wave infrared band. Simultaneous online atmospheric transmittance-temperature-emissivity
separation starts with approximation of the radiative transfer equation in the upper midwave in-
frared band. The highest atmospheric band is used to estimate surface temperature, assuming high
emissive materials. The lowest atmospheric band (CO2 absorption band) is used to estimate air
temperature. Through onsite hyperspectral data regression, atmospheric transmittance is obtained
from the y-intercept, and emissivity is separated using the observed radiance, the separated object
temperature, the air temperature, and atmospheric transmittance. The advantage with the proposed
method is from being the first attempt at simultaneous AT2ES and online separation without any
prior knowledge and pre-processing. Midwave Fourier transform infrared (FTIR)-based outdoor
experimental results validate the feasibility of the proposed AT2ES method.

Keywords: atmospheric transmittance; temperature; emissivity; separation; midwave infrared;
hyperspectral images

1. Introduction

The concept of temperature and emissivity separation (TES) was originally developed
by Gillespie et al. for Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) satellite data analysis [1,2]. Currently, TES is an important research topic in
infrared remote sensing applications. Separated temperature can be used to estimate land
surface temperature for the study of climate change [3,4]. Emissivity information is useful
for mineral composition analysis [5], vegetative cover mapping [6], and object material
classification [7].

The scope of this paper is to apply TES online on a flying platform such as an un-
manned aerial vehicle. The most critical issue is how to achieve the atmospheric correction
to remove the effect of path radiance and atmospheric transmittance in real time without
any prior information or pre-processing. Historically, the original TES method in ASTER
satellite images used an atmospherically corrected dataset in five multispectral long wave
infrared (LWIR) bands [1]. Li et al. compared six methods for extracting relative emissivity
spectra from atmospherically corrected multiple spectral bands [3]. Yong et al. tried to
estimate atmospheric transmittance in LWIR bands without TES [8]. Payan and Royer
further analyzed the applicability and sensitivity of six TES methods [2]. Borel and Tuttle
improved TES by using MODTRAN 5-based atmospheric transmittance [9]. Wang et al.
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also applied MODTRAN to perform atmospheric correction in a thermal airborne spectro-
graphic imager (TASI) [10]. Adler-Golden et al. adopted simulated atmospheric parameters
from the MODTRAN5 model for TES [11]. Wang et al. used the atmospheric transmittance
calculated by MODTRAN for TES of Landsat-8 sensor data [12]. Pivovarník et al. improved
TES by adopting smoothing in emissivity estimation where atmospheric correction was
made using MODTRAN with a mid-latitude summer atmosphere [4].

The previous works have three limitations. First, most require pre-processing of
atmospheric correction by using MODTRAN or from prior knowledge. The atmospheric
transmittance, downwelling, and upwelling data are generated for TES. Second, TES is
conducted offline. Such an approach is impractical for real-time TES on a flying platform
because atmospheric conditions change dynamically in time and space. Third, most TES
techniques use an LWIR satellite database such as ASTER and TASI.

In this paper, a novel simultaneous atmospheric transmittance-temperature-emissivity
separation (AT2ES) method is proposed for online applications based on the following
key ideas. First, the radiative transfer equation (RTE) is approximated by considering the
physical properties of the upper midwave infrared band (4.2–5.6 µm). Second, the highest
and lowest atmospheric transmittance bands are selected. The former is used to estimate
surface temperature, and the latter (the CO2 absorption band: 4.2–4.4 µm) is used to
estimate air temperature. Through a data regression process, the atmospheric transmit-
tance is estimated with the y-intercept and air temperature. Emissivity is separated using
the observed radiance, the separated object temperature, the air temperature, and atmo-
spheric transmittance.

Therefore, the main contributions are summarized as follows.

• The proposed AT2ES can separate atmospheric transmittance, temperature, and emis-
sivity simultaneously.

• AT2ES can work online without any prior processing or information.
• AT2ES can provide a feasible approximate solution in the upper MWIR band (4.2–5.6 µm).

The remainder of this paper is organized as follows. Section 2 explains the proposed
AT2ES method, including the basics of the radiative transfer equation in the upper MWIR
band. Section 3 analyzes AT2ES using a synthetic dataset and outdoor remote sensing data.
The paper concludes in Section 4.

2. Proposed AT2ES Method
2.1. Basics of the Radiative Transfer Equation

Figure 1 shows hyperspectral imaging in an outdoor environment. It consists of
the target, a midwave infrared-Fourier transform infrared (MWIR-FTIR) camera, the sun,
and the atmosphere. Observed spectral radiance can be derived from the radiative transfer
from Equation (1). Romaniello et al. adopted the radiative transfer equation used in
MODTRAN [13]. In general, at-sensor received radiance Lobs(λ) in the MWIR region
consists of opaque object-emitted radiance, reflected downwelling radiance, and total
atmospheric path radiance (thermal+solar components).

Lobs(λ) = τ(λ)
[
ε(λ)Ltg(λ, Ttg) + (1− ε(λ))(L↓s (λ) + L↓t (λ))

]
+ L↑s (λ) + L↑t (λ) (1)

Lobs(λ) is the at-sensor radiance; λ is the wavelength; ε(λ) is spectral object surface
emissivity; Ltg(λ, Ttg) is the spectral radiance of the object, assuming a blackbody in
the Planck function with object surface temperature Ttg. L↓s (λ) and L↓t (λ) represent the
spectral downwelling solar radiance and thermal irradiance, respectively; τ(λ) is the
spectral atmospheric transmittance, and L↑s (λ) and L↑t (λ) are spectral upwelling solar
and thermal path radiance, respectively, reaching the sensor. Observed spectral radiance
Lobs(λ) is acquired by applying the Fourier transform to the interferogram in the Michelson
interferometer and hot-cold blackbody-based radiometric calibration [14].
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Figure 1. Operational concept of AT2ES using a passive open path Fourier transform infrared
imaging system. Notation: L↓s (λ) and L↓t (λ) represent the spectral downwelling solar radiance and
thermal irradiance, respectively; L↑s (λ) and L↑t (λ) are spectral upwelling solar and thermal path
radiance, respectively, reaching the sensor.

2.2. Proposed Approximation of the RTE in the Upper MWIR Band

Figure 2 visualizes the fractions of total radiance according to the radiometric character-
istics for top of atmosphere (TOA): path thermal L↑t (λ), path reflectance-solar L↑s (λ), surface
reflectance-solar L↓s (λ), surface reflectance-infrared L↓t (λ), and surface-emitted Ltg(λ, Ttg).
The lower MWIR band (3.0–4.2 µm) shows a large fraction for surface reflectance-solar.
This means the received radiance strongly depends on the reflected solar energy. However,
the contribution of surface reflectance-solar radiance L↓S(λ) is reduced to only 1% to 4% in
the upper MWIR band (4.2–5.6 µm) even for very dry conditions [15]. Figures 3 and 4 show
the simulation process of surface reflected-solar and surface emitted-object with the portion
of surface reflected-solar. According to the simulation, the average portion of surface
reflected solar is 0.65%, which affects negligible error. In addition, surface-reflected down-
welling thermal radiance L↓T(λ) and path reflectance-solar radiance L↑S(λ) are negligible,
compared to surface-emitted radiance Ltg(λ, Ttg) and path thermal radiance L↑t (λ).
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Figure 2. Fractional distribution of spectral radiance in the MWIR band.
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Figure 3. (a) Generation of surface reflected-solar, (b) generation of surface emitted-object. (1st
row) solar radiance, object radiance, (2nd row) surface reflectivity, emissivity, and (3rd row) surface
reflected-solar, surface emitted-object.

If we ignore surface reflectance-solar, surface reflectance-infrared, path reflectance-
solar, we can simplify Equation (1) into Equation (2):

Lobs(λ) = τ(λ)ε(λ)Ltg(λ, Ttg) + L↑t (λ) (2)

The definition of thermal upwelling L↑t (λ) is Equation (3) [9]:

L↑t (λ) = (1− τ(λ))LBB(λ, Tair) (3)

where LBB(λ, Tair) denotes the spectral radiance, [W/(m2 · sr ·µm)], of a blackbody (Planck’s
law [16]), and Tair is the air temperature in degrees Kelvin [K] of the atmosphere between
the object and the camera sensor. The spectral radiation of the atmosphere is modeled
as a blackbody [17–19]. Atmospheric path radiance can be described in different ways,
but the simplest is to model the particles as blackbodies [19]. LBB(λ, Tair) is defined in
Equation (4):

LBB(λ, Tair) =
2hc2

λ5(ehc/λkTair − 1)
(4)
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where h denotes Planck’s constant, c is the speed of light, and k is the Boltzmann constant.
Therefore, the final form of the proposed approximated RTE is the same as Equation (5):

Lobs(λ) = τ(λ)ε(λ)LBB(λ, Ttg) + (1− τ(λ))LBB(λ, Tair) (5)

where Ltg(λ, Ttg) was changed to LBB(λ, Ttg) for notational consistency. The proposed RTE
is valid for the upper MWIR band (4.2–5.6 µm) with 1–4% radiance uncertainty.
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Figure 4. Calculation of the portion of surface reflected-solar: (a) surface reflected-solar + surface
emitted-object, (b) portion of surface reflected-solar [%], (c) enlarged view in the upper MWIR band.
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2.3. Details of the AT2ES Process

Given the approximated RTE model in Equation (5), two unknown temperature
parameters (Ttg, Tair) should be separated to estimate spectral atmospheric transmittance
τ(λ) and spectral emissivity ε(λ) given Lobs(λ). Figure 5 summarizes the overall AT2ES
process, which consists of six blocks: brightness temperature (BT) extraction, Tair separation,
Ttg separation, regression, τ(λ) separation, and ε(λ) separation. The BT extraction block
converts spectral radiance Lobs(λ) to brightness temperature units. The band range is
limited to the upper MWIR band (4.2–5.6 µm) in order to use the approximate RTE model
introduced in the previous subsection. Brightness temperature BT(λ) is used in the
Tair and Ttg separation blocks. The regression block estimates slope a(λ) and intersect
b(λ) parameters from observed spectral radiance Lobs(λ) and target spectral radiance
LBB(λ, Ttg). Atmospheric transmittance τ(λ) and target emissivity ε(λ) are separated
using these parameters and air radiance LBB(λ, Tair). Each module is explained in the
following paragraphs.

Regression
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Figure 5. Proposed simultaneous AT2ES flow.

Brightness temperature module: The amount of spectral radiance energy can be converted
into an equivalent brightness temperature ([20]). By inverting Equation (4), temperature
BT(λ) [K] can be obtained as follows:

BT(λ) =
hc

λk ln(2hc2/λ5LBB(λ, T) + 1)
. (6)

Figure 6 shows an example of brightness temperature extraction from an observed
spectral radiance. The remote spectral radiance shows a complicated shape depending
on the surface emissivity, atmospheric transmittance, and path radiance. Brightness tem-
perature is the temperature of a blackbody in thermal equilibrium with its surroundings
in order to duplicate the observed intensity of a gray-body object at a specific frequency
or wavelength. As a result that the spectral radiance provides radiance energy at each
wavelength, Equation (6) can calculate the corresponding brightness temperature at each
wavelength. Note that a higher brightness temperature can be extracted if atmospheric
transmittance and surface emissivity are closer to 1.
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Figure 6. Example of brightness temperature extraction from spectral radiance: (a) the observed
sample spectral radiance [W/(m2 sr µm)], and (b) the converted brightness temperature [◦C].

Tair separation module: According to the MODTRAN simulation in the MWIR band,
the spectral transmittance of the carbon dioxide (CO2) band (4.20–4.35 µm) decreases
abruptly with distance [21]. The average transmittance in the CO2 band is 0.13, 0.03, 0.005,
0.0001, and 0 at 5 m, 10 m, 20 m, 50 m, and 100 m, respectively. Figure 7 demonstrates the
atmospheric transmittance at the 50 m distance in the upper MWIR band. Note that the
atmospheric transmittance is 0.0001 in the CO2 absorption band. If we consider only the
CO2 band (λCO2 = [4.20–4.35 µm]) with a minimum 20m object distance, transmittance
τ(λCO2) can be regarded as 0, which leads to Equation (7) derived from Equation (5).
An MWIR-FTIR camera receives only the upwelling of path thermal radiances in the
λCO2 band.

Lobs(λCO2) = LBB(λCO2 , Tair) (7)

Therefore, Tair can be obtained by applying a mean operation to Equation (6) in λCO2 .
The final form of air temperature separation is shown in Equation (8). Figure 8 illustrates
an air temperature map image by applying the brightness temperature extraction method
to the CO2 absorption band (4.31 µm). A representative air temperature value can be
estimated using the spatial and spectral average filter in the CO2 band range.

Tair = mean(BT(λCO2)) (8)
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Object distance [km]

CO2 absorption band

Figure 7. Atmospheric transmittance at the 50 m distance, and the characteristics of the CO2 absorp-
tion band (4.20–4.35 µm).

4.31 m

(a)

(b)

Figure 8. Air temperature map extraction using spectral radiance in the CO2 absorption band: (a) the
air temperature map at 4.31 µm, (b) the brightness temperature profile at the cross point in (a).

Ttg separation module: The remote target temperature separation process requires two
assumptions. One is that there must be a high atmospheric transmittance band; the other
is that there must be high emissivity band. These assumptions can be satisfied because
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the working distance is within 100 m, and most natural and paint materials show high
emissivity. Figure 9 proves that maximal transmittance is above 0.992 within a 100 m
distance under a clear sky. The average atmospheric transmittance is 0.72 (50 m), 0.66
(100 m), 0.49 (500 m), and 0.41 (1000 m) under 1976 US standard atmosphere model. If the
moisture content is 3 times higher (tropical model), the corresponding average atmospheric
transmittance is 0.65 (50 m), 0.57 (100 m), 0.39 (500 m), and 0.31 (1000 m). The reduction
rate is 13.6% (50 m), 9.7% (100 m), 20.4% (500 m), and 20.4% (1000 m).

The spectral emissivity of the representative materials (paint, grass, asphalt, and con-
crete) is at least 0.9 as shown in Figure 10.(a) 50m, 0.999 (b) 100m, 0.992(c) 500m, 0.980 (d) 1000m, 0.962

Figure 9. Atmospheric transmittance distribution, and the maximum values based on object distance.

E
m
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s
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y

Figure 10. Emissivity distributions of various materials in the upper MWIR band.

In these environmental conditions, there is an optimal band with a high maximum
τ(λopt)ε(λopt) of 0.9 or more. Therefore, Equation (5) can be reduced to Equation (9) with
a maximum 10% margin of error. Target temperature Ttg can be obtained by applying
brightness temperature to Equation (9). In practical terms, optimal band λopt is unknown a
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priori because we have no information on object distances and material types. However,
the problem can be bypassed by applying the max operation to Equation (6). The final form
of target temperature separation is shown in Equation (10), where λhigh = [4.35–5.60 µm],
which is the complement of the CO2 absorption band. The calculated target temperature
(33.6 ◦C) is the blue circle overlaid in Figure 6.

Lobs(λopt) = LBB(λopt, Ttg) (9)

Ttg = max(BT(λhigh)) (10)

Regression module: The proposed approximate RTE, Equation (5), can be written by
replacing coefficients as follows:

Lobs(λ) = a(λ)LBB(λ, Ttg) + b(λ) (11)

where a(λ) = τ(λ)ε(λ), and b(λ) = (1− τ(λ))LBB(λ, Tair). Slope a(λ) and intercept b(λ)
can be estimated using regression between Lobs(λ) and LBB(λ, Ttg), as shown in Figure 11.
Hyperspectral data points are obtained from different areas with the same distance. Each
observed spectrum provides the BT from which Ttg is separated by maximization, as ex-
plained above. Figure 12 shows the regressed coefficients for each wavelength.
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Figure 11. Examples of linear regression between Lobs(λ) and LBB(λ, Ttg) for the representa-
tive bands: (a) λ = 4.568[µm], (b) λ = 4.8039[µm], (c) λ = 4.9432[µm], (d) λ = 5.3294[µm].
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Figure 12. Examples of slope a(λ) and y-intercept b(λ) coefficients in linear regression.

τ(λ) separation module: As a result that b(λ) = (1− τ(λ))LBB(λ, Tair), atmospheric
transmittance τ(λ) can be calculated using b(λ) and LBB(λ, Tair) as follows:

τ(λ) = 1− b(λ)
LBB(λ, Tair)

(12)

Atmospheric temperature Tair provides blackbody radiation, and y-intercept b(λ) is
separated through linear regression. Figure 13 (top chart) shows an example of separated
atmospheric transmittance using Equation (12).

ε(λ) separation module: In Equation (5), spectral emissivity ε(λ) can be separated
using atmospheric transmittance τ(λ), object temperature Ttg, and observed spectral
radiance Lobs(λ), as seen in Equation (13). As a result that each sample has its own spectral
emissivity, a representative spectral emissivity profile can be obtained via sample mean.
Figure 13 (bottom) shows an example of separated emissivity using Equation (13).

ε(λ) =
Lobs(λ)− b(λ)

τ(λ)LBB(λ, Ttg)
(13)
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Figure 13. Top chart shows separated atmospheric transmittance, and bottom chart, separated
emissivity of a sample plane.

3. Experimental Results
3.1. Experiments Using Synthetic Hyperspectral Datasets

In the first experiment, synthetic hyperspectral data were generated for parameter
analysis using Equation (5). The four critical parameters are object temperature Ttg, air
temperature Tair, emissivity ε(λ), and atmospheric transmittance τ(λ). Figure 14 demon-
strates the synthetic spectrum generation flow for observed signal Lobs(λ). Figure 14a
is the grass spectrum downloaded from the ECOSTRESS library, 15 August 2020 (https:
//ecostress.jpl.nasa.gov/) [22]. Figure 14b presents spectral blackbody radiance of an
object with temperature Ttg = 30 ◦C. Figure 14c is emitted object radiance from multiplying
Figure 14a,b. The observed spectral radiance in Figure 14f was generated by applying
the atmospheric transmittance in Figure 14d to the emitted object radiance and the path
radiance in Figure 14e.

https://ecostress.jpl.nasa.gov/
https://ecostress.jpl.nasa.gov/
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Figure 14. Synthetic spectrum generation flow: (a) grass emissivity, (b) object radiance, (c) emitted
object radiance, (d) atmospheric transmittance, (e) path radiance, and (f) observed radiance.

Through the generation process, 200 observed spectra were generated, as seen in
Figure 15a. As a baseline dataset, Gaussian noise was added with the following parameters:
στ = 0.0001; σTtg = 1; σTair = 0.0001, and σε = 0.0001, where στ denotes the standard
deviation of atmospheric transmittance, σTtg denotes the standard deviation of object
temperature, σTair is the standard deviation of air temperature, and σε is the standard
deviation of object emissivity. The σTair is set as 0.0001 to consider only the effect of σTtg .
A value of 0.0001 is the minimal numerical value for simulation purposes. Figure 15b
shows an example of a brightness temperature profile converted from an original spectral
radiance. The maximum value is regarded as the object temperature, and each separated
sample’s temperature is displayed in Figure 15c. Each brightness temperature in the CO2
band provides a candidate air temperature, as shown in Figure 15d. The average of the
distribution is regarded as the final air temperature. In this baseline dataset, the separated
air temperature is 29.99 ◦C.

Figure 16’s left side presents the estimated coefficients of slope and intercept for the up-
per MWIR band. Figure 16’s right side shows an example of linear regression at λ = 5.6 µm
indicating the slope and intercept. Final separation of atmospheric transmittance and
emissivity is achieved by applying Equations (12) and (13) to the separated parameters and
observed spectrum, as shown in Figure 17. In this case, the mean absolute error (MAE [23])
of spectral atmospheric transmittance is 0.013, and that of spectral emissivity is 0.015.
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Figure 15. Temperature separation from synthetic spectra: (a) generated synthetic data (200 spectra),
(b) brightness temperature and peak value for a sample spectrum, (c) the distribution of separated
object temperatures, and (d) the distribution of separated atmospheric temperatures using the CO2

absorption band.
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Figure 16. Data regression from synthetic spectra: (left) slope coefficient and y-intercept coefficient,
and (right) data regression example for the 5.6 µm wavelength.
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Figure 17. Separated atmospheric transmittance and emissivity: (a) a comparison of spectral atmo-
spheric transmittance between the proposed method and ground truth, and (b) a comparison of
spectral emissivity between the proposed method and ground truth.

It is important to analyze the effects of noise in simultaneous four-parameter
(Ttg, Tair, τ(λ), ε(λ)) separation. The MAE performance metric is used to check the trend.
If σTtg varies from 0.5 to 4.0, the MAEs of the four parameters are shown in Figure 18. As the
object surface temperature variation increases, the error in emissivity and air temperature
increases. On the other hand, the atmospheric transmittance separation error is reduced.
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Figure 18. Parameter separation performance according to object temperature noise (σTtg ): (a) MAE
of τ, ε, and (b) MAE of Ttg, Tair.
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If σTair varies from 0.0001 to 2.0, the MAEs of the four parameters are as shown in
Figure 19. As the air temperature noise increases, the error in atmospheric transmittance,
object temperature, and air temperature increases. On the other hand, emissivity separation
error has almost no relation to air temperature noise.
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Figure 19. Parameter separation performance based on air temperature noise (σTair ): (a) MAE of τ, ε,
and (b) MAE of Ttg, Tair.

If στ varies from 0.0001 to 0.0008, the MAEs of the four parameters are as shown
in Figure 20. As the atmospheric transmittance noise increases, the error in atmospheric
transmittance increases. On the other hand, other parameter separation errors have almost
no relation to atmospheric transmittance noise.
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Figure 20. Parameter separation performance based on atmospheric transmittance noise (στ):
(a) MAE of τ, ε, and (b) MAE of Ttg, Tair.

Finally, if σε varies from 0.0001 to 0.1, the MAEs of the four parameters are as shown in
Figure 21. As emissivity noise increases, the error in atmospheric transmittance and emis-
sivity increases. In a small noise interval (0.0001–0.01), the error in air temperature increases
sharply. Object temperature separation errors have almost no relation to emissivity noise.

To verify the approximation of the RTE in Equation (2), the effect of path reflectance-
solar in air temperature estimation was conducted as shown in Figure 22a. The portion
of path reflectance-solar was varied from 0 to 0.5%. The corresponding temperature error
was 0 to 0.138 ◦C. Likewise, the effect of surface reflectance-infrared in target temperature
estimation was conducted as shown in Figure 22b. In this case, the effect is more negligible
due to the small reflectivity (0.05 in case of grass) in the upper MWIR band.
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Figure 21. Parameter separation performance based on emissivity noise (σε): (a) MAE of τ, ε,
and (b) MAE of Ttg, Tair.
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Figure 22. (a) Effect of path reflectance-solar in air temperature estimation, (b) effect of surface
reflectance-infrared in target temperature estimation.

3.2. Experiments Using Real Hyperspectral Datasets

In the second experiment, the feasibility of the proposed AT2ES was validated for
practical applications. Figure 23 shows the hyperspectral data acquisition environment
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and the data sampling points for evaluation. MWIR hyperspectral images were acquired
with the Telops Hyper-Cam MWE model [24]. It can provide calibrated spectral radiance
images with a high spatial and spectral resolution from a Michelson interferometer in
the shortwave to midwave band (1.5–5.6 µm). Spatial image resolution was 320× 240,
with spectral resolution at up to 0.25 cm−1. The noise equivalent spectral radiance (NESR)
was 7[nW/(cm2 · sr · cm−1)], and the radiometric accuracy was approximately 2 K. The field
of view was 6.5× 5.1 deg.

In this paper, only the upper MWIR band (4.2–5.6 µm) was used for our valid approxi-
mate RTE model. Although a top-down aerial surveillance scenario is ideal, we chose a
ground-based side-looking scenario, because the TELOPS MWE camera is too huge and
heavy for an airplane to carry. Note that a narrow horizontal region was selected in order
to use the assumption of common atmospheric transmittance. In addition, there were
450 grass samples and 450 asphalt samples.

50m

TELOPS 
FTIR-MWE

Grass 
samples

Asphalt 
samples

band: 5.5310 m
Blackbody

Figure 23. Outdoor field test environment and hyperspectral data acquisition scenario.

Our proposed AT2ES method can simultaneously extract four parameters:
Tair, Ttg, τ(λ), ε(λ). According to the experimental results, the estimated Tair was 20.8 ◦C,
which is 0.5 ◦C lower than the reference air temperature provided by the Korea Meteoro-
logical Administration (21.3 ◦C). In addition, the estimated Ttg was 21.8 ◦C. The ground
truth for grass temperature is hard to measure due to weak leaves and complex structures.
Normally, grass temperature is almost the same as air temperature in a thermal equilibrium
state [25]. In general, grass has high albedo and high emissivity (>0.95). High albedo
prevents solar energy absorption and high emissivity absorbs the thermal energy radiated
by near air. Under no wind state, the assumption that grass temperature is almost the same
as air temperature is reasonable. However, if the wind is strong, the evapotranspiration
from the grass is an important factor which led to its lower temperature [25].

Figure 24 shows the estimated spectral atmospheric transmittance and emissivity, com-
pared with MODTRAN and the ECOSTRESS grass library. In the MODTRAN simulation,
object distance was set to 50 m in a mid-latitude spring environment. Note that AT2ES
can estimate spectral atmospheric transmittance quite accurately, as shown in Figure 24a.
In the emissivity comparison, sample No. VH351 (Bromus diandrus) from the ECOSTRESS
spectral library was chosen because it was most similar to our grass region. Considering
the complex grass composition, AT2ES estimated a similar emissivity profile, as shown
in Figure 24b. Figure 25 visualizes the spectral estimation error of τ(λ), ε(λ). The MAEs
of atmospheric transmittance and emissivity were 0.087 and 0.063, respectively. Note that
large errors were generated around low atmospheric transmittance bands.
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Figure 24. Grass region: Comparison of atmospheric transmittance and emissivity estimation
by the proposed AT2ES: (a) spectral atmospheric transmittance comparison with MODTRAN,
and (b) spectral emissivity comparison with the ECOSTRESS library.
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Figure 25. Grass region: Estimation error of spectral atmospheric transmittance and emissivity by
the proposed AT2ES.

In an asphalt region, the estimated Ttg was 41.4 ◦C. Ground truth for asphalt tempera-
ture was hard to measure due to the bumpy structure. In general, solar radiance energy
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(visible/near IR) is converted to long wave thermal energy, and the asphalt temperature is
higher than the air temperature. FTIR imaging was done at 13:39 h on 21 May 2020.

Figure 26 shows the estimated spectral atmospheric transmittance and emissivity,
compared with MODTRAN and the ECOSTRESS grass library. The MODTRAN simulation
was the same as the grass experiment. Note that AT2ES can estimate spectral atmospheric
transmittance quite accurately, as shown in Figure 26a. In the emissivity comparison,
sample ID 0095UUUASP (Paving Asphalt) from the ECOSTRESS spectral library was
chosen because it was most similar to our asphalt region. As shown in Figure 26b, AT2ES
estimated a similar emissivity profile considering complex asphalt composition, but with
some emissivity offset. Figure 27 visualizes the spectral estimation error of τ(λ), ε(λ).
The MAE for emissivity was 0.041. Note that large errors were generated around low
atmospheric transmittance bands in the grass experiment.

Interestingly, if we add an object temperature offset of 2 ◦C to Ttg, the estimated
emissivity moves upward as shown in Figure 28a, with the same emissivity profile shape.
Figure 28b shows the estimation error profile of atmospheric transmittance and emissivity.
The MAE of emissivity was reduced to 0.023 from 0.041. From this additional test, the pro-
posed AT2ES estimated a lower object temperature for low emissivity material, which
leads to an emissivity profile with an offset. This is a future research direction to improve
AT2ES for low-emissivity objects.

Advanced Visual Intelligence Lab

(a)

(b)

4.4 4.6 4.8 5 5.2 5.4
Wavelength [ m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Atmospheric Transmittance

4.4 4.6 4.8 5 5.2 5.4
Wavelength [ m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emissivity

Figure 26. Asphalt region: Comparison of atmospheric transmittance and emissivity estimation by the
proposed AT2ES and MODTRAN: (a) spectral atmospheric transmittance, and (b) spectral emissivity.



Remote Sens. 2021, 13, 1249 21 of 23

4.4 4.6 4.8 5 5.2 5.4
Wavelength [ m]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 27. Asphalt region: Estimation error in spectral atmospheric transmittance and emissivity by
the proposed AT2ES.
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Figure 28. Asphalt region: Control of the emissivity offset by adding an object temperature offset:
(a) spectral emissivity, and (b) estimation error in spectral atmospheric transmittance and emissivity.
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4. Conclusions

Temperature emissivity separation (TES) is an important research topic in a remote-
sensing society. Most approaches use atmospheric correction to remove atmospheric
transmittance, downwelling, and upwelling generated from MODTRAN. However, online
atmospheric information changes from time to time and region by region. This paper
presents AT2ES, a novel method to separate atmospheric transmittance, temperature,
and emissivity simultaneously without the aid of an offline MODTRAN simulation.

The key idea is based on radiometry transfer properties in the upper MWIR band
(4.2–5.6 µm) where there are negligible downweilling and solar upwelling components
(1–4%) with a high emissivity surface (above 0.9) at a 100 m distance. From the proposed
approximate RTE, the AT2ES algorithm can separate four parameters simultaneously. Air
temperature is extracted from the brightness temperature in the CO2 absorption band
(4.20–4.35 µm). The object surface temperature is obtained by applying the max operation
to the brightness temperature, except the CO2 absorption band. Given some observed
spectral radiance samples and an object temperature, data regression of object blackbody
radiance and the observed radiance can provide the slope and intercept. In particular,
spectral atmospheric transmittance is separated using the y-intercept and air blackbody
radiance. The separated atmospheric transmittance is the same for all the samples, but each
sample has different emissivity with the same atmospheric transmittance. Therefore, each
spectral emissivity is calculated using the separated parameters. The average operation
can provide a representative spectral emissivity profile for a certain region.

The first experiment using synthetic spectra provided the effects of noise in the four
parameters. Object surface temperature error directly affects spectral emissivity and air
temperature. The air temperature error affects atmospheric transmittance, object tempera-
ture, and air temperature. Atmospheric transtmittance error directly affects the estimation
of atmospheric transmittance. The object emissivity error also affects atmospheric trans-
mittance. The second experiment was based on an outdoor dataset to check the feasibility
of the proposed AT2ES. In grass region samples, the separated temperature parameters
were very close to the measured temperatures. Separated spectral atmospheric temper-
ature and emissivity were similar to the profiles in MODTRAN. This is due to the high
emissivity of grass regions. In an asphalt region, the estimated emissivity was rather higher
than in the ECOSTRESS profile due to lower object temperature estimation. If the object
temperature was increased by 2 ◦C, spectral emissivity was consistent with the spectral
library. Therefore, a future research direction is to find an improved AT2ES method for
low emissivity materials.
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