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Abstract: Tea (Camellia sinensis) is one of the most dominant economic plants in China and plays an
important role in agricultural economic benefits. Spring tea is the most popular drink due to Chinese
drinking habits. Although the global temperature is generally warming, spring frost damage (SFD) to
tea plants still occurs from time to time, and severely restricts the production and quality of spring tea.
Therefore, monitoring and evaluating the impact of SFD to tea plants in a timely and precise manner
is a significant and urgent task for scientists and tea producers in China. The region designated as
the Middle and Lower Reaches of the Yangtze River (MLRYR) in China is a major tea plantation area
producing small tea leaves and low shrubs. This region was selected to study SFD to tea plants using
meteorological observations and remotely sensed products. Comparative analysis between minimum
air temperature (Tmin) and two MODIS nighttime land surface temperature (LST) products at six pixel-
window scales was used to determine the best suitable product and spatial scale. Results showed
that the LST nighttime product derived from MYD11A1 data at the 3 × 3 pixel window resolution
was the best proxy for daily minimum air temperature. A Tmin estimation model was established
using this dataset and digital elevation model (DEM) data, employing the standard lapse rate of
air temperature with elevation. Model validation with 145,210 ground-based Tmin observations
showed that the accuracy of estimated Tmin was acceptable with a relatively high coefficient of
determination (R2 = 0.841), low root mean square error (RMSE = 2.15 ◦C) and mean absolute error
(MAE = 1.66 ◦C), and reasonable normalized RMSE (NRMSE = 25.4%) and Nash–Sutcliffe model
efficiency (EF = 0.12), with significantly improved consistency of LST and Tmin estimation. Based on
the Tmin estimation model, three major cooling episodes recorded in the “Yearbook of Meteorological
Disasters in China” in spring 2006 were accurately identified, and several highlighted regions in
the first two cooling episodes were also precisely captured. This study confirmed that estimating
Tmin based on MYD11A1 nighttime products and DEM is a useful method for monitoring and
evaluating SFD to tea plants in the MLRYR. Furthermore, this method precisely identified the spatial
characteristics and distribution of SFD and will therefore be helpful for taking effective preventative
measures to mitigate the economic losses resulting from frost damage.

Keywords: spring frost damage; MODIS LST product; minimum air temperature; tea plants; the
Middle and Lower Reaches of the Yangtze River

1. Introduction

Tea plant (Camellia sinensis) is a species of evergreen shrubs or small trees in the
flowering plant family Theaceae whose leaves and leaf buds are used to produce tea
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drink. Tea, along with coffee (Coffea arabica L.) and cocoa (Theobroma cacao L.), has been
used to make most of the traditional and popular caffeinated beverages [1] in the world.
Differences in tea taste are determined by the degree of fermentation. There are seven
classifications of tea, including black tea, white tea, yellow tea, green tea, oolong tea,
dark tea, and reprocessing tea, based on how they are processed and how long the leaves
are left on the shrub before harvesting [2].

Tea plant originated in southeast China and was gradually introduced into many
tropical and subtropical countries [3]. At present, more than 60 countries and regions
around the world plant tea trees, mainly distributed in tropical and subtropical climate
areas between 16◦S and 30◦N [4]. Some varieties also grow well in cooler climates and
high altitude regions, such as the mild climate of the U.S. Pacific Northwest and the
Yunnan–Guizhou Plateau of southwestern China. The worldwide harvested tea area
reached 3.56 × 106 ha in 2018 with a production of 5.11 × 109 kg [5]. Of all of the countries
of the world, China harvested the greatest area (66.0% of the world total) and produced
the greatest amount (51.4% of the world total) of tea, followed by India. These two
countries accounted for 83.7% of the world tea harvested area and 77.8% of the world tea
production [5]. The 18 provinces in China where planting of tea plants is concentrated are
located in North China, Central China, South China, and Southwest China.

Tea can be divided into four categories according to the harvest season: spring tea,
summer tea, autumn tea, and winter tea. Spring tea is usually harvested from March to
the middle of May. Compared with teas harvested in other seasons, the spring leaves are
softer, the buds are plumper, the color is greener, the vitamins and amino acids are richer,
and the flavor tastes more refreshing due to moderate temperatures and higher relative air
humidity in spring [6,7]. Therefore, spring tea is an important segment of the tea market
because of its high quality and the highest economic benefits for tea production all over the
world. For example, the economic benefits of spring tea accounted for 87.5% of the total
tea revenue in 2019 in Zhejiang Province in China [8].

According to climate model projections, the global average air temperature is likely to
increase by 0.3–4.8 ◦C by the end of this century [9]. However, research in recent years has
also revealed that the frequency, intensity, and duration of extreme low temperature events
are also likely to continuously increase under 21st-century warming scenarios [10,11].
Additionally, the predicted spring frost risk correspondingly increases under future climate
warming [12].

Frost damage can be divided into advection frost and radiation frost according to its
formation mechanism [13]. An advection frost occurs when cold air blows into an area
to replace warmer air that was present before the weather change. It is associated with
moderate to strong winds and low humidity [13]. Radiation frosts occur because of heat
losses in the form of radiant energy. Under clear nighttime skies, the soil surface loses more
longwave radiation (heat) to the atmosphere than it receives [14], resulting in declining
temperature. Radiation frosts are characterized by clear skies, calm winds, and temperature
inversions [13]. During a radiation frost event, the ground and ambient air temperatures
drop, and vegetation canopies experience temperatures that are 2–4 ◦C colder than the air
temperature that is measured within a nearby standard Stevenson Screen thermometer
enclosure. Spring frost is a catastrophic weather event that may cover a broad spatial
region and is harmful to crops (winter wheat [15], winter sugar beet [16], potato [17]);
orchards (apple [18], cherry [18], tea [19]); and forests (beech [20–22]), spruce [18]).

Different methods of spring frost identification and quantification have been studied in
recent years, and generally fall into two categories: one is the spring frost index based on air
temperature (Ta) measured with sensors inside meteorological station shelters at a height of
2 m above the ground surface, and the other is spring frost identification based on the land
surface temperature (LST) derived from satellite remote sensing imagery. Ground-based
meteorological observations showed that when daily minimum air temperature is less than
4 ◦C in spring, newly formed tea buds were impacted by spring frost [23], and the commod-
ity value of the tea declined correspondingly. Therefore, tea leaf damage grades have been
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quantified based on daily minimum air temperature and its duration [24]. Li et al. [25] and
Jin et al. [26] further refined this frost damage indicator by using hourly temperature and
its duration. Meteorological data generally has high accuracy, high temporal resolution,
and long-term observation datasets, and has therefore been used in many applications with
regards to spring frost, such as identifying spatiotemporal distribution characteristics [27],
and assessing impact [28] and risk [29]. Nevertheless, observation of Ta is limited by
weather station network layout, resulting in point samples that often cannot effectively
reflect spatial variation, especially in certain areas where the distribution of meteorological
stations is itself very sparse [30], and in areas where elevation changes drastically.

Satellite remote sensing provides unprecedented global coverage of critical land sur-
face parameters such as LST and vegetation indices. The Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard the Aqua and Terra satellites can provide such de-
tailed information of land surface temperature at high temporal (daily or four times a day)
and spatial (1 km or 250 m) resolution across the world [31]. Therefore, estimating Ta from
LST has been a popular method because of the availability of LST products for regions with
inadequate or inaccessible weather station networks [32]. Because solar radiation does
not affect the thermal infrared signal during nighttime [31], the retrieval of minimum Ta
(Tmin) from Aqua nighttime LST has been shown to be an effective method with a good
relationship between nighttime LST and Tmin over different ecosystems in Africa [31,33],
the U.S. Corn Belt [34], and xerophytic vegetation areas [29] and alpine meadows [35] on
the northern Tibetan Plateau in Asia.

Despite recent progress in the use of satellite imagery, major limitations caused by
cloud contamination remain [36] because LST products are unavailable when clouds exist
during satellite overpassing times. Cloud contamination, therefore, has strong impacts
on the availability and the quality of LST products [37]. Methods regarding LST recon-
struction for cloudy regions, including the Harmonic Analysis of Time Series (HANTS)
algorithm [38], Remotely Sensed DAily land Surface Temperature reconstruction (RSDAST)
model [39], Bayesian Maximum Entropy (BME) method [40], and Random Forest (RF)
regression approach [41], have been investigated by considering neighboring pixels and
nearby dates based on normalized difference vegetation index, enhanced vegetation in-
dex, normalized difference water index, solar radiation factor, albedo, elevation, slope,
longitude, and latitude. Results showed that all methods for reconstructing LSTs for cloud-
covered regions were highly accurate compared with original LST pixels and produced
spatial and temporal patterns of LST that were consistent with neighboring clear-sky ar-
eas [39,41]. Nevertheless, deviations between nighttime LST and Tmin values still exist
due to the difference between satellite overpass time when LST is obtained and sunrise
(generally the time of Tmin).

The main objective of this study was to study spring frost damage (SFD) to tea
plants over the MLRYR in China at high temporal (daily) and spatial (1 km) resolutions.
To reach this goal, we firstly introduced the study area and data in Section 2. Secondly,
a simple regression model to estimate daily Tmin from reconstructed MODIS LST values
was established by considering the terrain effects in methodology section. Next, values of
MODIS nighttime reconstructed LST and Tmin were compared, and the performance of the
regression model was evaluated in Sections 4.1–4.3. Then, several typical frost damage
periods were identified and analyzed by using daily Tmin at the high-spatial resolution
produced by the simple regression model. Additionally, the spatial distribution of different
SFD levels for tea plants were mapped at 1 km resolution for selected typical SFD periods
over the MLRYR in China (Section 4.4). Finally, some limitations were discussed, and the
conclusion was summarized at the end of this paper.

2. Study Area and Data
2.1. Study Area

The MLRYR is located from 24◦ to 35◦N latitude and from 109◦ to 122◦E longitude.
It covers six provinces (Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, and Hunan) and Shanghai
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municipality, with a total area of 1.01× 106 km2, accounting for 10.48% of China’s total land
area (Figure 1). The climate of MLRYR is affected by the difference in thermal properties
between land and sea and is therefore under the influence of a subtropical monsoon climate
with hot and rainy summers, and cool and dry winters. The average annual temperature
is 14–20 ◦C, and the annual precipitation is about 1000–1400 mm [42]. The seasonal
distribution of precipitation is relatively even, but summer droughts occur occasionally.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 23 
 

 

The MLRYR is located from 24° to 35°N latitude and from 109° to 122°E longitude. It 

covers six provinces (Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, and Hunan) and Shanghai 

municipality, with a total area of 1.01 × 106 km2, accounting for 10.48% of China’s total 

land area (Figure 1). The climate of MLRYR is affected by the difference in thermal prop-

erties between land and sea and is therefore under the influence of a subtropical monsoon 

climate with hot and rainy summers, and cool and dry winters. The average annual tem-

perature is 14–20 °C, and the annual precipitation is about 1000–1400 mm [42]. The sea-

sonal distribution of precipitation is relatively even, but summer droughts occur occasion-

ally. 

The terrain of the MLRYR is relatively low and flat, with an elevation being below 50 

m above sea level in most areas. The low mountains and hills scattered in the west and 

south, and the elevations were between 200 and 1000 m (Figure 1b). The vegetation cov-

erage is high in the MLRYR, and includes forest, grass, crop, and shrub (Figure 1c). The 

tea plants are one of the majority types of shrubs, which distributed mainly in low moun-

tains and hills with the elevation being below 1000 m. 

 

Figure 1. Study area (a), meteorological stations, digital elevation model (DEM) (b), and land cover types in the middle 

and lower reaches of the Yangtze River region, China (c). 

2.2. Data 

2.2.1. Meteorological Data 

Daily Tmin at 163 meteorological stations from March to April in 2003–2018 in the 

MLRYR were obtained from ground meteorological stations (available at 

http://data.cma.cn/site/index.html. Last visited on 17 March 2021) and measured in line with 

World Meteorological Organization (WMO) standards at 2 m above the ground (Figure 1). All 

Figure 1. Study area (a), meteorological stations, digital elevation model (DEM) (b), and land cover types in the middle and
lower reaches of the Yangtze River region, China (c).

The terrain of the MLRYR is relatively low and flat, with an elevation being below
50 m above sea level in most areas. The low mountains and hills scattered in the west
and south, and the elevations were between 200 and 1000 m (Figure 1b). The vegetation
coverage is high in the MLRYR, and includes forest, grass, crop, and shrub (Figure 1c).
The tea plants are one of the majority types of shrubs, which distributed mainly in low
mountains and hills with the elevation being below 1000 m.

2.2. Data
2.2.1. Meteorological Data

Daily Tmin at 163 meteorological stations from March to April in 2003–2018 in the
MLRYR were obtained from ground meteorological stations (available at http://data.cma.
cn/site/index.html. Last visited on 17 March 2021) and measured in line with World Meteo-
rological Organization (WMO) standards at 2 m above the ground (Figure 1). All data were
quality checked, and there were not any missing temperature records in this study area.

2.2.2. MODIS Products

(1) MODIS LST products

http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html


Remote Sens. 2021, 13, 1177 5 of 22

Because of the good relationship between MODIS nighttime LST and Tmin values
reported in previous research, daily MODIS nighttime LST products (MOD11A1 and
MYD11A1) on board the Terra and Aqua satellites (version 6) at 1 km spatial resolution
in a 1200 by 1200 km grid were downloaded via the Earth Observing System Data and
Information System (EOSDIS) of the National Aeronautics and Space Administration
(NASA) (https://earthdata.nasa.gov/. Last visited on 17 March 2021). The orbit of Terra
around the Earth passes from north to south at about 10:30 a.m. and p.m. local solar
time, while Aqua passes in the opposite direction from south to north at about 1:30 p.m.
and a.m. every day. MODIS LST products are retrieved from the MODIS thermal and
middle infrared spectral regions using the generalized split window algorithm [43] that
corrects for atmospheric effects. The LST products of four tiles (h27v05, h28v05, h27v06,
and h28v06) from 2003 to 2018 were re-projected to Albers Conical Equal Area (ACEA)
projection, and then merged, resized, and mosaicked to get the dataset that was exactly
consistent with the study area on each day during the study period.

(2) MODIS Land Cover Type products

The MODIS Land Cover Type product (MCD12Q1) supplies global maps of land cover
at annual time steps and 500 m spatial resolution for 2001–present [44]. The product con-
tains five legacy classification schemes, including IGBP (International Geosphere-Biosphere
Programme), UMD (University of Maryland), LAI (Leaf Area Index), BGC (BIOME-
Biogeochemical Cycles), and PFT (Plant Functional Types). PFTs reduce the complexity of
species diversity in ecological function to a few key plant types. Shrub, defined as a woody
plant with more than 10% coverage rate and 1–2 m height, was extracted to identify the tea
planting area in the MLRYR (Figure 1).

2.2.3. Digital Elevation Data

Digital elevation data were obtained from the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) global digital elevation model V3 [45]. Digital ele-
vation data with 30 m spatial resolution was stored in a raster file. To aggregate up to the
MODIS LST resolution, the mean elevation value inside each of the 1-km grid cells was
calculated. Meanwhile, elevation values within 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 grid
cells at 1-km resolution were aggregated up to get six DEM images at the 3-km, 5-km, 7-km,
9-km, and 11-km resolutions, respectively.

2.2.4. Historical Disaster Records

Historical spring frost disaster records for tea plants were acquired from the “Year-
book of Meteorological Disasters in China” (from 2004 to 2017). The records described the
onset date, duration, and location of spring frost events. For example, the “Yearbook of
Meteorological Disasters in China” (2007) [46] recorded the following: “From March 11
to 13, Jiangxi province generally experienced a strong cold wave weather process with
strong winds, cooling, and snowfall as the main characteristics in 2006. The affected area of
crops was 119,000 hectares, and the direct economic loss in agriculture was RMB 100 mil-
lion. From March 27 to 28, the maximum temperature dropped in most parts of Jiangsu
Province, and the maximum dropping range reached about 10 ◦C in 2006. On 12 April
2006, affected by the cold air moving eastward from the north to the south, the temperature
in most parts of Jiangsu Province dropped by 8–11 ◦C within 48 h.”

3. Methodology
3.1. Reconstruction for MODIS LST

A clear sky MODIS LST reconstruction method (RSDAST) [39], was used in this study.
RSDAST was developed based on the assumption that differences in LST between nearby
pixels are relatively stable during a short time period [39]. Unlike other temperature
reconstruction methods, RSDAST requires only one parameter (the MODIS LST product
itself). Reconstructed LST values have shown accuracy in flat areas with the coefficient of
determination (R2) of 0.72–0.89, bias of −0.02–0.21 K, and root mean square error (RMSE)

https://earthdata.nasa.gov/
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of 0.92–1.16 K, while in complicated terrain regions of mountain areas, with an elevation
range from 50 to 5000 m [39], the statistical values were R2 of 0.81–0.89, bias of −0.35 to
−1.52 K, and RMSE of 1.42–2.24 K in Northwest China. The terrain of this study area is
not so complicated, and includes plains, hills, and mountain regions, with an elevation
range from 0 to 3000 m. Therefore, RSDAST was suitable for this study area to reconstruct
gap-filled MODIS LST pixels.

3.2. Comparison between MODIS LST and Tmin at Meteorological Stations

Daily MODIS nighttime reconstructed LST values (MOD11A1_night and MYD11A1_night)
were compared with daily Tmin observations at ground meteorological stations from 2003
to 2018. In order to make the comparison, MOD11A1_night and MYD11A1_night recon-
structed values were first extracted for the pixels in which the ground meteorological
stations were located. Additionally, the values of MOD11A1_night and MYD11A1_night
reconstructed LST in 3× 3, 5× 5, 7× 7, 9× 9, and 11× 11 pixel-windows centered on each
meteorological pixel point were extracted, and the average LST values were calculated.
The correlations between MODIS reconstructed LST values at each of the six window-scales
and the Tmin values were compared by analyzing the bivariate correlations. Three statistical
parameters, including R2, RMSE, and mean absolute error (MAE), were determined be-
tween Tmin and average reconstructed LST values for two MODIS nighttime products and
six window scales. The most suitable MODIS LST product and window scale were selected
by choosing the ones that produced the maximum R2 and minimum MAE and RMSE.

3.3. Estimation and Validation of Tmin

In the first layer of the atmosphere (the troposphere, approximately from sea level to
12 km upward), air temperatures drop steadily by an average of 6.5 degrees Celsius per
one thousand meters (https://sciencing.com/info-8179549-happens-temperature-altitude-
increases.html. Updated on 31 May 2019. Last visited on 31 August 2020) (the adiabatic
lapse rate). Therefore, a Tmin estimation model based on MODIS LST and DEM was
established according to the following three processes: (i) Tmin at the local elevation was
first converted to sea level temperature using the standard lapse rate for air temperature;
(ii) the regression model of Tmin at sea level was then built according to the average
MODIS LST within the best window scale; (iii) finally, the Tmin at the local elevation
was re-calculated based again on the standard lapse rate of air temperature. The specific
expressions were as follows, and the pipeline and Tmin estimation method were also shown
in Figure 2:

Tmin,0 = Tmin,d − 6.5× DEM
1000

(1)

Tmin,0
′ = a× LST + b (2)

Tmin,d
′ = Tmin,0

′ + 6.5× DEM
1000

(3)

where Tmin,d and Tmin,d
′ are the observed and estimated minimum air temperatures (◦C) at

local elevation, respectively; Tmin,0 and Tmin,0
′ are converted and regressed minimum air

temperature (◦C) at sea level, respectively; DEM is the digital elevation (m) averaged to the
best window scale; LST is the average MODIS LST (◦C) within the best window scale; a and
b are the regression coefficients that are determined by fitting a least squares regression.

The estimated Tmin based on the average reconstructed LST values at the best pixel-
window scale in this study was validated with Tmin observations at ground meteorological
stations. Three statistics, including R2, MAE, and RMSE were computed to evaluate the
method used for estimating Tmin. Additionally, the normalized RMSE (NRMSE) and the
Nash–Sutcliffe model efficiency (EF) were also used to indicate how well the simulated
values were consistent with the observed data. The simulation is considered excellent with
NRMSE < 10%, good if 10–20%, acceptable if 20–30%, and poor > 30% [47]. Meanwhile,
EF = 1, corresponds to a perfect match of the model to the observed data. EF = 0, indicates

https://sciencing.com/info-8179549-happens-temperature-altitude-increases.html
https://sciencing.com/info-8179549-happens-temperature-altitude-increases.html
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that the model estimations are as accurate as the mean of the observed data. If the EF is
negative, it denotes that the observed mean is better than the model estimation [48,49].

3.4. Indicators of SFD for Tea Plants

Agrometeorological disaster indicators are the basis of damage studies for identifying
the onset time, monitoring the spatial scope, predicting the extent, and evaluating the
impacts of disasters [50,51]. These indicators vary with disaster types and crop varieties.
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Figure 2. The pipeline and minimum air temperature (Tmin) estimation method. The input data
includes meteorological data (describes in Section 2.2.1), MODIS land surface temperature (LST)
products (in Section 2.2.2), digital elevation model (DEM) (in Section 2.2.3), and historical disaster
records (in Section 2.2.4). The methodology concerns Tmin estimation is composed by MODIS LST
reconstruction (in Section 3.1), best window scale selection (in Section 3.2), Tmin regression model
based on the standard lapse rate of air temperature (in Section 3.3), and indicators of spring frost
damage (SFD) for tea plants (in Section 3.4). The characteristics of SFD for tea plants were exhibited
in Section 4.4. Here, Tmin,0 is the converted Tmin (◦C) at sea level, Tmin,0

′ is the regressed Tmin (◦C) at
sea level, and Tmin,d

′ is the estimated Tmin (◦C) at local elevation.

Low temperature is the prevailing factor affecting the degree of spring frost, but it is
not the sole factor. Frost damage is also the result of continuous accumulation of low tem-
perature [52]. Therefore, the combination of low temperature intensity and duration is an
effective way to determine the impacts of frost damage on crop growth [53]. Based on the
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daily Tmin values and their duration, previous research has divided SFD of tea plants into
three levels (light, moderate, and severe, Table 1) [54]. The indicators were effectively used
to analyze the spatiotemporal distribution of SFD for Tea plants in southern Zhejiang [55]
and its climatic characteristics in Zhejiang province in China [56]. Furthermore, Meng et al.
took the spring frost process happened on 1 April 2019 as an example to evaluate the im-
pacts of SFD on tea plants in Zhejiang province. The risk of SFD to tea plants was assessed
temporally and spatially based on the SFD indicators and ground-based meteorological
observations [57].

Table 1. Definitions of spring frost damage (SFD) levels for tea plants in the Middle and Lower
Reaches of the Yangtze River region, China.

Spring Frost Damage Daily Tmin (◦C) Duration (d)

Light 2–4 1–5
0–2 1–3

Moderate
2–4 ≥5
0–2 3–5

Severe
0–2 ≥5
≤0 ≥1

4. Results
4.1. Selection of the Best Window Scale for MODIS LST

Comparison results between Tmin and average reconstructed LST values for each
nighttime product and window scale showed that MYD11A1 products were better than
MOD11A1 with higher R2 and lower RMSE and MAE. Furthermore, as pixel-window
numbers increased, the R2 between Tmin and reconstructed LST values exhibited the char-
acteristics of a slightly increase first and then decrease for MYD11A1 products (Figure 3).
The best correlation occurred when the window scale was 3 × 3. Previous research showed
that a MODIS objective geolocation accuracy of 150 m at nadir view, and its geolocation
errors were even larger at an off-nadir view [58]. Therefore, there may be some geolocation
offset at the central pixel for each meteorological station. Additionally, some heteroge-
neous land surface with sharpening temperature in a larger window scale (such as 9 × 9
and 11 × 11) may also exist. These two situations can cause relatively lower correlations
between Tmin and average reconstructed LST values at the corresponding window scale.
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Figure 3. Comparison results (a). The coefficient of determination (R2); (b). The root mean square error (RMSE);
(c). The mean absolute error (MAE)) between minimum air temperatures (Tmin) and reconstructed land surface tem-
perature (LST) values from MOD11A1 and MYD11A1 nighttime products at different pixel-window scales in the Middle
and Lower Reaches of the Yangtze River region, China.

The RMSE and MAE values computed for both MOD11A1 and MYD11A1 increased
linearly with increasing pixel-window scales (Figure 3). The minimum MAE occurred at
the 1 × 1 and 3 × 3 window scales for the two MODIS nighttime LST products. When com-
paring the two MODIS nighttime LST products, MYD11A1 obtained from the Aqua satellite
was much better than MOD11A1 obtained from the Terra satellite. The values of R2 were
0.7819 for MYD11A1 and 0.5961 for MOD11A1 for the 1× 1 window size (Figure 3). The rea-
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sons for this difference may be related to the differences in satellite overpass times [30].
As mentioned previously, during the nighttime, the overpass times of Terra and Aqua
are 10:30 pm and 1:30 am, respectively. In fact, daily minimum air temperature generally
occurs around sunrise. Therefore, the LST nighttime values from MOD11A1 and MYD11A1
are higher than the minimum air temperatures observed at local meteorological stations,
and LST derived from MOD11A1 is higher than from MYD11A1 because of the difference
in overpass times of the two satellites. As a result, the LST nighttime product derived from
MYD11A1 and the 3× 3 pixel window is a better proxy for daily minimum air temperature.
This result is consistent with previous research [59].

4.2. Characteristics of Temperature from March to April
4.2.1. Annual Dynamics of Daily Tmin and LST

Temporal dynamics of daily Tmin and reconstructed MYD11A1 nighttime LST at 3 × 3
window scale over all stations in the MLRYR from March to April in 2003–2018 are shown
in Figure 4. Generally, both LST and Tmin exhibited a fluctuating increasing trend within
each year. Temperatures were generally lower in early March and higher in late April.
Similar to the results of other studies, Tmin was higher than MODIS LST [30] with a negative
bias of −2.6 ◦C. The reasons for this difference are likely related to the intensity of solar
radiation. Solar radiation heated the ground surface in spring is not very obvious due to
the large soil heat capacity and low temperature accumulation.
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Figure 4. Temporal dynamics of daily minimum air temperature (Tmin) and land surface temperature (LST, from the
reconstructed MYD11A1 MODIS LST) from March to April in 2003–2018 over 163 stations in the middle and lower reaches
of the Yangtze River region, China.

4.2.2. Daily Dynamics of Average Tmin and LST

In order to further investigate the relationship of MYD11A1 nighttime reconstructed
LST values to daily minimum air temperature, the daily Tmin and LST were averaged over
all stations from March to April in 2003–2018. The time series curves of daily MYD11A1
nighttime reconstructed LST values and minimum air temperature are shown in Figure 5.
Affected by long-term cloudy contamination, such as more than eight days [39], some LST
values were not still able to be effectively reconstructed. Therefore, daily calculated sample
numbers of LST values are different and they were also shown in the form of a histogram
in Figure 5. Tmin and LST averaged over more than 2000 samples generally increased with
time, and Tmin values were higher than LST values. The average difference between Tmin
and LST was 2.56 ◦C, with maximum and minimum differences of 4.39 ◦C and 1.19 ◦C,
respectively. Although temperature mostly increased with time from March to April,
cooling periods sometimes occurred. The majority of these cooling periods appear to occur
in mid-to-late March and early April, and therefore will have an important impact on tea
plant production.
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Figure 5. Daily dynamics of average MYD11A1 nighttime reconstructed land surface temperature
(LST) and minimum air temperature (Tmin) from March to April in 2003–2018 over all stations
in the middle and lower reaches of the Yangtze River region, China. Sample numbers are the
reconstructed LST amounts in daily averaging calculations, and they are shown in the histogram
with the right y-axis.

4.2.3. Spatial Distribution of Extreme Tmin

The extreme minimum air temperatures from March to April in 2003–2018 at each
meteorological station in the MLRYR were extracted, and temperature contour lines are
shown in Figure 6. From Figure 6, we can see that the extreme Tmin values were not higher
than 0 ◦C, showing that the risk of SFD during the past two decades was distributed
across the entire MLRYR region. Spatially, the areas with the lowest extreme Tmin (−4 ◦C),
denoted by the dark blue line (Figure 6), were found mainly in the northeastern parts
of the study area (Jiangsu and Anhui provinces). Regions with the highest extreme Tmin
(0 ◦C) were very small and were only observed in the southwestern part of the MLRYR.
The extreme Tmin values around −2 ◦C were the most widely distributed values observed
in the MLRYR, and occurred in the entire Hubei Province, and almost all of Zhejiang,
Jiangxi, and Hunan Provinces. Generally, the contour lines of extreme Tmin were observed
to gradually increase from −4 ◦C in the northeast to 0 ◦C in the southwest.
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4.3. Performance of the Tmin Estimation Model
4.3.1. Validation of the Tmin Estimation Model

After the three-step process described in Section 3.3, the Tmin estimation model was es-
tablished based on MODIS reconstructed LST of nighttime MYD11A1 and digital elevation
data in the MLRYR. The scatter plot of observed Tmin at ground meteorological stations and
Tmin simulated by the established estimation model is displayed in Figure 7. The rainbow
colors in the figure show the distribution of the number of samples. Points in warm colors
(red, orange) indicate more samples, and cool colors (blues) denote fewer samples. In order
to assess the performance of the Tmin estimation model, the three statistics were calcu-
lated between 145,210 observed Tmin samples and their corresponding simulated values.
The results showed that the R2 value between observed and simulated Tmin was 0.841,
much higher than those obtained by different window scales for MYD11A1 nighttime
LST products (Figure 3). Similarly, the Tmin estimation model had a lower MAE (1.66 ◦C)
than the MAE values produced by the MYD11A1 nighttime LST products (4.05–5.51 ◦C).
The RMSE values resulting from the Tmin estimation model were also significantly lower
than the previously calculated RMSE values (2.15 ◦C versus 5.37–7.58 ◦C). Further evalua-
tion for the Tmin estimation model was done by using with NRMSE and EF. Results showed
that NRMSE and EF were 25.4% and 0.12, also indicating the model was acceptable.

4.3.2. Difference of Tmin between Observations and Simulations

The differences between observed and simulated Tmin were quantified for the entire
study area in 2003–2018 by analyzing the distribution shape of the differences. The fre-
quency histogram of these Tmin differences, as well as the accuracy (median, mean, skew-
ness, and kurtosis) are shown in Figure 8. The global distribution of the Tmin differences
was centered at 0.09 ◦C, and the median was slightly left-shifted with a value of −0.52 ◦C.
The frequency distribution of Tmin differences was observed to be bell shaped. Both skew-
ness and kurtosis were greater than zero, indicating a positively skewed distribution with
a steep peak.
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4.3.3. Performance of the Tmin Estimation Model in Grouped Latitude and Altitude

The performance of the Tmin estimation model was evaluated through computing
the R2 in different latitudes and altitudes by grouping 163 ground meteorological stations.
The latitude at about 0.5◦N interval and the altitude at 200 m interval were grouped
separately. The variance plots of R2 along with latitude and altitude were shown in
Figure 9a,b. The quartiles of all R2 values in different latitudes between observed and
simulated Tmin were between 0.70 and 0.95, and the median R2 showed a slightly fluctuant
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decreasing trend with the increasing of latitude (Figure 9a). The minimum R2 appeared in
the latitude between 30 and 30.5◦ N, with the value of being less than 0.1. The majority
reason for such a low R2 may be the high altitude, where the altitude is more than 1000 m.
Meanwhile, the R2 values in different altitudes were also exhibited in Figure 9b, and it
similarly showed the declining characteristics with the elevated altitude. The minimum R2,
the minimum quartile, and the minimum median all appeared in the high-altitude areas
above 1000 m. Fortunately, the tea gardens were mostly distributed in hills and mountains
with an altitude of being 200–1000 m, and the R2 values were greater than 0.65 except
for the altitude between 600 and 800 m. For the higher mountains with the altitude of
above 1000 m, recommended lapse rates in different altitudes and aspects can be found in
Meteorological Industry Standard [26].
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4.4. Characteristics of SFD for Tea Plants in a Typical Frost Year
4.4.1. Temporal Characteristics of Tmin for a Typical Cooling Period

Average Tmin over the MLRYR from March to April in 2006 tended to increase grad-
ually over time, with occasional periods of sharp decreases followed by rapid increases
(Figure 10). The “Yearbook of Meteorological Disasters in China” (2007) [46] recorded the
following observations: “The cold air was more active in the spring of 2006. From March
to April, most regions of China were hit by cold waves from north to south. The tem-
perature at nine individual stations dropped more than 12 ◦C (data not shown in our
Figure 10). The minimum air temperature in the central and northern regions of Yangtze
River dropped to about 0 ◦C. The lower temperatures were detrimental to the normal
growth of overwintering crops and some early spring crops, such as early rice and tea
plants, and those crops suffered frost damage.”
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Figure 9. The box plots of R2 between observed and estimated minimum air temperature (Tmin)
grouped 163 ground meteorological stations by latitude (a) and altitude (b) at 0.5◦ N and 200 m inter-
val separately. The upper and lower boundaries in the gray box represent the 25 and 75 percentiles,
the solid line in the gray box represents the medians, and solid triangles and diamonds at the ends of
the whiskers represent the minimum and maximum R2 values, respectively.
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Figure 10. Temporal dynamics of average minimum air temperatures (Tmin) over the Middle and
Lower Reaches of the Yangtze River (MLRYR) region, China from March to April in 2006 (left y-axis).
The black error bars denote maximum and minimum values at 163 ground meteorological stations.
The hollow, blue-outlined histogram bars (right y-axis) are the percentage of MLRYR stations with
daily Tmin less than 4 ◦C (refer to station ratio, denotes the percentage of meteorological stations with
daily Tmin less than 4 ◦C).

The temporal dynamics of Tmin over the MLRYR (Figure 10) showed two significant
cooling periods around mid-March and mid-April. Several other periods of small fluctu-
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ations in Tmin were also observed from March to April (Figure 10). The two significant
cooling periods occurring around mid-March and mid-April, and one slightly cooling
period appearing at the end of March were mentioned in the “Yearbook of Meteorologi-
cal Disasters in China” (2007) [46]. The percentage of meteorological stations with daily
Tmin less than 4 ◦C (referred to as station ratio in Figure 10) displayed three small peaks
(excluding the first three days of the record shown). The first cooling period in mid-March
was the most significant, when more than 60% of the stations reported Tmin less than 4 ◦C
for three consecutive days. Even though the temperature dropped significantly during
the third cooling period (mid-April), the percentage of meteorological stations that had
daily Tmin below the threshold of SFD (4◦) was not high (<15%) due to the relatively higher
temperatures in the previous days.

4.4.2. Spatial Distribution of Daily Minimum Air Temperature in Three Cooling Periods

The spatial distributions of simulated daily Tmin during three cooling periods in
March and April 2006 are shown in Figures 11–13. The first cooling period appeared
on 10–14 March 2006. The “Yearbook of Meteorological Disasters in China” (2007) [46]
recorded: “A strong cold wave occurred on 10–14 March 2006. The temperature dropped
by 12–18 ◦C during March 11–13, and snow appeared in more than 22 counties distributed
in Yichun, Xinyu, Ji’an, Fuzhou, and Jiujiang cities in Jiangxi Province. This strong cooling
process caused 119,000 hm2 of crops to be damaged, and its direct agricultural economic
losses were more than 100 million RMB in Jiangxi Province. Meanwhile, in the northeastern
part of Anhui Province, the minimum air temperature of Bozhou City dropped to −2
to −4 ◦C, and nearly 60,000 hm2 of crops suffered freezing damage.” Daily minimum
air temperature simulated by the Tmin estimation model perfectly revealed the cooling
progression over this period (Figure 11). On March 10, frost damage sporadically appeared
in the northern portion of the study area (Figure 11a). As the cold wave moved to the south,
the cooling intensity significantly increased, and the affected regions spatially enlarged
from March 11 to March 14 (Figure 11b–e). All regions in the six cities referred to in
the “Yearbook of Meteorological Disasters in China” (2007) were accurately identified as
suffering SFD (Figure 11d, administrative boundaries marked in green). There were no
disaster records for March 15 in public reports. Correspondingly, the regions suffering
from SFD were significantly reduced compared with several days earlier (Figure 11f).
Tmin simulated with the MODIS nighttime reconstructed LST product perfectly exhibited
this cooling process occurring over several days.
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The second cooling period occurred on 26–28 March 2006. The “Yearbook of Mete-
orological Disasters in China” (2007) [46] recorded: “On March 27−28, strong northerly
winds occurred in parts of Jiangsu Province, and the maximum cooling range reached
to 10 ◦C. On the evening of March 27, there were about 27 counties in Anhui Province
that experienced strong winds and cooling process. The areas affected by this cooling
process were up to 17,000 hm2, and its direct economic loss reached up to 130 million
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RMB.” According to the disaster records, the regions affected by this cooling process were
mainly in Anhui and Jiangsu Provinces. The spatial distribution of simulated daily Tmin
from March 26 to 29 precisely exhibited this evolution process (Figure 12). From March 27
to 28, the cooling areas noticeably enlarged in Anhui and Jiangsu Provinces. Especially the
counties identified by red boundaries (Figure 12b,c) in Anhui Province were exactly consis-
tent with disaster records. The cooling period ended on March 29, and the regions in the
MLRYR affected by SFD were almost gone.

The last cooling period occurred on 10–15 April 2006. This cooling period affected
Jiangsu and Hubei Provinces and was recorded in the "Yearbook of Meteorological Disasters
in China" (2007) [46], as follows: “With the increase of temperature in April, there were
fewer stations where the temperature dropped to the threshold for SFD to tea plant, and the
impacted regions were also smaller.” There was only one day when the proportion of
meteorological stations within the MLRYR with daily Tmin of less than 4 ◦C exceeded 10%
during this cooling period (Figure 10). The regions with simulated daily Tmin being no
higher than 4 ◦C were scattered in the northern part of MLRYR (Figure 13), and these
observations were consistent with the station ratio values demonstrating the limited areal
extent of the damaging cold temperatures.

4.4.3. Spatial Distribution of Different Frost Damage Levels for Tea Plants

Based on the spring frost indicator for tea plants in the MLRYR (Table 1), the spatial
distributions of SFD for tea plants in the MLRYR during the three cooling periods in
2006 for locations identified as shrub PFT are shown in Figure 14. Overall, the impact
of spring frost during the first cooling period was the greatest. The regions with severe
spring frost, denoted by the dark blue color (Figure 14), were distributed mainly in the
northern part of MLRYR. Areas categorized as having light SFD were relatively smaller and
were concentrated in the southern parts of Zhejiang Province, and central parts of Hunan
and Jiangxi Provinces. There were almost no areas suffering moderate SFD. These areas
were scattered in the border area of Jiangxi and Zhejiang Provinces. Although the area
influenced by damaging frost was extensive during the first cooling period, there were still
small regions located in the southern part of the study area that were not affected by SFD.
The damaging effects of frost during the other two cooling periods were relatively smaller.
The affected areas of SFD were mainly concentrated in the northwestern part of the study
area. In particular, the regions affected by severe spring frost were found to be scattered in
the northwestern part of the study region, corresponding to parts of the Daba Mountains
and Wushan Mountains.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

 

Figure 13. Spatial distribution of simulated daily Tmin on 10–15 April 2006 in the Middle and Lower Reaches of the Yang-

tze River region, China. 

4.4.3. Spatial Distribution of Different Frost Damage Levels for Tea Plants 

Based on the spring frost indicator for tea plants in the MLRYR (Table 1), the spatial 

distributions of SFD for tea plants in the MLRYR during the three cooling periods in 2006 

for locations identified as shrub PFT are shown in Figure 14. Overall, the impact of spring 

frost during the first cooling period was the greatest. The regions with severe spring frost, 

denoted by the dark blue color (Figure 14), were distributed mainly in the northern part 

of MLRYR. Areas categorized as having light SFD were relatively smaller and were con-

centrated in the southern parts of Zhejiang Province, and central parts of Hunan and 

Jiangxi Provinces. There were almost no areas suffering moderate SFD. These areas were 

scattered in the border area of Jiangxi and Zhejiang Provinces. Although the area influ-

enced by damaging frost was extensive during the first cooling period, there were still 

small regions located in the southern part of the study area that were not affected by SFD. 

The damaging effects of frost during the other two cooling periods were relatively smaller. 

The affected areas of SFD were mainly concentrated in the northwestern part of the study 

area. In particular, the regions affected by severe spring frost were found to be scattered 

in the northwestern part of the study region, corresponding to parts of the Daba Moun-

tains and Wushan Mountains. 

 

Figure 14. Spatial distribution of different frost damage levels during three cooling periods in 2006 in the Middle and Lower
Reaches of the Yangtze River region, China.

5. Discussion and Limitations
5.1. Factors Influencing the Minimum Air Temperature Estimation Model

The major weather-related hazard to tea plant production is SFD caused by low
temperatures. Research regarding SFD to tea plants has been limited by the number



Remote Sens. 2021, 13, 1177 17 of 22

of meteorological stations and their distribution. Temperature observations at ground
meteorological stations are often difficult to monitor and evaluate precisely over a large
spatial extent. Previous research mainly focused on the spatiotemporal distribution and risk
assessment of SFD in provincial scale during several decades [23,60,61]. High-resolution
impact assessment of SFD on tea plants over a large-scale region is hard to do based on
ground-based meteorological observations. Remotely sensed land surface temperature
products are one of the most suitable choices to monitor and evaluate the effects of SFD
to tea plants. However, neither the Terra satellite nor the Aqua satellite had overpass
times that corresponded to the time of lowest daily temperature, i.e., around sunrise.
Therefore, it was necessary to develop a minimum air temperature estimation model based
on high spatial resolution LST products. Although the validation results evaluated by R2,
MAE, RMSE, NRMSE, and EF showed that the Tmin estimation model was reasonable and
credible, there were still several limitations that restricted simulation accuracy.

5.1.1. Weather Conditions

One of the limitations of the Tmin estimation model was that the relationship between
Tmin observations at ground meteorological stations and MODIS LST products retrieved
from the generalized split window algorithm [43] was restricted by weather conditions.
It is well documented that the soil emits longwave radiation energy during nighttime hours.
During this radiative cooling process, the land surface temperature becomes lower and
lower. Longwave radiation energy emitted by the soil is affected by the processes of thermal
conduction and water phase change before sunrise [62]. The minimum air temperature
appears around sunrise when the thermal energy emitted by the ground surface is balanced
by incoming solar radiation. In actuality, the longwave radiation energy emitted from soil
will vary with weather conditions, such as sunny, cloudy, and rainy days. The MODIS
LST products were retrieved under clear-sky conditions [63]. Therefore, the minimum air
temperature estimated based on nighttime LST products, theoretically, may have small
underestimation or overestimation errors due to the influence of weather conditions.

5.1.2. Land Cover Types

Another limitation of the Tmin estimation model was that the impacts of land cover
type and their components on minimum air temperature in mixed pixels were not consid-
ered. Previous studies have shown that the diurnal temperature variation of component
temperatures for different land cover types were distinct, especially for different fractional
vegetation cover [59,64,65]. In this study, the land cover types surrounding meteorological
stations were not considered either at 1-km scale (central pixel for MODIS LST products) or
at 3-km (3 × 3 pixels) scale. Although ground meteorological stations and their surround-
ings were covered by grassland in China, fields are fragmented in the MLRYR, and their
land cover types are diverse over more than 1-km scale. There may exist large numbers
of mixed pixels in tea planting areas, even at a spatial resolution of 1 km. Furthermore,
some uncertainties with regard to Tmin estimation will be inevitable because of the variation
of the diurnal temperature range due to the combined effects of vegetation cover fraction,
land cover types, and soil moisture [59,66].

5.1.3. DEM

An additional limitation of the Tmin estimation model was that the effects of el-
evation on minimum air temperature were not considered. Turbulent exchange de-
pends largely on the changes of terrain. Compared with flat and concave land areas,
convex land areas have greater air movement and strong turbulent exchange. There-
fore, temperatures can fall more rapidly after sunset than temperatures over flat and
concave lands (Means, Tiffany. “Understanding Diurnal Temperature Range.” httpa:
//thoughtco.com/diurnal-temperature-range-3444244. Last visited on 26 August 2020).
As such, the diurnal temperature variation was different over different terrain conditions.
Tea plantations in MLRYR are mainly located in hilly areas with gentle slope. The impacts of

httpa://thoughtco.com/diurnal-temperature-range-3444244
httpa://thoughtco.com/diurnal-temperature-range-3444244
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DEM, theoretically, on SFD for tea plants were relatively limited. Even though, more work
should be done in the future to improve the Tmin estimation accuracy by considering the
impacts of aspect on Tmin.

5.2. Indicators of SFD for Tea Plants

Damage indicators are the basis for monitoring disaster, forecasting risk, and eval-
uating impact. Previous studies have classified SFD to tea plants into three categories
according to data sources: morphological indicators, physiological indicators, and meteo-
rological indicators. Moreover, meteorological indicators can be further subdivided into
daily scale and hourly scale indicators based on the meteorological data availability [67].
In this study, minimum air temperatures at daily scale were used to study SFD to tea plants.
This indicator was established based on the dynamic process of frost damage rate [54],
taking Longjing 43 (a kind of shrub tea plant with medium and small leaves) as an example.
Actually, a similar spring frost process may result in different damage levels for different
tea varieties. Therefore, more work should be done to refine the indicators of SFD for
more tea varieties, more tea leaf shapes, and more complex terrain. Fortunately, shrub tea
plants with medium and small leaves are the dominant type of tea plants in the MLRYR.
We believe that the indicator used in this study was suitable for evaluating spatiotemporal
characteristics of SFD to tea plants in the MLRYR.

In terms of the time scale of the indicators, meteorological industry standards [26]
have established the indicator of SFD for medium and small leaf tea plants based on hourly
Tmin and its duration. Hourly scale indicators of SFD have been successfully used to
quantitatively evaluate the impacts of SFD on tea plants in Quzhou city, Zhejiang Province.
The evaluation results indicated that the individual cases of SFD from 2005 to 2015 were
consistent with the actual disaster situation [68]. Tao et al. [69] evaluated the economic
losses caused by the SFD to tea plants in northern Jiangxi Province in 2018 based on
hourly scale indicators, which was also consistent with the actual disaster losses. From an
application point of view, frost damage assessment over a small region requires finer
indicators at tiny time scale and more refined temperature data at high spatial resolution.
Consequently, hourly LST at high spatial resolution is essential in evaluating SFD over
a small area. Research on reconstructing hourly LST data based on remotely sensed LST
products will become the focus of follow-up work.

5.3. Tea Planting Area

The MLRYR region, including six provinces and one municipality, was analyzed
as a single area. The total land area in the MLRYR exceeds 1,010,000 km2, and the tea
plantation area was only 10,541 km2 in 2019 [70], accounting for 1.04% of the total land area.
However, the areas of shrub extracted by the PFT legend in the MODIS MCD12Q1 product
accounted for 4.99% of the total area, and this was much higher than the proportion of the
MLRYR planted to tea. Therefore, the spatial distribution of different SFD levels shown and
discussed in Section 4.4.3 in this study may include other plants to some degree, such as
Camellia oleifera Abel., Forsythia suspensa, Jasminum nudiflorum Lindl., and so on. In the
previous studies, Google high-resolution satellite data was used to extract the refined tea
plantations over a country [71]. If the study area is expanded to the municipal, provincial,
or regional scale, it will become very difficult to preciously extract tea plantation. Almost all
publications divided the regional frost levels over the whole study area, without marking
the distribution of tea plantation [68,69]. Therefore, additional work should be done to
exactly distinguish the tea plantation area in the future, so as to accurately monitor and
objectively evaluate the impacts of SFD on tea plants.

6. Conclusions

This study established a minimum air temperature estimation model based on MODIS
nighttime reconstructed LST values and digital elevation, and further analyzed the spa-
tiotemporal characteristics of SFD by referring to the indicators of SFD for tea plants in
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the MLRYR of China. Results showed that the best correlation between Tmin and two LST
nighttime products at six window scales was found using the MYD11A1 product at the
3 × 3 pixel window, for which the R2, RMSE, and MAE were 0.782, 5.37 ◦C, and 4.05 ◦C,
respectively. The Tmin estimation model used a very simple expression to achieve relatively
accurate simulations. The RMSE and MAE of estimated Tmin were 2.15 ◦C and 1.66 ◦C,
respectively, when using more than 100,000 observations at ground meteorological stations.
The analysis in a typical frost year (2006) revealed that the estimated Tmin values closely
aligned with written historical disaster records. The primary cooling periods recorded in
the “Yearbook of Meteorological Disasters in China” were exactly identified, especially for
several highlighted cities and counties during the first two cooling periods. This study
confirmed that estimated Tmin based on MYD11A1 nighttime products and DEM is a useful
way to monitor and evaluate SFD to tea plants in the MLRYR. The MODIS LST products
are easy to obtain via EOSDIS and can be used to research and timely quantify SFD over
a large spatial extent. The Tmin estimates in detailed temporal and spatial characteristics
will be an important consideration for taking effective frost prevention measures at the
appropriate time and precise region.
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