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Abstract: CubeSat-based Earth Observation missions have emerged in recent times, achieving
scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of
the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was
launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band
microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach
for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans
using FMPL-2 data. The results from the first months of operations are presented and analyzed,
and the quality of the retrieved maps is assessed by comparing them with other existing sea ice
concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent
maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR
data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower
than 3% combining it with the GNSS-R. The total extent area computed using this methodology is
close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI
SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a
cost-effective alternative, and using a constellation of CubeSats, it can be further improved.

Keywords: sea ice; microwave radiometry; GNSS-R; nanosatellite; earth observation; neural networks

1. Introduction

Global warming is having a big impact on polar sea ice, notably in the Arctic ocean.
Satellite observations make it possible to monitor the sea area covered by ice, i.e., Sea Ice
Extent (SIE), which has been decreasing in recent years at a rate of 13.1% per decade [1].
While this has ecological implications, it also opens new commercial opportunities, such
as the opening of the North route joining Asia, Europe and North America in a faster
way. SIE algorithms are based on microwave radiometry observations at ~19 and 37 GHz
frequencies [2]. These frequencies can discriminate between sea water and sea ice, which
makes it possible to define the sea ice margin and the associated sea ice extent. SIE
monitoring at Arctic scale has been possible since 1978 using large satellites embarking
Microwave Radiometers (MWR).

Several approaches exist for retrieving Sea Ice Concentration (SIC), i.e., the percentage
of ice present in a given point of the sea, or SIE maps. Process-based algorithms, i.e.,
building a physical model, for SIC usually use a multi-frequency tie-point approach [3],
or matched filtering of the Delay Doppler Maps (DDM) generated from GNSS-R data has
been used for SIE [4]. More recently, Neural Networks (NN)-based algorithms have also
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been used with results close to the traditional methods [5], and even SMOS L-band data
has been used to determine Sea Ice Thickness (SIT) [6].

CubeSats have been proven to be a cost-effective alternative for technology demon-
strators and scientific missions. Multi-platform missions [7], such as Planet [8] or Spire [9],
are becoming a reality thanks to reduced CubeSats costs, improving notably the revisit
time. FSSCat mission was launched on the 3 September 2020 [10,11]. The mission con-
sists of two 6U Earth Observation CubeSats. The first one, 3Cat-5/A carries onboard the
Flexible Microwave Payload-2 (FMPL-2) payload [12,13]. FMPL-2 is a dual L-band MWR
and a Global Navigation Satellite System-Reflectometer (GNSS-R) implemented using a
Software-Defined Radio. Its main objective is to monitor the sea ice over the poles. The
second one, 3Cat-5/B, carries on board Cosine’s Hyperscout-2 visible and near-infrared
(VNIR) and Thermal Infrared (TIR) hyperspectral imager [14].

The objective of this study is to develop a methodology for generating SIC and SIE
maps of the Arctic and the Antarctic oceans using the FMPL-2 MWR and the GNSS-R
data for latitudes above 60◦ North and South. NN-based algorithms are relatively easy to
implement, can find non-linear dependencies among data, and can handle large datasets
efficiently. Therefore, this methodology designs two different NNs to retrieve the SIC, and
SIE map: a regression fit NN to estimate SIC maps and a classification NN for the SIE ones.
The first NN takes MWR data to generate coarse-resolution (12.5 km) SIC and SIE maps,
and then a second NN is proposed to combine GNSS-R and MWR data to provide a higher
resolution (~250 m) map over the tracks of the GNSS-R specular reflection points. The
maps presented cover all the retrieved data from FSSCat during the months of October
and November 2020 after the commissioning phase. To assess the quality of the produced
maps, the data is compared to Ocean and Sea Ice Satellite Application Facility (OSI SAF)
SIC and SIE maps [15]. Furthermore, the total SIE area is computed to have an overall view
of the magnitude of the differences.

After this introduction, this work is organized as follows. Section 2 describes the
FFSCat data used to generate the SIC and SIE maps, along with the auxiliary data used to
train the networks, i.e., the land cover fraction, and the land and sea surface temperatures,
also known as skin temperature. Land cover is adopted from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) [16], and the daily skin temperature is extracted from
the European Centre for Medium-Range Weather Forecasts (ECMWF) [17]. Section 2 also
describes the proposed methodology. Section 3 presents and comments the results obtained
with the presented algorithm and compares them with the products from other missions.
Finally, in Section 4, the main conclusions are summarized.

2. Materials and Methods

This section describes the data used as inputs. First, the FSSCat data, the brightness
temperature from MWR and the GNSS-R reflected data points. Second, two auxiliary data
sets used to complement the inputs for SIC and SIE estimation.

2.1. FSSCat Data

The presented methodology uses the data coming from both sensors of the FMPL-2
payload. On the one hand, it uses the L-band brightness temperature collected by the
MWR to generate full SIC and SIE maps of both poles, and on the other hand, the data
points collected by GNSS-R are used to improve the resolution of the previously generated
MWR maps over the specular reflection tracks.

2.1.1. Microwave Radiometer Data

As mentioned in Section 1, MWR data at Ku and Ka-bands are routinely used to
determine SIC. In this work, FFSCat L-band MWR is the main input used, which has
a sensitivity better than 1 K [12]. The data is pre-processed to deliver daily brightness
temperature maps at polar scales considering the northern hemisphere and three-day maps
for the southern hemisphere, due to a different acquisition strategy followed in each pole by
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3Cat-5/A. As the radiometer tracks partially overlap in the cross-track dimension, wherever
there is overlap, values are generated by averaging multiple 1D tracks [13] (p. 10,11). MWR
data resolution is resampled from the original spatial resolution determined by the antenna
footprint (350 × 500 km2) to an Equal-Area Scalable Earth (EASE) [18] grid of 12.5 km and
then a seven-day moving average window is applied across the temporal dimension to get
the full coverage. An example data product from FSSCat MWR used as an input by the
algorithm presented in this work is illustrated in Figure 1.
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Figure 1. FFSCat brightness temperature (K) maps: (a) Arctic, October 7; and (b) Antarctic, 13 November to 15 November.

2.1.2. GNSS-R Data

The shape of the Delay Doppler Maps (DDM) can be used to detect whether a pixel is
ice or open water [4]. TDS-1 and CYGNSS GNSS-R receivers use a coherent integration
time of 1 ms, and an incoherent integration time of 1 s, providing an along-track blurring
of approximately ~6.5 km. More recently CYGNSS GNSS-R receivers have decreased the
integration time to 0.5 s. FSSCat was designed with an incoherent integration time of only
40 ms, which provides a blurring of less than 260 m, about the size of the first Fresnel
zone [11]. However, the shorter the integration time, the greater the noise level, which
makes the difference of the DDM’s shape between open water and sea ice less evident,
as most of the tails are buried in the noise level as illustrated in Figure 2a. Nonetheless,
the wider DDM over water than over ice and the calibrated reflectivity (i.e., ratio between
reflected and direct signal as defined in [19]) of the reflected GNSS-R signal are large
enough to detect the transitions between sea and ice as show in Figure 14 of [13]. This
effect can also be seen in Figure 2b, where the reflectivity of the signal increases when the
track changes between the sea open water area to the thin and thick ice, defined for SIC
larger than 30% and 70%, respectively, in the OSI SAF maps.

The elevation angle during the acquisition has an important impact on the received
SNR of the reflection, as well, as shown in [20,21]. Therefore, in addition to the DDM and
the SNR, these additional data are added to the algorithm. Moreover, the classification
accuracy improves for large SNR. Therefore, the GNSS-R tracks were pre-processed to filter
out reflections with poor SNR, or with inconsistent absolute Doppler frequencies, as shown
in [12] and explained in [13].
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Figure 2. FMPL-2 GNSS-R data: (a) DDM over water and ice comparison; and (b) Reflectivity tracks over the OSI SAF map.

2.2. Auxiliary Data

The FMPL-2 antenna footprint is ~350 × 500 km2; therefore, when the satellite crosses
the coastline, the antenna temperature contains information from both land and sea. Land
brightness temperature is higher than that over sea. Therefore, in coastal areas, the bright-
ness temperature over the sea is contaminated by that of the land. This is partially corrected
by using two auxiliary data sets: the land cover fraction and the Skin surface Temperature
(ST). The Land Cover Fraction (LCF) represents the fraction of land present on the area
surrounding a given pixel. The Land Cover (LC) maps are retrieved from MODIS data,
and a mask is computed for water bodies: 1 if the pixel is land, 0 if the pixel is water.
Therefore, the number of pixels (Ni) of the land cover maps that are inside the computed
area, centered on a given point (i) of MWR data, are used to compute the land cover fraction
maps as

LCFi =
N

∑
j=1

LCj

Ni
(1)

for every pixel of the 12.5 km EASE grid used for the MWR data. As will be discussed in
Section 3.1, the fraction area is not only computed for the antenna footprint, but also for a
larger square box of 201 by 201 pixels. The resulting LCF maps can be seen in Figure 3.
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The ST is the surface temperature in each pixel of the map. It is composed of the land
surface temperature maps and the sea surface temperatures retrieved from the ECMWF
database, and resampled into the same 12.5 km EASE grid. Figure 4 shows two examples
of the ST maps used.
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2.3. Sea Ice Concentration and Sea Ice Extent Retrieval Using Neural Networks

As mentioned in the previous sections, the main purpose of this work is to combine
GNSS-R and MWR data from FSSCat by implementing and optimizing NNs to yield
accurate maps of SIC and the associated with SIE at the polar scale. For both maps, the data
from both sensors is combined in a two-step procedure. The first step uses the MWR and the
auxiliary data as inputs of a NN to compute whether a pixel is ice or water. For the second
step, the GNSS-R data analyzed with the NN supports the MWR data to conditionally
enhance resolution whenever data at specular points is available. The maps generated in
the first step have a spatial resolution of 12.5 km, and over them, the output points of the
second step are placed in a non-gridded format in order to improve the resolution of the
GNSS-R data (~250 m). SIC maps are generated following the same two steps of the SIE
procedure but using a different NN.

2.3.1. Sea Ice Concentration and Extent Maps Based on MWR Data

To process the FMPL-2 MWR data, two NNs have been designed, in order to generate
both SIC and SIE maps. For SIC maps, as SIC is a continuous variable from 0 to 100, an NN
with continuous output is used to perform a regression fit of the input data [22]. The NN is
designed as a fully connected Multilayer Perceptron network (MLP), where all the neurons
for one layer are connected to the next one. Different networks with different number
of hidden layers have been tested. Increasing the number of hidden layers increases the
required training time, but it also improves the accuracy of the trained networks by ~1%,
and it is affordable for actual computers. However, more than three hidden layers does not
improve the results. After seeing the results, the chosen network was composed as follows:

• Input layer: 5 neurons;
• 3 hidden layers: consisting of 5, 10 and 5 neurons, respectively, using the sigmoid

activation function;
• Output layer: a single neuron with a continuous linear output function;
• Each of the input neurons corresponds to one variable of the same point of the EASE

grid. After a selection procedure described in Section 3, the 6 input variables are:
• Brightness temperature;
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• Temporal standard deviation of the brightness temperature: Computed using 10 ra-
diometry samples (5 s window);

• Gradient of the brightness temperature: Two inputs (∇x, ∇y), one for each axis;
• Land cover fraction; and
• Skin surface temperature.

In the case of the SIE maps, the NN architecture is different. It is an MLP network
with the same number of inputs, and the same hidden layers as the SIC network, but the
output layer consists of a single output with a binary classification output function. In both
cases, a different NN is trained for each pole.

More than 5 million points of FMPL-2 MWR data for the Arctic, and more than
800 thousand for the Antarctic, are available to train the networks; therefore, to avoid
overfitting [23], only a small fraction of these data, ~20,000 random samples for each pole,
is used to train and validate the networks. The training methodology used in this work is
the Levenberg-Marquardt method [24]. OSI SAF SIC products [15] are used as the ground
truth to train the networks, resampled at the same 12.5 km EASE grid. Once the networks
have been trained, all the data available is processed through them, and multiple maps
from different time periods of both poles are generated with the same EASE grid used for
the inputs.

2.3.2. Resolution Improvement Using GNSS-R

As mentioned in the previous sections, the algorithm uses the GNSS-R data as well to
improve the resolution of the maps generated using the MWR data. A similar approach as
the MWR is followed. A MLP classification NN for SIE and a continuous output NN for
SIC, with three same hidden layers than the MWR case. However, the number of inputs is
larger: for the GNSS-R data, 12 input neurons are used:

• Averaged Delay Doppler Map (ADDM): All the delay bins (j) of the DDM are averaged
and normalized, dividing by the peak averaged value:

〈DDM〉i =
∑N

j=1
DDMi,j

Ni

max
(

∑N
j=1

DDMi,j
Ni

) . (2)

Five input neurons are required to read this parameter, one for each Doppler bin (i).

• Elevation angle of the reflected signal;
• Reflectivity;
• Standard deviation of the reflectivity;
• SNR;
• Brightness temperature: The FMPL-2 MWR brightness temperature for each point of

the GNSS-R data is bilinearly interpolated into the specular reflection points;
• Land cover fraction: The LCF for each point is bilinearly interpolated into the specular

reflection points; and
• Skin surface temperature: The ST for each point is bilinearly interpolated into the

specular reflection points.

The same training methodology as in the MWR case is followed. Regarding the
number of samples used to train and validate the network, in the GNSS-R case, fewer
samples are available than for the MWR case; therefore, ~20,000 samples are used for the
Arctic and ~5500 for the Antarctic. The ground truth is the same as before; however, as
the brightness temperature, the OSI SAF data is scattered over the specular point using
the same interpolation. Finally, the classified points are scattered over the generated maps
using the MWR data to preserve the high resolution of the GNSS-R.

2.3.3. Performance Analysis

To assess the estimation accuracy of the above algorithms, maps are compared to the
ones used as ground truth from OSI SAF. In the SIC case, the Mean Absolute Error (MAE)
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between the daily generated maps and the daily OSI SAF ones is computed. The standard
deviation of the error is computed as well. For the SIE case, the quality of the measure is
given by the accuracy of the classification. The confusion matrix is also generated, where
the accuracy is provided separately for water and ice pixels. In both cases, an error map
is generated in which each pixel is computed as the difference between the pixels of the
output map and the OSI SAF one. For the MWR maps, the total error will depend on the
latitudes where the maps are generated. Latitudes towards the equator will only add more
water pixels, and the overall error will be lower. Therefore, MAE is computed in different
sets of pixels. One is computed for the global map. The other three are computed regarding
the ground truth SIC value. One for all the water pixels, with a SIC of 0%, another one for
SIC values above 90%, and the last one for the rest of the SIC values, from 0 to 90%.

Regarding the error for the GNSS-R NNs, it is computed for the whole set of points
where there is GNSS-R data and compared to the error of the same specular points without
using the GNSS-R data.

3. Results and Discussion

The methodology presented in Section 2 was tested using all the data collected by the
FSSCat mission over the first two months of operations, from early October to the end of
November 2020. The following subsections present the results regarding different input
combinations justifying the selected ones, as well as the final results for the SIC and SIE
maps for both poles.

3.1. Neural Network Input Design

The set of optimal input variables was selected in a feature selection step. Different
sets of input variables have been used to train and test the NNs in order to evaluate their
impact on the SIE classification and the SIC estimation. Table 1 shows the SIE classification
error and the SIC MAE for the different input combinations. As can be seen, the impact of
the different variables differs between the Arctic and the Antarctic. On one hand, in the
Arctic, the ST by itself possesses most of the information required for generating SIC and
SIE maps, while the FMPL-2 MWR by itself does not. On the other hand, in the Antarctic
the situation is reversed, the FMPL-2 MWR data are enough to generate SIC and SIE maps
with a low error, but the ST data are not. This effect can be explained by the difference in
season between the two poles: the melting season for the Antarctic is the freezing season
for the Arctic. The higher temperatures at the south pole, as seen in Figure 4, mask the
real information about the ice on the surface. During the melting season, water could
appear on top of the ice, warming up the surface temperature and misleading the NNs [25].
However, the combination of both measures leads to an improvement in the accuracy of
the estimation in all cases, especially in areas with lower SIC, where most of the errors
are found.

The selected set of inputs was the last one, including FMPL-2 MWR data and the two
auxiliary data sets, ST and LCF. The SIE accuracy of this input set for both poles in areas
with SIC concentrations larger than 90% was higher than 99.8%. For areas with intermediate
SIC values, the SIE accuracy was 92.5% in the Antarctic and 91.7% in the Arctic, which is a
significant improvement compared to the other sets of inputs, especially in the Antarctic.
For SIC values, the behavior is the same as for SIE regarding the input variables.

As mentioned previously, the LCF is computed using an averaging box; the size of
this box has an impact on the results. Table 2 shows the classification error for SIE and the
MAE for SIC including both poles. The errors are lower for box sizes close to the antenna
footprint. However, notably increasing the size increases the accuracy of the NNs until a
minimum error is reached, after which it increases, as does the averaging size. Therefore,
an averaging box size of 201 by 201 pixels was chosen to compute the LCF.
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Table 1. MWR NN error with respect to the input variables.

Arctic Antarctic

Global SIC > 90 SIC = 0 0 < SIC < 90 Global SIC > 90 SIC = 0 0 < SIC < 90

SIE Error

ST 2.12% 0.24% 1.52% 10.58% 14.30% 9.36% 4.52% 34.98%
ST + LCF 2.07% 0.12% 1.45% 10.54% 12.56% 7.20% 4.74% 30.22%

MWR 10.61% 1.92% 10.13% 32.05% 5.19% 0.30% 4.58% 10.04%
MWR + LCF 6.61% 1.18% 5.43% 24.91% 4.46% 0.20% 3.88% 8.74%
MWR + ST 2.11% 0.06% 1.78% 8.87% 4.16% 0.38% 3.32% 8.51%

MWR + ST + LCF 1.81% 0.02% 1.52% 8.30% 3.9% 0.20% 2.90% 7.53%

SIC MAE

ST 3.18% 4.08% 4.08% 14.04% 17.02% 14.84% 14.84% 25.19%
ST + LCF 2.89% 3.60% 1.40% 13.03% 15.78% 13.67% 11.89% 24.13%

MWR 12.08% 10.06% 10.88% 25.06% 6.90% 6.18% 3.67% 13.02%
MWR + LCF 7.15% 19.86% 5.93% 19.86% 6.37% 12.46% 3.14% 12.46%
MWR + ST 2.80% 3.52% 1.32% 13.10% 5.89% 5.73% 2.63% 11.64%

MWR + ST + LCF 2.37% 2.87% 1.05% 11.27% 5.55% 5.25% 2.35% 11.30%

Table 2. MWR NN error with respect to LCF box size.

Box Size (Pixels)
Arctic Antarctic

Global SIC > 90 SIC = 0 0 < SIC < 90 Global SIC > 90 SIC = 0 0 < SIC < 90

SIE Error

11 × 11 2.19% 0.06% 1.93% 8.39% 4.05% 0.42% 3.25% 8.25%
21 × 21 1.99% 0.05% 1.68% 8.37% 3.98% 0.45% 2.91% 8.57%
51 × 51 2.06% 0.04% 1.75% 8.56% 4.02% 0.33% 3.08% 8.53%

101 × 101 1.99% 0.03% 1.69% 8.35% 3.97% 0.39% 2.93% 8.55%
201 × 201 1.95% 0.02% 1.52% 8.50% 3.57% 0.21% 2.90% 7.33%
301 × 301 2.01% 0.03% 1.67% 8.51% 3.97% 0.31% 3.26% 8.01%

SIC MAE

11 × 11 2.54% 3.14% 1.23% 12.13% 6.01% 5.76% 2.76% 11.83%
21 × 21 2.42% 2.96% 1.41% 11.75% 5.87% 5.59% 2.58% 11.75%
51 × 51 2.37% 2.80% 1.15% 11.50% 6.08% 5.66% 2.83% 12.03%

101 × 101 2.38% 2.86% 1.11% 11.37% 5.86% 5.50% 2.63% 11.72%
201 × 201 2.37% 2.87% 1.05% 11.27% 5.55% 5.25% 2.35% 11.30%
301 × 301 2.40% 3.07% 1.10% 11.80% 5.74% 5.36% 2.58% 11.58%

LCF improves the results in the zones closer to the coastlines, because it corrects the
abrupt temperature changes between land and sea. This can be seen by taking a close look
at the results; the LCF has a larger impact on the areas with an SIC larger than 90, or even
those with water, because the coastline transitions are usually between land and sea or
land and thick ice, where the concentrations are larger. Low concentration areas are usually
found between thick ice and sea, where new ice is forming, or the ice is melting.

Regarding the GNSS-R NN, the input selection was performed following a two-step
selection procedure. First, the inputs regarding the GNSS-R alone were selected, and then
the use of additional sets of data was compared to choose the one with the best performance.
Regarding the GNSS-R, the inputs considered were the ADDM, the elevation angle (el), the
reflectivity (gamma), the reflectivity standard deviation (STD) and the SNR. Looking at
Table 3, it can be seen, contrary to [4,5], that the DDM by itself is not enough to perform
the classification, having an error close to 50%. As mentioned before, the shape of the
DDM makes it quite difficult to differentiate between sea and water reflected points, due
to its short integration time (40 ms). Nevertheless, after averaging the delay information
of the DDM (ADDM), a peak on the center delay bean appears, as shown in Figure 5a.
The peak width gives some information about the reflection surface, a bit wider for water
reflections than for ice ones. In contrast, averaging the Doppler information of the DDM
gives no information to the NN, as shown in Figure 5b. Although SNR and reflectivity
are quite similar, using both improves the accuracy of the NNs; they have previously been
used together to improve the retrieval of other measures, such as soil moisture [26]. The
elevation angle, as expected, improves the classification, because it has a big impact on the
received signal. The standard deviation of the reflectivity adds some spatial information to
the input [27]; therefore, it improves the results as well.
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Table 3. GNSS-R NN error with respect to the input variables (I).

SIE Classification Error SIC MAE

North South North South

DDM 44.90% 46.65% 39.56% 41.31%
ADDM 40.74% 42.10% 37.77% 39.28%

ADDM+ el + gamma + STD 21.61% 13.51% 28.47% 24.32%
ADDM + el + gamma 26.13% 13.42% 31.65% 21.64%

ADDM + el + SNR 26.45% 20.03% 31.77% 29.33%
El + gamma + STD 22.41% 11.77% 27.86% 19.67%

ADDM + el + gamma + STD + SNR 14.91% 6.68% 22.13% 14.69%
El + gamma + STD + SNR 15.73% 9.03% 24.75% 18.29%
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Finally, the Tb collected by the FMPL-2 MWR and resampled to the GNSS-R resolution
also helps with the classification; it is the parameter that has the greatest impact on the
results. The combination of the FMPL-2 MWR data and the GNSS-R data is that which
gives the best results, showing how the information from MWR is improved thanks to the
resolution of GNSS-R. Table 4 shows the errors of the NNs with respect to the different data
sets used. The GNSS-R dataset includes all the previously selected variables. The MWR,
LC and LST datasets are the same ones used for the MWR NNs, but bilinearly interpolated
to the specular points of the GNSS-R dataset. As expected, the errors without using de
GNSS-R dataset follow the same trends as those presented in Table 1. The classification
accuracy for SIE using only the FMPL-2 dataset, i.e., GNSS-R and MWR, is quite good,
at 95.9% for the Arctic and 98.4% for the Antarctic. However, using the auxiliary dataset
improves it to almost 99% at both poles. For SIC estimation, using all the input datasets,
MAE is lower than 3% at both poles. Figure 6 shows the scatter 2D histograms for the last
two cases of the table. It can be seen that, for both poles, the GNSS-R corrects the values
with larger errors found in the zones with an intermediate SIC value.

3.2. Sea Ice Concentration Generated Maps

The methodology presented in Section 2 was tested using all the data collected by the
FSSCat mission over the first two months of operations, from early October to the end of
November 2020. The following subsections present the results for the SIC and SIE maps
for both poles.
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Table 4. GNSS-R NN error with respect to the input variables (II).

SIE Classification Error SIC MAE
North South North South

GNSS-R 14.91% 6.68% 22.13% 14.69%
GNSS-R + MWR 4.07% 1.60% 10.48% 3.79%

GNSS-R + MWR + LCF 2.36% 1.21% 6.94% 3.44%
MWR 18.04% 6.42% 16.85% 8.14%

MWR + LCF 7.65% 2.59% 10.19% 4.86%
ST 3.44% 40.38% 5.41% 38.09%

ST + LCF 2.51% 20.64% 4.62% 25.74%
MWR + ST 2.20% 3.34% 4.54% 6.63%

MWR + ST + LCF 1.49% 1.85% 3.34% 3.31%
GNSS-R + MWR + LC + ST 1.10% 1.00% 2.81% 2.29%
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3.2.1. Arctic Ocean

The first case studied is the SIC retrieval for the Arctic ocean. Daily maps are estimated
using the NNs defined in Section 2 and compared to the OSI SAF ones. SIC values are
given in percentages. In Figure 7, an SIC map generated using this methodology for the
7 November is presented (Figure 7a), along with the ground truth map (Figure 7b) and
the error map (Figure 7c), i.e., the difference between the estimated map and that of the
ground truth. An animation with all 44 maps and the error maps generated using FMPL-2
MWR from the Arctic can be seen in Video S1, provided as additional material.



Remote Sens. 2021, 13, 1139 11 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

Table 4. GNSS-R NN error with respect to the input variables (II). 

 SIE Classification Error SIC MAE 
 North South North South 

GNSS-R 14.91% 6.68% 22.13% 14.69% 
GNSS-R + MWR 4.07% 1.60% 10.48% 3.79% 

GNSS-R + MWR + LCF 2.36% 1.21% 6.94% 3.44% 
MWR 18.04% 6.42% 16.85% 8.14% 

MWR + LCF 7.65% 2.59% 10.19% 4.86% 
ST 3.44% 40.38% 5.41% 38.09% 

ST + LCF 2.51% 20.64% 4.62% 25.74% 
MWR + ST 2.20% 3.34% 4.54% 6.63% 

MWR + ST + LCF  1.49% 1.85% 3.34% 3.31% 
GNSS-R + MWR + LC + ST 1.10% 1.00% 2.81% 2.29% 

3.2. Sea Ice Concentration Generated Maps 
The methodology presented in Section 2 was tested using all the data collected by the 

FSSCat mission over the first two months of operations, from early October to the end of 
November 2020. The following subsections present the results for the SIC and SIE maps 
for both poles. 

3.2.1. Arctic Ocean 
The first case studied is the SIC retrieval for the Arctic ocean. Daily maps are esti-

mated using the NNs defined in Section 2 and compared to the OSI SAF ones. SIC values 
are given in percentages. In Figure 7, an SIC map generated using this methodology for 
the 7 November is presented (Figure 7a), along with the ground truth map (Figure 7b) and 
the error map (Figure 7c), i.e., the difference between the estimated map and that of the 
ground truth. An animation with all 44 maps and the error maps generated using FMPL-
2 MWR from the Arctic can be seen in Video S1, provided as additional material. 

   

 

  
(a)  (b)  (c)  

Figure 7. SIC (%) Arctic maps using MWR data from 7 November. (a) FMPL-2 MWR map, (b) Ground truth map, (c) Error 
map. 

Although the maps are downscaled to 12.5 km, the results are blurred because of the 
size of the footprint. Therefore, most of the errors accumulate at the transitions between 
sea and ice, where the SIC is lower. Figure 8 shows the error histogram for each one of the 
different SIC areas. The results for the North pole SIC maps present a global MAE of 
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Figure 7. SIC (%) Arctic maps using MWR data from 7 November. (a) FMPL-2 MWR map, (b) Ground truth map, (c) Error map.

Although the maps are downscaled to 12.5 km, the results are blurred because of the
size of the footprint. Therefore, most of the errors accumulate at the transitions between
sea and ice, where the SIC is lower. Figure 8 shows the error histogram for each one of the
different SIC areas. The results for the North pole SIC maps present a global MAE of 1.95%.
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3.2.2. Antarctic Ocean

Regarding the Antarctic ocean, the maps generated are from a three-day period. One
of the SIC maps is presented in Figure 9a, corresponding to the period from 13 November
to 15 November, along with the ground truth map (Figure 9b) and the associated error map
(Figure 9c). As in the north case, an animation with the four maps generated is presented
in Video S2 provided as additional material.
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In the Antarctic case, the MWR dataset is the one that adds the most information to
the NNs. Therefore, the blurry effect due to the footprint of the antenna is more relevant in
these maps. The accuracy is worse than in the Arctic ocean due to this effect. For the SIC
maps at the South pole, the mean absolute error is 3.57%, the error histograms are shown
in Figure 10, with similar results as for the Arctic, but a bit larger, because in the ice mass
there are multiple areas with SIC lower than 90%, which are not fully detected due to the
antenna footprint.
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3.3. Sea Ice Extent Generated Maps
3.3.1. Arctic Ocean

Figure 11 shows an example of the SIE maps generated with the algorithm from the
3 November. The distribution is the same as Figures 7 and 9, showing the SIE map estimated
with this methodology (Figure 11a), and the OSI SAF ground truth (Figure 11b), but the
color map contains only two values, dark blue for water, and white for ice. Regarding the
error maps (Figure 11c), dark blue is for pixels detected as water, but which correspond to
ice pixels; light blue means no error; and white is for pixels detected as water, but which
correspond to ice. All the SIE maps generated with the algorithm are presented in the
Video S3 animation, provided as additional material.
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The accuracy for SIE maps of the Arctic is 98.2%, as shown in the confusion matrix
in Figure 12; red color shows the error, and green color the accuracy, both in percentage.
In the matrix, Class 1 stands for water and Class 2 for ice pixels. As can be seen, errors
are again concentrated in the margins of the mass of ice. Furthermore, they are grouped
in regions, and are not randomly distributed. The margins of the ice correspond to the
areas with lower concentrations, where SIC values change within a small distance from 0%
to 100%, and the large footprint of the antenna cannot fully detect those transitions. This
error is reduced when there are multiple overpasses, which make it possible to untangle
the large footprint size to an extent.
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SIE maps make it possible to compute the total area covered by ice at both poles. For
the Arctic, the total SIE area is computed from the FMPL-2 maps, and then compared to
that from the ground truth maps. As can be seen in Figure 13, each sample corresponds
to one day. The mean absolute difference between both algorithms, the present one and
the OSI SAF one, is 0.14 million km2, which is smaller than the difference between the
existing SIE algorithms. As it can be seen in [28] (p. 6) that the differences between existing
algorithms are in the range of 1M km2. It can be seen that the SIE evolution is very similar
to the ground truth.
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Figure 13. Total Arctic sea ice extent area.

3.3.2. Antarctic Ocean

The computed SIE Antarctic maps are similar to the Arctic ones, but with lower
accuracy, for the same reasons as discussed in the SIC section, i.e., the Antarctic is simpler to
study than the Arctic. Figure 14 shows the confusion matrix, as before; Class 1 corresponds
to water and Class 2 to ice. The accuracy for Antarctica is 96.1%.
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The total SIE area from the Antarctic ocean is shown in Figure 15; each data point was
computed from one of the generated maps. As before, the difference between the generated
maps and the ground truth ones was on the same order of magnitude to that the different
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SIE retrieval algorithms, with a mean absolute difference of 0.17 million km2. Figure 16
shows one of the three-day maps generated using this algorithm for Antarctic; as in the
previous section, dark blue represents water, and white represents ice. The effect of the
large footprint of the antenna can be seen, as all the errors are grouped along the edges
of the ice mass and along the areas with lower presence of sea ice. Video S4, provided as
additional material, shows an animation with the four maps generated.
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3.3.3. GNSS-R Sea Ice Concentration and Extent Estimation

Once the MWR maps had been generated, the data from the GNSS-R was used to
further improve their resolution along the GNSS-R tracks. Classification using the GNSS-R
data had an accuracy of 98.9% for the Arctic and 99.0% for the Antarctic. GNSS-R data not
only lead to an improvement in the resolution, but also further improve the classification
by approximately 1% with respect to the MWR classification. Regarding SIC, MAE is 2.98%
for the Arctic and 2.68% for the Antarctic.

GNSS-R data are not presented in full daily maps as MWR data; instead, they are
presented by daily tracks. However, with only one satellite carrying GNSS-R, there are only
a few tracks per day present, and there are even days without any data. An animation with
all the Arctic maps comparing the GNSS-R estimation to the ground truth can be found
in Video S5, provided as additional material. To see the GNSS-R SIC estimation clearly,
Figure 17 shows six closer looks of the GNSS-R tracks over the OSI SAF ground truth. The
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ground truth color code shows six levels of SIC. It can be clearly seen in the images that the
SIC estimation with the algorithm is really close to the one on the ground truth.
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Finally, a composition of the MWR maps and the GNSS-R maps can be seen in
Videos S6 and S7, provided as additional material with SIC and SIE, respectively, for the
Arctic sea. For Antarctica, the composition was not performed due to the lack of data
points available.

4. Conclusions

SIC and SIE maps are currently generated by large satellite missions, carrying mi-
crowave radiometers. Today, CubeSats have proved their capabilities for scientific Earth
Observation missions at a moderate cost.

FSSCat MWR maps generated with the algorithm presented in this work are resampled
at a resolution of 12.5 km, but the blurring due to the real antenna footprint size leads to
errors near transitions. However, thanks to the combination of MWR and GNSS-R data, the
resolution can be improved along the reflection point tracks to a pixel size of up to 250 m.
The GNSS-R resolution is better than the actual products available: 10 km for the OSI SAF
products, 4 km for the NSIDC SIC [29] products, and 1 km for the NSIDC SIE [30] products.
Thanks to their reduced costs, CubeSats can be launched in large groups for the budget of
a single large satellite [31]. A constellation of satellites using both sensors would improve
the amount of generated data, and therefore, the quality of the final maps. Furthermore,
it will be possible to generate one or more accurate maps with better resolutions in both
sensors every day, thanks to the averaging of MWR overlapped data coming from multiple
satellites and to the improvement on temporal resolution for GNSS-R. The relationship
between the temporal and the spatial resolution in this type of sensors is discussed in [32].

Furthermore, the use of NNs to solve these problems reduces the computational
power needed, as shown in other studies [33]. Pre-trained networks would make it
possible to perform computations on board, making it necessary only to download the data
already processed, thus reducing the data budget required, saving power, and enabling the
production of maps in close to real time, a key specification for some use cases. However,
NNs need to previously possess accurate maps for training, and this training needs to be
done periodically to learn the changing conditions of the sea ice due to climate change.
Higher temperatures reduce the proportion of areas with high ice concentrations and
increase the areas with intermediate concentrations.

This work presented a methodology for generating SIC and SIE maps using the MWR
and GNSS-R data produced by the 3Cat-5/A satellite of the FSSCat mission. The SIC maps
were generated with errors lower than 4% for the Antarctic ocean, and even lower for the
Arctic ocean (1.8%). Regarding the SIE maps, all of them were generated with an accuracy
better than 96.4%. The algorithm uses two different sets of data coming from two sensors, a
MWR and a GNSS-R. This makes it possible to generate full coarse-resolution maps quickly
with the MWR data and to improve the resolution of these maps using the GNSS-R data on
top of them.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/6/1139/s1, Video S1: Arctic SIC maps from MWR data. Video S2: Antarctic SIC maps
from MWR data. Video S3: Arctic SIE maps from MWR data. Video S4: Antarctic SIE maps from
MWR data. Video S5: Arctic SIC maps GNSS-R comparison to ground truth. Video S6: Arctic SIC
combined maps from MWR and GNSS-R data. Video S7: Arctic SIE combined maps from MWR and
GNSS-R data.
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