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Abstract: As a vital role in the processes of the energy balance and hydrological cycles, actual
evapotranspiration (ET) is relevant to many agricultural, ecological and water resource management
studies. The available global or regional ET products provide ET estimations with various temporal
ranges, spatial resolutions and calculation methods (algorithms, inputs and parameterization, etc.),
leading to varying degrees of introduced uncertainty. Northern China is the main agriculturally
productive region supporting the whole country; thus, understanding the spatial and temporal
changes in ET is essential to ensure water resource and food security. We developed a synthesis
ET dataset for Northern China at a 1000 m spatial resolution, with a monthly temporal resolution
covering a period ranging from 1982 to 2017, using an in-depth assessment of several ET products.
Specifically, assessments were performed using in situ measured ET from eddy covariance (EC)
observation towers at the site-pixel scale over interannual months under the conditions of different
land cover types, climatic zones and elevation levels to select the most optimally performing ET
products to be used in the synthesized ET dataset. Eight indicators under 21 conditions were involved
in the assessment sheet, while the statistics of the different ET product occurrences and corresponding
ratios were analyzed to select the best-performing ET products to build the synthesis ET dataset
using the weighted mean method. The weights were determined by the Taylor skill score (TSS),
calculated with ET products and EC ET observation data. Based on the assessment results, the
Penman–Monteith–Leuning (PML_v2), ETWatch and Operational Simplified Surface Energy Balance
(SSEBop) datasets were selected for implementation in the synthesis ET dataset from 2003 to 2017,
while Global Land Evaporation Amsterdam Model (GLEAM) v3.3a, complementary relationship (CR)
ET, and Numerical Terradynamic Simulation Group (NTSG) datasets were chosen for the synthesis ET
dataset from 1982 to 2002. The weighted mean synthesized results from 2003 to 2017 performed well
when compared to the in situ measured EC ET values produced under all of the above conditions,
while the synthesized results from 1982 to 2002 performed well through the water balance method in
Heihe River Basin. These results can provide more stable ET estimations for Northern China, which
can contribute to relevant agricultural, ecological and hydrological studies.

Keywords: synthesis; evapotranspiration (ET); assessment sheet; Taylor skill score

1. Introduction

Evapotranspiration (ET) is a process in which liquid or solid water is converted into
water vapor after precipitation reaches the ground during the hydrological cycle and re-
turns to the atmosphere [1–3]; it mainly involves surface water, soil water evaporation and
vegetation canopy transpiration [4,5]. From a global perspective, two-thirds of precipita-
tion is returned to the atmosphere by evapotranspiration [6]. Therefore, ET is a critical
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component of terrestrial ecosystems and profoundly impacts the water balance and energy
cycle of the terrestrial surface [7,8]. Accurate ET estimates are vital to study hydrological
processes from basin to regional levels [9–13], global climate change [14–17], drought and
flood monitoring [18–20], water resource and optimal allocation management [21–24], agri-
cultural water management and irrigation scheduling [25–28], environmental protection
and ecological restoration [29,30]. Northern China has a complicated terrain and a large
east–west span and is the country’s main wheat and corn production area [31]. Food
security in this region is primarily dependent on water resource security, because most of
the cultivated land is irrigated [32]. From a regional perspective, water is mainly sourced
from precipitation, and evapotranspiration and river flow are the leading causes of water
loss [33]. Hence, understanding temporal and spatial changes in ET is crucial to water
resource and food security in Northern China. In situ ground measurement methods of ET
using observational instruments, such as Bowen ratio (BR) systems [34], eddy covariance
(EC) systems [35] and lysimeters [36], are widely applied across relevant research areas.
Although the true value of ET can be obtained at the observed time and representative
spatial extent, the spatial representativeness is limited to a certain point or within a small
area, while large-scale observations are expensive [37]. Simulation methods based on
remotely-sensed data are more effective in obtaining the spatial distribution of ET and
guarantee temporal continuity [38].

Recently, various remote sensing-based global ET datasets have been generated using
different mechanisms. Some are remote sensing diagnostic products based on the surface
energy balance (SEB), in which the thermal infrared band plays a significant role [28,39] and
can be denoted as the Penman–Monteith–Leuning evapotranspiration V2 (PML_V2) [40],
Surface Energy Balance System (SEBS) [41], Operational Simplified Surface Energy Bal-
ance (SSEBop) [42], the Moderate Resolution Imaging Spectroradiometer (MODIS) Global
Evapotranspiration Project (MOD16) [43], etc. ET datasets generated with the land sur-
face model (LSM) that describe land surface processes that have a great impact on the
Earth system and govern the exchanges of heat, moisture and momentum between the
surface and atmosphere [44] are represented by the Global Land Evaporation Amsterdam
Model (GLEAM) v3.3a [45], Global Land Data Assimilation System (GLDAS) [46], and
Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System
(FLDAS) [47]. Additionally, there are also ET datasets that have been developed from
hydrological models, such as TerraClimate, in which the actual ET is derived from a one-
dimensional soil water balance model [48]. For regional ET datasets covering Northern
China, the representatives include the ETWatch product [49], an operational ET product
based on the surface energy balance and Penman–Monteith (PM) equation, and CR ET
product [50], a complementary relationship (CR)-based diagnostic ET product for the
Chinese terrestrial surface.

The available ET products differ in their model inputs, parameterizations and algo-
rithms, leading to varying degrees of uncertainties [51,52]. Thus, it is challenging to select
a proper ET dataset that accurately represents the hydroclimatic features of a region [49];
therefore, the evaluation of ET results is essential to ensure reliability [53]. Among the eval-
uation methods, EC in situ field measurements and hydrological records are most widely
applied as reference data for validating various ET estimates at the pixel and basin-wide
levels, respectively, in various ET-related studies [54–58]. Focusing on Northern China, the
ETWatch in the Hai River basin and CR ET products have been validated by comparing
field flux measurements and hydrological records with model estimations [50,59,60].

Given the uncertainties in different ET products, several data fusion methods, such as
simple model averaging (SMA) [61,62], Bayesian model averaging (BMA) [63,64] and the
simple Taylor skill (STS) method [65,66], were applied to blend the different ET products
to build an ensemble ET dataset to reduce uncertainties, and better performances were
found in the ensemble dataset. Ershadi et al. [62] determined that the ensemble dataset had
the lower uncertainty level when compared with other member ET products; according
to their Nash–Sutcliffe efficiency (NSE) and root mean squared difference (RMSD) values.
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Yang et al. [63] applied the BMA method and merged eight satellite-based ET datasets and
attributed the highest accuracy to an ensemble with four models (Reg2, PT-JPL, RRS-PM
and MODIS ET). In the study by Niyogi et al. [67], different statistical metrics, including
STS, have been applied to compare satellite-based and land surface-based ET datasets, from
which the combination of MODIS ET and the GLEAM dataset could generate the most
accurate ET estimates in the United States. Other studies (e.g., Yao et al. [65], Vinukollu
et al. [61], Mueller et al. [68], Badgley et al. [69], and Jiang et al. [70]) have applied multidata
set synthesis and generated regional and global ET datasets with different degrees of
bias. From our perspective, this research aims to provide an assessment-based synthesis
scheme with a Taylor skill score (TSS)-based weight and establish a synthesis ET dataset
within Northern China. Validations at the site–pixel scale and intercomparison among
different global and local ET products are carried out with in situ EC measurements over
different land cover types, elevation scales and climatic zones to select the ET datasets
with the best performance over these varied conditions for further synthesis, which can
obtain a better understanding of the validity and characteristics of the different ET datasets
in Northern China. Conversely, the above selected ET products represent the optimally
performing products within Northern China and can be synthesized using TSS-based
weight for monthly ensemble ET datasets.

2. Study Area and Data
2.1. Study Area

Eighteen Chinese provinces were taken into consideration as the defined study area
and comprised northern, northeastern, and some parts in the northwestern, eastern and
central regions of China. The provinces of Heilongjiang, Liaoning, Jilin, Xinjiang, Inner
Mongolia, Hebei, Shanxi, Shandong, Ningxia, Beijing and Tianjin are fully encompassed,
while the Qinghai, Gansu, Shaanxi, Henan, Hubei, Anhui and Jiangsu Provinces are
partially covered. The spatial extent covers a latitude ranging from 28.02◦N to 54.21◦N
and a longitude ranging from 71.37◦E to 136.72◦E. The land area covers 5.53 million km2,
accounting for 57.6% of the country’s total area. Most of the study area is located in the
temperate zone, and the climatic zone is humid, semihumid, semiarid and arid from
east to west. Generally, the land cover types in Northern China are unique and complex,
with mountains, plateaus, basins, hills and plains and many different types of vegetation
(Figure 1). In addition, Northern China is agriculturally vital and is where a majority of
the wheat and corn resources are produced [32].

2.2. Data
2.2.1. Evapotranspiration

Eleven global and two local actual ET datasets were collected for this research. The
ET estimations from FLDAS, GLDAS_V20 and GLDAS_V21 are all LSM-based, and the
Penman–Monteith (PM) or Priestley–Taylor (PT) equations are involved in the processing
of the other 10 ET products. Among these 10 ET products, MOD16A2 (both Collection 6
(C6) and Collection 5 (C5)), PML_V2 and NTSG are mainly based on the specific canopy
conductance model, while SEBS, SSEBop and ETWatch are mainly based on the surface
energy balance. In particular, GLEAM (both 3.3a and 3.3b) utilizes the soil stress factor
in the conversion from potential ET to actual ET, and CR_ET mainly utilizes the comple-
mentary relationship (CR) between actual and potential ET. ET products collected had
different spatiotemporal resolutions and temporal range, and the specifications of the
abovementioned ET products are summarized in Table 1.
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Figure 1. (A) Location of Northern China with elevation. (B) Land cover map for Northern China.

Table 1. Summary of the abovementioned evapotranspiration (ET) products.

ET Product Spatial
Resolution

Temporal
Resolution Algorithm Temporal Range Reference

FLDAS_ET 0.1◦ monthly Noah-3.6.1 1982/01/01–present McNally et al., 2017
GLDAS_V20_ET 0.25◦ 3-h Noah-3.6 1948/01/01–2010/12/31

Rodell et al., 2004GLDAS_V21_ET 0.25◦ 3-h CLSM-F2.5 2000/01/01–present
MOD16A2_C6_ET 500 m 8-day P-M/surface conductance

model
2001/01/01–present Running et al., 2017

MOD16A2_C5_ET 1000 m 8-day 2000/01/01–2014/12/31 Mu et al., 2013

PML_V2_ET 500 m 8-day P-M/water-carbon coupled
canopy conductance model 2002/07/04–2017/12/27 Zhang et al., 2019

CR_ET 0.1◦ monthly P-T/Complementary
Relationship 1982/01/01–2015/12/31 Ma et al., 2019

GLEAM 3.3a 0.25◦ daily
P-T/soil stress factor

1980/01/01–2018/12/31 Miralles et al., 2011b,
Brecht et al., 2016GLEAM 3.3b 0.25◦ daily 2003/01/01–2018/12/31

NTSG 8 km monthly
modified P-M &

P-T/biome-specified
canopy conductance model

1982/01/01–2013/12/31 Zhang et al., 2010b

SEBS 0.05◦ monthly P-M/Surface Energy
balance 2000/04/01–2017/06/30 Chen et al., 2019b

SSEBop 1000 m monthly P-M/simplified Surface
Energy balance 2003/01/01–present Senay et al., 2013a

ETWatch 1000 m daily P-M/Surface Energy
balance 2000/01/01–2017/12/31 Wu et al., 2020
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2.2.2. ET Tower Observation Data

ET tower observations from 18 EC flux sites were processed monthly as reference
data for validating and assessing the ET products described above. Among them, five
sites are from AsiaFlux (https://www.asiaflux.net/ access: 10 March 2021), five sites are
from ChinaFlux (https://www.chinaflux.org/ access: 10 March 2021), four sites are from
FluxNET (https://fluxnet.fluxdata.org/ access: 10 March 2021) and four sites are from
the Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS).
The periods of flux EC data range from 1 year (12 months) to 8 years (96 months), while
the temporal scale of the processed monthly ET values of all the sites ranges from 2002
to 2017. In total, there are 782 site months. The EC flux sites are distributed across
different underlying surfaces, marked by various land cover types using the International
Geosphere–Biosphere Programme (IGBP) classification system. The 18 EC flux sites mainly
cover five vegetation types: deciduous needle leaf forest (DNF, one site), mixed forest (MF,
two sites), cropland (CRO, six sites) and grassland (GRA, nine sites). The information for
each flux site is summarized in the following Table 2.

Table 2. Summary of the flux site data.

Site/Station Name Underlying Surface
Type in IGBP Code Data Start Year Data End Year Provider

Changbaishan Site (CBS) MF 2003 2005 AsiaFlux
Haibei Potentilla fruticisa bosk Site (HBG) GRA 2003 2004 AsiaFlux

Qinghai Flux Research Site (QHB) GRA 2002 2004 AsiaFlux
Yuchen Site (YCS) CRO 2003 2005 AsiaFlux

Forest Ecosystem Open Research Station
of Changbai Mountains (CBF) MF 2006 2010 ChinaFlux

Dangxiong flux observation site (DXG) GRA 2004 2010 ChinaFlux
Daxing site (DX) CRO 2016 2017 AIRCAS

Guantao site (GT) CRO 2016 2017 AIRCAS
Haibei alpine meadow ecosystem flux

observation station (HBG) GRA 2005 2010 ChinaFlux

Huailai Site (HL) CRO 2013 2015 AIRCAS
Miyun Site (MY) CRO 2016 2017 AIRCAS

Xilingol temperate grassland ecosystem
research station (NMG) GRA 2004 2010 ChinaFLux

Flux observation site of Yucheng warmer
temperate dry farming cropland (YCA) CRO 2003 2010 ChinaFLux

Changling Site (CN-Cng) GRA 2007 2010 FluxNET
Duolun grassland site (CN-Du2) GRA 2006 2008 FluxNET

Duolun degraded meadow site (CN-Du3) GRA 2009 2010 FluxNET
Haibei Alpine Tibet site (CN-HaM) GRA 2002 2004 FluxNET

Laoshan Site (LSH) DNF 2002 2002 AsiaFlux

The collected EC flux data are averaged every half hour in a text format, and the
gap-filling method is applied throughout the process [71]. Then, the gap-filled half-hourly
averaged latent heat flux is aggregated to obtain the monthly ET. The conversion between
latent heat flux and ET is calculated using Equation (1) [72]:

ET =
LE
λ

(1)

where LE (W·m−2s−1) is the latent heat flux, and λ is the latent heat of evaporation. Air
temperature is the main factor influencing λ, but variability in air temperature only causes
minor changes in λ [73]. In view of the limited influence of air temperature on the estimated
ET values with LE [74,75], a constant value of 2.45 MJ·kg−1 is used in the Equation (1) [73].

https://www.asiaflux.net/
https://www.chinaflux.org/
https://fluxnet.fluxdata.org/
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2.2.3. Auxiliary Data

The main auxiliary data involved in this study are digital elevation model (DEM),
aridity index (AI) and gridded precipitation datasets. DEM data are extracted from the 1
arc-second void-filled Shuttle Radar Topography Mission (SRTM) v3 product provided
by NASA JPL, which covers the land surface area between 56◦S and 60◦N in altitude,
accounting for approximately 80% of the total land area of Earth [76]. The AI dataset is
defined as the mean annual precipitation divided by the mean annual evapotranspira-
tion, the former of which is extracted from the WorldClim global climate dataset, and
the latter is simulated by the Hargreaves equation [77], the spatial resolution of which
is 30 arc-seconds (https://cgiarcsi.community/data/global-aridity-and-pet-database ac-
cess: 10 March 2021). Precipitation data is extracted from the gridded precipitation dataset
produced by the China Meteorological Data Service Center (CMDC) [78], which is gen-
erated by spatial interpolation method of the Thin Plate Spline (TPS) using the latest
precipitation data of 2472 stations with the spatial resolution of 0.5◦, spanning from 1961
to the latest. DEM and AI data were mainly for the stratifications of flux sites, while
precipitation data were used for water balance assessment.

3. Method
3.1. Assessment Method

Due to the complexity of land–atmosphere interactions and their various simulation
mechanisms, ET is extremely variable over time and space between the different product
datasets, and their performances can be very diverse under different underlying surface
conditions, so it is necessary to use ground observation data for comprehensive evalua-
tion [62,76,79,80]. A set of indicators was applied in the comprehensive assessment of the
different ET products. Mean error (ME), mean absolute error (MAE) and root mean square
error (RMSE) are the most commonly used error measure indicators. ME and MAE, used
as bias indicators, represent the average error and absolute error between the ET product
values and the tower observed values, respectively, while RMSE represents the sample stan-
dard deviation of the difference between the ET product values and the observed values,
reflecting the accuracy of ET products. The ME results can indicate whether overestimation
or underestimation occurs, whereas the MAE results can avoid the mutual cancelation
of errors, which can accurately reflect the actual forecast error. As mentioned in Rim’s
article [81], RMSE is more sensitive to outliers than MAE, because a single error measured
with RMSE increases quadratically, and MAE is a more direct measurement excluding
exponential operations; however, RMSE is generally more adaptable to in-depth statistical
analyses of error than MAE. Despite these differences, ME, MAE and RMSE all measure
the average difference, and it is suitable to utilize each index. As a result of the variability
of ET measurements, it is difficult to evaluate the accuracy of ET products using only direct
error measures such as ME, MAE and RMSE, and, therefore, their relative values, including
the relative mean error (RME), relative mean absolute error (RRMAE) and relative root
mean square error (RRMSE), are simultaneously reported [80,82,83]. Moreover, the Pearson
correlation coefficient (R) is used as a statistical indicator to measure the strength of the
relationship between the different ET products and observed ET values [58], and Willmott’s
index of agreement (d) is used to describe how well the model-calculated results simulate
the observed data [84]. The indicators are calculated using Equations (2)–(9):

ME =
1
n
∗

n

∑
i=1

(Yi − Xi) (2)

RME =
ME
X
∗ 100 (3)

MAE =
1
n
∗

n

∑
i=1
|Yi − Xi| (4)

https://cgiarcsi.community/data/global-aridity-and-pet-database
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RMAE =
MAE

X
∗ 100 (5)

RMSE =

√
1
n
∗

n

∑
i=1

(Yi − Xi)
2 (6)

RRMSE =
RMSE

X
∗ 100 (7)

R =
∑n

i=1
[(

Yi − Y
)(

Xi − X
)]√

∑n
i=1
(
Yi − Y

)2
√

∑n
i=1
(
Xi − X

)2
(8)

d = 1− ∑n
i=1(Yi − Xi)

2

∑n
i=1
(∣∣Yi − X

∣∣+ ∣∣Xi − X
∣∣)2 (9)

where n is the record number; i is the i-th record; X is the mean value of the observed ET
dataset and Y is the mean ET of the different ET products.

The aridity index, elevation and ET values from the different product datasets are
extracted as data records for the positions of each flux tower. To carry out a comprehensive
assessment, the accuracy of the different ET products is evaluated using the eight indicators
mentioned above from the perspectives of climatic zones, land cover types and elevation
levels with the following stratifications (Table 3): The aridity index (AI) is classified into
three classes, including dry subhumid, humid and semiarid groups, using the United
Nations Environment Programme definitions [85] to describe the different climatic zones.
The IGBP land cover type of every flux tower position is aggregated into three types:
forest, grassland and cropland. The elevation is aggregated into three levels: low, medium
and high. The performances of ET products determined using different indicators under
different conditions will be displayed in the assessment sheet, which is described in
Section 4.2 in detail.

Table 3. Stratifications of different climatic zones, land cover types and elevation levels.

Stratification Description Record
Number

Proportion
(%)

Climatic
zones

0.2 ≤ AI < 0.5 Semiarid 491 63
0.5 ≤ AI < 0.65 Dry subhumid 124 16

AI > 0.65 Humid 167 21

Land cover types
DNF, MF Forest 135 17

GRA Grassland 451 58
CRO Cropland 196 25

Elevation levels
Elevation < 500 m Low 266 34

500 m ≤ Elevation < 1500 m Medium 240 31
Elevation > 1500 m High 276 35

3.2. Synthesis and Validation Method

Through a series of comprehensive assessments, the highly ranked ET products can be
selected according to the assessment results. To harmonize the spatial temporal resolution
of selected ET datasets, the ET dataset that had finer temporal resolution than a month
were all aggregated to monthly time step. Furthermore, ET datasets with spatial resolution
finer than 1 km were resampled to 1 km with pixel average, while coarser ET datasets were
resampled to 1 km with nearest neighborhood. For the synthesis of the selected datasets,
the weighted mean strategy was applied. The weight of the different selected ET datasets is
determined by the calculated Taylor skill scores (TSS) [86]. The weights of every individual
ET product, which are proportional to the TSS values, are added to 1 [65]. The calculation
of the TSS and weights for the different ET datasets and the TSS-based synthesis method
are expressed as Equations (10)–(12):
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TSSi =
4× (1 + Ri)

4(
δi +

1
δi

)2
× (1 + Rmax)

4
(10)

wi =
TSSi

∑n
i TSSi

(11)

ETsyn =
n

∑
i=1

wi × ETi (12)

where TSSi is the Taylor skill score for an ET product i; n is the number of ET products; Ri
is the Pearson correlation coefficient between an ET product i and the in situ measured EC
ET; Rmax represents the maximum correlation coefficient and is set to 1 in this research; δi is
the ratio of the standard deviation of ET product i to the in situ measured EC ET; wi is the
TSS-based weight for ET product I; ETi is the i-th ET product; and ETsyn is the synthesis
result with the weighted mean of the ET products. The TSS values range from 0 to 1, where
0 and 1 indicate the least skillful and most skillful datasets, respectively.

As for validation of the synthesized results, EC ET was used with the assessment sheet
proposed in Section 3.1, while the gridded precipitation was involved in the water balance
assessment of the synthesized results (in Section 4.4).

The overall methodology of this study is concluded as the following flow chart (Figure 2).

Figure 2. Flow chart of methodology for this study.

4. Results
4.1. Assessment of ET Products from Different Perspectives

Figure 3 shows the multiyear monthly average of each ET product under different
conditions as well as the observed flux EC ET. As seen from the EC ET, obvious seasonal
changes were captured. For all sites’ averages (Figure 3A), the ET values from April to
September are relatively high (higher than 40 mm), and the peak value is 91.36 mm in
July. Regarding the different ET products, nearly all of them captured seasonal changes.
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FLDAS, GLDAS_v20, GLDAS_v21, MOD16A2_C6 and NTSG reported maximum values
in August ranging from 66.10 mm (MOD16A2_C6) to 108.89 mm (FLDAS), while the other
ET products had maximum values in July ranging from 63.95 mm (SEBS) to 105.68 mm
(ETWatch). Winter wheat is widely cultivated throughout the plain area of Northern China
and is harvested in June. Then, corn is sowed following winter wheat. Therefore, the ET in
June in these areas is typically smaller than that in the adjacent two months, which was
sufficiently captured by Figure 3D,H. From Figure 3B–J, it is apparent that MOD16A2_C6
generally reported the smallest values from June to July, excluding sites under the condi-
tions of grassland, dry subhumid regions and elevations greater than 1500 m. In contrast,
the SSEBop dataset significantly overestimated ET in cropland areas from May to August,
while NTSG also had large deviations from EC ET in the dry subhumid regions and regions
with elevations greater than 1500 m from June to September.

4.1.1. Assessment with All Sites’ Monthly ET

In Figure 4, scatter plots showing the different monthly ET products versus the
monthly EC ET according to all of the records from all sites are presented. On the basis of
ME and RME, only NTSG overestimated ET, while all other products underestimated ET. It
is worth noting that every ET product reposted various levels of performance in different
ET ranges. The other assessment indicators were calculated and labeled in the upper left
corner of each scatter plot for further detailed analysis (same for the following sections).
For the correlation coefficient (R), ETWatch had the reported R value at 0.90 against the EC
ET and represented the strongest relationship with EC ET, indicating that the monthly ET
changes, by all monthly records of ETWatch, corresponded best with the in situ observed
situations. Nevertheless, MOD16A2_C6, MOD16A2_C5, SEBS and SSEBop showed a
weaker relationship with EC ET, with R values less than 0.70. Referring to Willmott’s index
of agreement (d), ETWatch had the highest value at 0.91, which is consistent with the
results of the R analysis. Furthermore, MAEs (RMAEs) varied greatly among the different
ET products. The maximum value is 25.32 mm/month (47.30%) by SSEBop, the records
of which are the most scattered, while the minimum value is 12.87 mm/month (28.62%)
in PML_v2. When comparing the MAE (RMAE) values of every ET product, the RMSE
(RRMSE) values are generally greater for all ET products. The higher the number of square
operations involved in the RMSE calculation, the more strongly the calculated result is
related to the larger value, while the smaller value is ignored. Similar to MAE (RMAE),
SSEBop and PML_v2 reported the maximum and minimum RMSE (RRMSE) values at
35.51 mm/month (66.32%) and 18.27 mm/month (40.65%), respectively.

Figure 5 plots the monthly assessment indicators of the monthly ET products against
the monthly EC ET, considering all records from all sites. The patterns of monthly perfor-
mances of every ET product evaluated with R and d are similar, from which, in general, all
products performed relatively better from April to May and from September to October.
Interestingly, SSEBop showed a better performance from November to May in terms of R
and d, the pattern of which is quite distinct from other ET products. From ME and RME, it
can be seen that different ET products are all overestimated or underestimated in different
months to varying degrees. For instance, MOD16A2_C5 had a large negative ME from May
to September but had the largest positive RME in January and December, meaning that
MOD16A2_C5 had the largest positive deviation from EC ET in January and December, in
comparison with the other ET products. Evidently, the patterns of monthly performances
with MAE (RMAE) and RMSE (RRMSE) also look similar. From the perspectives of MAE
and RMSE, MOD16A2_C6, MOD16A2_C5, FLDAS_ET, GLDAS_v20_ET, GLDAS_v21_ET,
SEBS and SSEBop did not perform well, compared to other ET products from May to
August. The largest MAE and RMSE values were from MOD16A2_C6 and SSEBop. RMAE
and RRMSE also shared nearly the same pattern but were quite different from that of MAE
and RMSE. The largest RMAE and RRMSE values were reported by MOD16A2_C5 in
January and December, which is contributed to by the great overestimation in these two
months, as confirmed by ME and RME.
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Figure 3. Comparisons of the monthly average ET values between the eddy covariance (EC) flux tower observations and
the different ET products over (A) all EC flux sites, different climatic zones ((B) semiarid, (C) dry subhumid and (D) humid),
different land cover types ((E) forests, (F) grasslands and (G) croplands) and different elevations ((H) <500 m, (I) 500 m–1500
m, and (J) >1500 m).
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Figure 4. Monthly values of all ET products ((A) FLDAS_ET; (B) GLDAS_V20_ET (C) GLDAS_V21_ET; (D)
MOD16A2_C6_ET; (E) MOD16A2_C5_ET; (F) PML_V2_ET; (G) CR_ET; (H) GLEAM 3.3a; (I) GLEAM 3.3b; (J) NTSG;
(K) SEBS; (L) SSEBop and (M) ETWatch) against flux EC ET of all sites’ records.
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Figure 5. Monthly assessment indicators ((A) R and (B) d, (C) ME (mm/month), (D) RME (%), (E) MAE (mm/month), (F)
RMAE (%), (G) RMSE (mm/month) and (H) RRMSE (%)) of all ET products against the flux EC ET for all site records.

4.1.2. Assessment by Land Cover Type

Figure 6 shows the assessment result by landcover type. According to ME and RME,
only MOD16A2_C6, CR_ET and ETWatch were underestimated over forest areas; all ET
products were underestimated except for NTSG over grassland areas; and, for cropland



Remote Sens. 2021, 13, 1076 13 of 29

areas, only SSEBop was overestimated. The other ET products reported the opposite
trends for the three land cover types. Over forest areas, NTSG and SSEBop had the most
accurate estimates of ET, with R values greater than 0.93, and the smallest MAE (RMAE)
and RMSE (RRMSE) values. PML_v2 reported the highest d value over grassland of 0.94,
while PML_v2, GLEAM 3.3a and GLEAM 3.3b reported the highest R value. In addition,
the aforementioned three ET products also had the best MAE (RMAE) and RMSE (RRMSE)
values. For cropland areas, the most expected R (d) values were from the ETWatch dataset
at 0.90 (0.94). Fine MAE and RMSE values were also reported by ETWatch, NTSG, GLEAM
3.3b and PML_v2, in which all MAE values were lower than 20 mm/month and all RMSE
values were lower than 25 mm/month.

Figure 6. Summary of the assessment indicators ((1) R and d, (2) ME (mm/month), MAE (mm/month), RMSE (mm/month),
RME (%), RMAE (%) and RRMSE (%)) for the monthly ET products against the flux EC ET of different land cover type
records ((A) forests, (B) grasslands and (C) croplands).

4.1.3. Assessment by Climatic Zones

Figure 7 illustrates the assessment result by climatic zones. Over semiarid areas, only
SSEBop slightly overestimated ET, while other ET products underestimated ET; only NTSG
overestimated ET values in the dry subhumid areas; and, in humid areas, MOD16A2_C6,
CR_ET, SEBS, SSEBop and ETWatch underestimated ET values. Over semiarid areas,
GLDAS_v21_ET, PML_v2, GLEAM 3.3a, GLEAM 3.3b and ETWatch reported R values
greater than 0.80 and d values greater than 0.87, while only PML_v2 reported the most
desired MAE (RMAE) and RMSE (RRMSE) values. PML_v2 and CR_ET showed the best
agreement with the flux EC ET over dry subhumid regions, with high values of R exceeding
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0.94, high values of d exceeding 0.95 and relatively low MAE (RMAE) and RMSE (RRMSE)
values. Additionally, NTSG and CR_ET outperformed all other ET products over humid
areas. Although NTSG had the highest R (d), CR_ET had the smallest MAE (RMAE) and
RMSE (RRMSE) values.

Figure 7. Summary of the assessment indicators ((1) R and d, (2) ME (mm/month), MAE (mm/month), RMSE (mm/month),
RME (%), RMAE (%) and RRMSE (%)) for the monthly ET products against the flux EC ET of different climatic zone records
((A) semiarid, (B) dry subhumid, and (C) humid).

4.1.4. Assessment by Elevation Levels

Figure 8 shows the assessment result by elevation levels. From Figure 8, it can be
concluded that only SSEBop overestimated ET over areas with elevations below 500 m. ET-
Watch had the highest R (d), while GLEAM 3.3b had the smallest MAE (RMAE) and RMSE
(RRMSE) values. MOD16A2_C6, CR_ET, SEBS, SSEBop and ETWatch were underestimated
over areas with elevations ranging from 500 m to 1500 m. PML_v2 simultaneously had
the highest R (d) values and the most expected MAE (RMAE) and RMSE (RRMSE) values,
which outperformed all other ET products, in light of all the assessment indicators. All
ET products were underestimated over regions with elevations above 1500 m, excluding
NTSG. PML_v2 and GLEAM 3.3a had the highest R (d) values, while GLEAM 3.3a had the
smallest MAE (RMAE) values, and CR_ET had the smallest RMSE (RRMSE) values.
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Figure 8. Summary of the assessment indicators ((1) R and d, (2) ME (mm/month), MAE (mm/month), RMSE (mm/month),
RME (%), RMAE (%) and RRMSE (%)) for the monthly ET products against the flux EC ET of the different elevation levels
recorded ((A) <500 m, (B) 500–1500 m and (C) >1500 m).

4.2. Overall Assessment Result

In general, the different ET datasets are evaluated based on a constructed two-level
assessment sheet, where comparisons among each ET products over different conditions
were conducted. There are eight assessment indicators in a row (ME, RME, MAE, RMAE,
RMSE, RRMSE, R and d) and 21 assessment conditions in a column, including the 9
aforementioned conditions (land cover types: l01–l03; climatic zones: c01–c03; elevation
levels: e01–e03) and individual assessment conditions of interannual months (m01–m12).
There are, in total, 168 cells in the assessment sheet. Every cell refers to a process of
comparison among every other certain ET product under the column-specified condition,
according to the row-specified assessment indicator, and is labeled with the name of the
ET product, which has the best performance. To determine the performance of each ET
product, lower MAE, RMAE, RMSE and RRMSE values and higher R and d values are
expected. Level-1 assessment refers to the selection of the ET product with the highest R
and d values and lowest ME, RME, MAE, RMAE, RMSE and RRMSE values, while level-2
assessment aims to select the ET product with the second highest R and d values and
the second lowest ME, RME, MAE, RMAE, RMSE and RRMSE values. It is noteworthy
that the absolute values of ME and RME are used during the assessment. Next, statistics
on the occurrences of the different ET products under each condition (m01–m12, l01–l03,
c01–c03 and e01–e03) in the assessment sheet are performed. The number of occurrences
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and corresponding proportions of all ET products are listed, according to which all ET
products were arranged in descending order.

Figure 9 presents the two-level assessment sheet covering all ET products, while
Figure 10 presents the comprehensive assessment results. It can be concluded from
Figure 10 that PML_V2, ETWatch, GLEAM 3.3a, CR_ET and SSEBop are the five most
highly ranked ET products within the level-1 assessment, while PML_V2, GLEAM 3.3a,
ETWatch, GLEAM 3.3b and NTSG are ranked in the top five in the level-2 assessment. All
of the top five products in the two-level assessment occupy more than 10% of the cells in
the assessment sheet. Considering the two-level assessment together, PML_V2, ETWatch,
and GLEAM 3.3a, CR_ET and SSEBop are the five best-performing ET products. Together
with Figure 10 (ET products are listed in descending order by total counts of cells occupied),
detailed descriptions are as follows: PML_V2 occupies 40 (23.81%) and 30 (17.86%) cells,
with the highest R and d and lowest ME, RME, MAE, RMAE, RMSE and RRMSE values in
level-1 and level-2, respectively. Therefore, there are 70 (20.83%) PML_V2 cells in total in
the 2-level assessment. Likewise, the other four highest-performing ET products under
all conditions are GLEAM 3.3a (level-1: 25 cells (14.88%); level-2: 26 cells (15.48%); total:
51 cells (15.18%)), ETWatch (level-1: 32 cells (19.05%); level-2: 18 cells (10.71%); total: 50
cells (14.88%)), CR_ET (level-1: 20 cells (11.9%); level-2: 15 cells (8.93%); total: 35 cells
(10.42%)) and SSEBop (level-1: 18 cells (10.71%); level-2: 16 cells (9.52%); total: 34 cells
(10.12%)). ETWatch and NTSG both occupy 18 cells (10.71%) in the level-2 assessment, but
ETWatch outperformed NTSG in the comprehensive two-level assessment and occupies 21
more cells than NTSG.

Figure 9. The 2-level assessment sheet covering all ET products under the conditions of interannual
months (January–December: m01–m12), land cover types (forests, grasslands and croplands: l01–
l03), climatic zones (semiarid, dry subhumid and humid: c01–c03) and elevation levels (<500 m,
500 m–1500 m, >1500 m: e01–e03).
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Figure 10. The count of cells and corresponding percentage of all mentioned ET products with level-1 and level-2 assessments
and the total count of cells and their corresponding percentages.

4.3. Synthesis Result

According to the overall assessment result, PML_V2, ETWatch and SSEBop are selected
from the top-five ET products for the synthesis dataset from 2003 to 2017, because they
had finer spatial resolution from 500 m to 1 km than GLEAM 3.3a and CR_ET. PML_V2
was resampled from 500 m to 1 km with pixel average, while ETWatch and PML_V2 were
aggregated to monthly time step from daily and 8-day time steps, respectively. For the
synthesis dataset from 1982 to 2002, GLEAM 3.3a, CR_ET and NTSG were selected, because
they ranked top-three among the ET products with longer temporal range. The selected
three ET products were resampled to 1 km using the nearest neighborhood technique,
while GLEAM 3.3a was aggregated to monthly time step. The Taylor skill score of the three
selected ET products was calculated with 50% of the in situ measured site month data
records (randomly selected for calibration), which were utilized for the determination of
their weights for synthesis (Figure 11).

Figure 11. Weights of three selected ET products calculated with the calibration dataset ((A) 1982–
2002, (B) 2003–2017).

Figure 12 shows the multiyear monthly average of the component ET products and
the synthesized ET dataset from 2003 to 2017 under the different conditions and observed
flux EC ET values. It can be seen from Figure 12 that the monthly average synthesized ET
product trend under all conditions is basically consistent with that of EC ET. Generally, the
synthesized ET and maximum ET values appear in July, excluding that over forests and
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humid regions, while the harvesting of winter wheat and sowing of summer maize are
well captured from May to July (Figure 12D,H).

Figure 12. Comparisons of the monthly average values between the EC flux tower observations, component ET products, and
synthesized ET datasets over (A) all EC flux sites, different land cover types ((B) forests, (C) grasslands and (D) croplands),
different climatic zones ((E) semiarid, (F) dry subhumid and (G) humid) and different elevation levels ((H) <500 m, (I) 500
m–1500 m and (J) >1500 m).

From the perspective of the average ET from 1982 to 2017 (Figure 13E), the spatial
distribution of the synthesized ET of Northern China has obvious regional characteristics
and is similar to the "northwest–southeast" belt-like distribution of dry and wet zones
divided by multiyear precipitation, where the low-value area (<100 mm) is mainly con-
centrated in the arid area of the northwest regions, and the high-value area (>500 mm) is
mainly concentrated in the eastern monsoon climate regions. Based on the changes in the
decadal average ET values (Figure 13A–D), the spatial distribution of the synthesized ET of
Northern China is quite consistent, where the low-value areas (<100 mm) only exhibit very
minor changes, and the high-value areas (>500 mm) increase to some degree, especially in
the plain area of Northern China and Northeast China.
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Figure 13. Spatial distribution of the 5-year average ((A) 1982–1989, (B) 1990–1999, (C) 2000–2009, (D) 2010–2017) and long
term ((E) 1982–2017)) synthesized ET datasets.

4.4. Assessment of the Synthesized ET Dataset

The assessment was carried out using the other 50% of the in situ measured EC ET
monthly data records as the validation dataset. Figure 14 shows that the synthesized ET
agreed well with the observed EC ET data over the interannual months and under the
conditions of different land cover types, climatic zones and elevation levels. R was greater
than 0.90, while d was greater than 0.95, excluding that of grassland regions, dry subhumid
regions and regions with elevation levels >1500 m. Based on ME (RME), the synthesized ET
underestimated the flux EC ET under all conditions to varying degrees with no exceptions.
The synthesized ET performed best over forested regions, humid regions and regions
with elevation levels of <500 m among the different land cover types, climatic zones and
elevation levels, respectively, according to the MAE (RMAE) and RMSE (RRMSE) values.
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Figure 14. Monthly average of the synthesized ET products against the flux EC ET of (A) all EC flux sites, different land
cover types ((B1) forests, (B2) grasslands and (B3) croplands), different climatic zones ((C1) semiarid, (C2) dry subhumid
and (C3) humid) and different elevation levels ((D1) <500 m, (D2) 500 m–1500 m and (D3) >1500 m).

The assessment sheet method was applied here for comparison among the component
ET products (PML_V2_ET, ETWatch and SSEBop) and the synthesized results from 2003 to
2017. Figure 15 presents a summary of the assessment sheet. It is obvious that the synthesis
result occupied most of the cells in the two-level assessment sheet, showing comprehensive
advantages over all other component ET products.

Heihe River Basin, a closed inland river basin without outflows in the arid region of
northwestern China, is chosen here to conduct water balance assessment for the comparison
among component ET products (GLEAM v3.3a, NTSG and CR_ET) and the synthesized
results from 1982 to 2002. As mentioned above, the annual mean ET can be approximately
regarded as equal to the mean annual precipitation, because there’s no runoff exchange
between the closed Heihe River Basin and adjacent regions. Though there are some
limitations without considering factors like soil moisture and irrigation, it is still utilized
in some closed river basins [49]. Table 4 presents the summary of the results of the water
balance assessment. The annual precipitation ranges from 113.2 to 172.9 mm, covering
the period from 1982 to 2002, and the mean annual precipitation is 142.7 mm. The mean
annual synthesis ET from 1982 to 2002 is 136.3 mm, with −4.0% of the bias to mean annual
precipitation. As for component ET products, NTSG, CR_ET and GLEAM v3.3a have a bias
of 6.5%, 8.3% and −25.3%, respectively. It’s obvious that synthesis ET outperformed the
three component ET products.
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Figure 15. Count of cells and corresponding percentages of component ET products and the syn-
thesized results with level-1 and level-2 assessment and the total counts of the cells and their
corresponding percentages.

Table 4. Annual precipitation, synthesis ET and component ET (in mm) with corresponding bias to precipitation (in %)
from 1982 to 2002 in Heihe River Basin.

Year Precipitation
(mm)

Synthesis_ET
(mm)

Bias
(%)

GLEAM v3.3a
(mm)

Bias
(%)

NTSG
(mm)

Bias
(%)

CR_ET
(mm)

Bias
(%)

1982 137.0 136.7 −0.3 118.3 −13.7 153.5 12.1 139.5 1.9
1983 168.8 123.9 −26.6 103.7 −38.5 142.8 −15.4 126.6 −25.0
1984 135.9 117.2 −13.8 91.4 −32.8 134.4 −1.1 127.5 −6.2
1985 127.7 116.4 −8.9 81.9 −35.9 135.0 5.7 134.6 5.4
1986 131.5 145.3 10.5 102.8 −21.8 166.6 26.7 169.2 28.7
1987 134.9 126.5 −6.2 100.6 −25.5 142.4 5.6 138.3 2.5
1988 151.2 124.8 −17.4 97.0 −35.8 137.2 −9.2 142.1 −6.0
1989 147.0 147.2 0.1 106.1 −27.9 163.0 10.9 175.1 19.1
1990 155.3 140.3 −9.7 109.5 −29.5 152.9 −1.6 160.7 3.4
1991 126.4 133.4 5.6 104.1 −17.6 148.4 17.4 149.8 18.5
1992 145.7 126.1 −13.4 109.6 −24.8 127.0 −12.8 142.6 −2.1
1993 172.9 138.8 −19.8 121.6 −29.7 146.9 −15.1 149.1 −13.8
1994 133.6 144.1 7.9 109.9 −17.7 158.2 18.4 166.6 24.7
1995 155.9 134.3 −13.9 105.7 −32.2 141.6 −9.2 157.2 0.8
1996 145.5 129.0 −11.4 102.5 −29.5 134.6 −7.5 151.4 4.1
1997 113.2 133.8 18.2 85.0 −25.0 129.2 14.1 190.0 67.8
1998 165.9 150.9 −9.1 116.9 −29.6 159.8 −3.7 178.2 7.4
1999 150.2 141.7 −5.7 111.2 −26.0 154.4 2.8 161.5 7.5
2000 131.9 144.7 9.7 107.3 −18.7 177.8 34.8 151.9 15.1
2001 122.2 140.1 14.7 103.2 −15.5 172.5 41.2 147.4 20.7
2002 143.5 152.7 6.4 137.6 −4.1 177.1 23.4 144.6 0.8

Average 142.7 135.6 −4.0 106.0 −25.3 150.2 6.5 152.6 8.3

5. Discussion

As described in the introduction, acquiring the spatial and temporal characteristics
of land surface ET is of vital significance to addressing water resource security and food
security issues in Northern China. There have been many global and regional ET products
covering Northern China developed using different mechanisms with remote sensing-
based models, land surface models (LSMs) and hydrological models with differing model
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inputs, parameterizations and algorithms and varied spatiotemporal resolutions and
temporal ranges. To date, no single ET product can provide relatively accurate long-
term ET estimations at a fine spatial resolution. Therefore, this study utilized a two-level
assessment scheme to select the best-performing ET products with relatively high spatial
resolutions; we presented a synthesized ET dataset with a 1 km spatial resolution covering
the period ranging from 1982 to 2017 with the weighted mean of the selected ET products,
which can be used directly in relevant studies for Northern China.

When referring to the assessment, the in situ measured ET from EC tower observations
was used to carry out the assessment at a site-pixel scale for every selected ET product
and aimed to select the optimal ET products with which to build a long-term synthesized
ET dataset. Then, a two-level assessment sheet with eight indicators under 21 conditions
was built, and statistics describing the different ET product occurrences and corresponding
ratios were calculated to select high-resolution ET products with optimal performances.
Regarding the overall assessment result, only NTSG overestimated EC ET, while other ET
products all underestimated EC ET. For NTSG, the generally overestimated net radiation
was the main causes of uncertainties in the estimation of ET [7]. Several ET products had
relatively larger deviation to EC ET. The severe underestimation of MOD16 ET products
was found across all types of the underlying surface except cropland [87], the reason of
which might be attributed to structural characteristics of underlying surfaces and surface
conductance parameterizations. The LSM based ET products also showed relative larger
deviation to EC ET mainly due to the reanalysis driving data, which was reported to have
lower accuracy than satellite driven products [88]. In addition, the uncertainties of SEBS
was caused by the situation of the heat transfer simulation within the roughness sublayer
(RSL), which often occurs over heterogeneous underlying surfaces like forest [89].

Observations from heterogeneously distributed flux EC sites are a preferable reference
for obtaining accurate ET estimations regionally. Even though are limited flux sites in
Northern China, this sort of exercise can still contribute to the knowledge of different
ET product performances. Though there is still a certain deficiency of in situ EC ET
measurements, such as the limited spatial representativeness and the issue of energy
balance closure [90–92], it is still the most common way to describe the flux exchange
occurring between the surface and atmosphere [93] and is still implemented in various
relevant studies for the assessment of ET estimations at a site–pixel scale [10,62,68].

After the selection of ET products, the Taylor skill score (TSS) of each ET product was
calculated to determine their relative weights. Then, the weighted mean was treated as the
synthesis result. Recently, Elnashar et al. [94,95] generated a global synthesis ET product
using a simple mean method with an assessment scheme that considered six indicators
under 26 conditions. The simple mean of the selected ET products in this research and
the aforementioned global synthesis ET product, together with the TSS-based weighted
mean results, were assessed with the assessment sheet method using the validation dataset
(from 2003 to 2017) and water balance method in Heihe River Basin (from 1982 to 2002), as
mentioned in Section 4.4, and the results are as follows (Figure 16 and Table 5).
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Figure 16. Count of cells and corresponding percentages of the simple mean of the selected three
ET products and the global synthesis ET product generated by Elnashar et al. [94,95]. The weighted
mean results in this research with level-1 and level-2 assessment and the total count of cells and their
corresponding percentages are shown here.

Table 5. The simple mean of the selected three ET products and the global synthesis ET product generated by Elnashar
et al. [94,95], and the weighted mean results in this research (from 1982 to 2002, in mm) with corresponding bias to
precipitation (in %) from 1982 to 2002 in Heihe River Basin.

Year Precipitation
(mm)

Global_Synthesis_ET
(mm) Bias (%) Synthesis_ET

(mm) Bias (%) Synthesis_ET_Simple_Mean
(mm) Bias (%)

1982 137.0 108.4 −20.9 137.1 0.1 136.7 −0.3
1983 168.8 110.2 −34.7 124.4 −26.3 123.9 −26.6
1984 135.9 101.5 −25.3 117.8 −13.4 117.2 −13.8
1985 127.7 104.4 −18.3 117.2 −8.3 116.4 −8.9
1986 131.5 103.1 −21.6 146.2 11.2 145.3 10.5
1987 134.9 109.1 −19.1 127.1 −5.8 126.5 −6.2
1988 151.2 108.9 −28.0 125.4 −17.0 124.8 −17.4
1989 147.0 107.8 −26.7 148.1 0.7 147.2 0.1
1990 155.3 109.5 −29.5 141.0 −9.2 140.3 −9.7
1991 126.4 105.0 −16.9 134.1 6.1 133.4 5.6
1992 145.7 104.6 −28.2 126.4 −13.2 126.1 −13.4
1993 172.9 113.7 −34.2 139.2 −19.5 138.8 −19.8
1994 133.6 111.0 −16.9 144.9 8.4 144.1 7.9
1995 155.9 105.5 −32.3 134.8 −13.5 134.3 −13.9
1996 145.5 110.3 −24.2 129.5 −11.0 129.0 −11.4
1997 113.2 104.4 −7.8 134.7 19.0 133.8 18.2
1998 165.9 110.0 −33.7 151.6 −8.6 150.9 −9.1
1999 150.2 108.1 −28.1 142.4 −5.2 141.7 −5.7
2000 131.9 118.5 −10.2 145.7 10.4 144.7 9.7
2001 122.2 102.8 −15.8 141.0 15.4 140.1 14.7
2002 143.5 124.3 −13.4 153.1 6.7 152.7 6.4

Average 142.7 108.6 −23.1 136.3 −3.5 135.6 −4.0

From Figure 16, it can be inferred that the simple mean and weighted mean of the three
selected ET products generally outperformed the global synthesis ET product from 2003 to
2017. The weighted mean result had the best performance in the total count (percentage) of
cells in the assessment sheet, but the simple mean had a better performance as determined
by the level-2 assessment, indicating that the simple mean method had some advantages.
The weighted mean method utilized TSS-based weights to ensure more contributions from
the better-performing ET products to the synthesis result, which makes it a better choice
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than the simple mean method. From Table 5, the simple mean slightly outperformed the
weighted mean by 0.5% of the bias and substantially outperformed the global synthesis ET
product from 1982 to 2017. The performance of the simple mean and weighted mean are
very close, because the TSS-based weights of the three selected ET products are very close
to each other. In reference to the global synthesis ET product, the component ET products
of the synthesis result were selected by global assessment with worldwide flux observation
datasets, while the assessment process in this research was implemented locally, which
reflected the local performance of each ET product in Northern China.

The most notable contribution of this study is that it was able to prospectively pro-
duce a relatively long-term synthesized ET dataset for Northern China with a fine spatial
resolution and relatively low uncertainties; additionally, the synthesized ET dataset per-
formed well against the flux EC ET measurements and using water balance method for
assessment. This synthesized ET dataset for Northern China provided ET estimations for
tested underlying surfaces. Therefore, this synthesized ET dataset has the potential to
support regional studies in Northern China over longer temporal periods.

Since different ET products have varying data availabilities, the synthesis ET dataset
was built with six individual ET products. Furthermore, the raw spatial resolution of
the component ET datasets before 2003 is originally coarse and resampled to 1 km with
the nearest neighborhood technique to ensure the consistency with the synthesis dataset
from 2003 to 2017. Considering the abovementioned, further study needs more focus
on harmonizing the synthesized results of different periods for the improvements of the
coherence among pixels. Furthermore, there are no flux observation datasets accessible
before 2003; the method proposed in this research would be inapplicable if the synthesis
products were required to cover a longer period. Summarizing the abovementioned points,
further study on the synthesis method needs to first consider ET products with coarse
and fine spatial resolutions. Then, assessment methods of ET products without in situ EC
ET measurements should be considered, such as the triple-colocation (TC) method [96]
or extended triple-colocation (ETC) method [97]. The uncertainties of certain datasets
can be calculated through such methods, while the weights of the datasets for synthesis
are inversely proportional to the uncertainty value. The possibilities of applying TC or
ETC methods to synthesize ET products with higher spatial resolutions should be further
explored.

6. Conclusions

This study provided an effective method for assessing ET products with in situ mea-
sured flux EC ET across different months and various underlying surface types to develop
a long-term synthesis ET dataset for Northern China. The comprehensive assessment
was carried out under different conditions, namely, over interannual months and across
different land cover types, climatic zones and elevation levels, and the latter three con-
ditions were stratified into three classes. With the implementation of eight assessment
indicators (R, d, ME, RME, MAE, RMAE, RMSE, RRMSE), the ET products that performed
best were selected to generate the synthesis ET dataset over different time ranges. It was
demonstrated that the PML_V2, ETWatch, GLEAM 3.3a, CR_ET and SSEBop ET products
showed the best performance throughout the assessments together, with the consideration
of their spatial resolutions and temporal ranges. No single ET product is likely to perform
best under all assessment indicators in all conditions, so this study built the synthesis ET
dataset from 2003 to 2017 with the weighted mean of the selected high-resolution PML_V2,
ETWatch and SSEBop dataset, and the synthesis ET dataset from 1982 to 2002 with the
weighted mean of the selected GLEAM 3.3a, CR_ET and NTSG, which had a higher agree-
ment with and a lower deviation from the in situ measured flux EC ET under all conditions.
The weights were determined from the Taylor skill score calculated with the ET product
and flux EC ET. Moreover, the ensemble ET estimations from 2003 to 2017 over all types of
underlying surfaces performed well when compared with the in situ measured flux EC
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ET, while the ensemble ET estimations from 1982 to 2002 performed well using the water
balance method in Heihe River Basin.

The assessment results over interannual months and across every land cover type,
climatic zone and elevation level produced information regarding the performance of
ET products under different conditions present in Northern China. Overall, the ET syn-
thesis product proposed in this study improved the accuracy of ET estimations to some
extent in Northern China, which can be conducive to relevant hydrological, ecological and
agricultural research areas.
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