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Abstract: The prediction of landslide displacement is a challenging and essential task. It is thus
very important to choose a suitable displacement prediction model. This paper develops a novel
Attention Mechanism with Long Short Time Memory Neural Network (AMLSTM NN) model
based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
landslide displacement prediction. The CEEMDAN method is implemented to ingest landslide
Global Navigation Satellite System (GNSS) time series. The AMLSTM algorithm is then used to
realize prediction work, jointly with multiple impact factors. The Baishuihe landslide is adopted
to illustrate the capabilities of the model. The results show that the CEEMDAN-AMLSTM model
achieves competitive accuracy and has significant potential for landslide displacement prediction.

Keywords: GNSS time series analysis; landslide displacement prediction; attention mechanism;
deep learning

1. Introduction

Landslide disaster is one of the crucial topics in geological research [1]. The sustainable
development of economies and society is seriously threatened as a result of landslide
disasters [2]. Reliable early warning systems are a reasonable approach for landslide risk
reduction [3,4]. The mechanisms analysis and prediction of landslide movements are the
key components of landslide early warning [5–7]. Therefore, it is judicious to carry out
landslide displacement prediction.

Landslide displacement prediction models can be divided into two categories: phys-
ical models and numerical models [8,9]. Traditional physical models provide a physical
explanation for the prediction work according to geological theory [10]. Saito established
a three-stage theory of landslide creep failure in 1968 [11,12], and Hoek proposed the
extension line method to predict the time-displacement curve of Chilean landslides in
1977 [13]. However, physical models are deficient in their ability to meet the demands of
dynamic large landslide prediction [14–16]. With the rapid development of mathematical
statistical theory and intelligent algorithms, numerical models have become more popu-
lar [5]. Numerical models fully consider the complexity and nonlinearity of the landslide
evolution process and have higher prediction accuracy [5,17].

Advances in machine learning provide a powerful tool for numerical landslide model
research. Zhou et al. [17] used kernel extreme learning for landslide displacement pre-
diction. Zhu et al. [18] proposed a least squares support vector model and applied it to
prediction of the Shuping landslide. Among them, Recurrent Neural Networks (RNNs)
have particular advantages in dealing with sequential data [19,20]. Different from other
neural networks, RNNs are the deepest algorithms [21], and they can effectively process
data information with higher dimensions [22]. As a variant of RNNs, Long Short Term
Memory (LSTM) networks perform better at storing and transferring historical information
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than RNNs [23–26]. The utility of the LSTM in landslide research has been confirmed by
many scholars [27–30]. Thus, we choose an LSTM network for landslide displacement
prediction in this paper.

The Attention Mechanism (AM) is currently a powerful deep learning toolkit [31]. AM
is similar to the human visual observation mechanism that can transfer key information
from the input information [32]. AM has been successfully applied in several tasks, such as
natural language processing [31], translation [33], and image recognition [34]. Li et al. [35]
added the Attention Mechanism to the LSTM model and successfully realized the prediction
of personal mobility. Ding et al. [36] proposed a spatio-temporal attention LSTM model
for flood forecasting. Thus, we incorporate an Attention Mechanism with an LSTM neural
network to capture significant variation and improve the model’s performance.

Therefore, a novel model based on time series analysis and Attention Mechanism with
Long Short Term Memory (AMLSTM) was proposed to predict landslide displacement.
The Baishuihe landslide in China, Hubei province, is utilized for the experiment area.
First, we use the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) algorithm to divide the total displacement into the trend term, the
periodic term, and the residual term. By analyzing the corresponding relationship between
displacement and external factors, a multiple factors AMLSTM model, is applied to predict
the displacement, and it is compared with a further four machine learning models. A series
of contrastive analyses are conducted to evaluate the performance of all of the models.
The results indicate that the proposed CEEMDAN-AMLSTM model performs best in
the experiment.

2. GNSS Time Series Analysis
2.1. Landslide Evolution Analysis

The evolution of landslides is the result of the interaction of geological conditions and
external factors [37]. The non-linear and non-stationary landslide displacement series are
particularly complex and changeable. Therefore, it is necessary to decompose the landslide
time series and forecast each component separately. The corresponding time series of the
landslide displacement can be expressed by the additive model:

yi = Ti + Si + Ri (1)

where yi is the cumulative displacement, Ti is the trend term, Si is the period term, and Ri
is the residual term.

2.2. Decomposition of Displacement Time Series

Many approaches have been recognized as being powerful tools for decomposing
landslide displacement time series, and they include moving average [38], wavelet analy-
sis [39], Variational Mode Decomposition (VMD) [40], and Empirical Mode Decomposition
(EMD) [41]. The EMD method is an adaptive method that is used to analyze non-linear
signals [42]. However, the model mixing problem constitutes an obstacle when using EMD.
To address this problem, the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) method has been proposed in recent years [43]. Compared to
the more commonly used EMD method, it has a better separation effect and is noise free. It
has many applications in the fields of biological signal processing [44] and engineering [45],
but its application in the geological field still needs to be explored.

The CEEMDAN decomposes the complex signal into a finite number of Intrinsic Mode
Functions (IMFs). The basic process of the CEEMDAN is as follows [46]:

1. White Gaussian noises is added onto the lines of EEMD. The first IMF can be ex-
pressed as:

IMF1 =
n

∑
i=1

E1(x + εwi)

n
(2)
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where n is the number of decomposition, x is the original signal, ε is a fixed coefficient,
wi is the noise, and E(·) is the decomposition operator.

2. The first residual, r1, is calculated:

r1 = x− IMF1 (3)

3. For k = 2,3 . . . , K, the IMFk and the kth residual can be calculated by:

IMFk =
n

∑
i=1

E1(rk−1 + εEk−1(wi))

n
(4)

rk = rk−1 − IMFk (5)

4. The process is calculated until the last residual, R, does not have more than two
extrema points; the original signal can be expressed as:

x =
K

∑
k=1

IMFk + R (6)

3. Attention Mechanism—LSTM Foresting Framework
3.1. LSTM

Long Short Time Memory (LSTM) was proposed by Hochreiter and Schmidhuber
in 1997 [23]. The LSTM can learn information through a well-designed structure called
a “gate”. The gate can store and control the flow of information so that the state of the
previous time step can be transferred to the next time step. The LSTM algorithm has
three gates—update gate, forget gate, and output gate—to protect and control the cell
state explosion in training [25]. The internal structure of the unit memory is as shown in
Figure 1.

Figure 1. The internal structure of the Long Short Time Memory (LSTM) unit memory.

The
⊗

represents the element-wise product and
⊕

is the element-plus product. The
forget gate represents how much of the previous moment unit sate, ct−1, is retained by the
current moment, ct. The input gate determines how much of the current moment input,
xt, is saved in the unit state, ct. The output gate controls how much of the unit state, ct,
is transferred to the output value, ht, of the LSTM.
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Equations (7)–(12) show the calculation process of LSTM:

ft = σ
(

W f ∗ [at−1, xt] + b f

)
(7)

ut = σ(Wu ∗ [at−1, xt] + bu) (8)

c̃t = tanh(Wc ∗ [at−1, xt] + bc) (9)

ct = ft ∗ ct−1 + ut ∗ c̃t (10)

ot = σ(Wo ∗ [at−1, xt] + bo) (11)

at = ot ∗ tanh(ct) (12)

where ft, ut, and ot are gating vectors that respectively store the forgotten, updated, and
output information of the storage unit memory; ct is the vector for the cell state; at is the
hidden state vector; σ is the sigmoid function; and xt is the input vector. W f , Wu, Wc, and
Wo are linear transformation matrices whose parameters need to be learned, and b f , bu, bc,
and bo are corresponding bias vectors.

Through the connection of several unit memories, the information flow can be trans-
ferred as shown in Figure 2.

Figure 2. The workflow of LSTM.

3.2. Attention Mechanism

The Attention Mechanism is based on the visual Attention Mechanism found in human
observation [32]. This mechanism helps the model focus on the salient information. The
schematic of the Attention Mechanism layer is illustrated in Figure 3. The purpose of the
attention layer is to enable the model to pay more attention to the significant information.
Raffel et al. [47] proposed a reduced Feed-Forward Attention model, which was calculated
as follows:

scoret = v(at) (13)

wt =
exp(scoret)

∑T
k=1 exp(scoret)

(14)

s =
T

∑
t=1

wt ∗ at (15)
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where the score is the attention score, a is the state vector, v is the learnable function, w is
the weight, and s is the context vector.

Figure 3. Schematic of the Attention Mechanism.

3.3. Attention Mechanism—LSTM Model

Based on the previous discussion, this paper applied the Attention Mechanism with
LSTM (AMLSTM) model for landslide displacement prediction. The AMLSTM model
includes an input vector, LSTM hidden layers, an attention layer, a fully connected layer,
and output predicted values. The architecture of the AMLSTM model is shown in Figure 4.

Figure 4. Architecture of the Attention Mechanism with LSTM Neural Network (AMLSTM NN).



Remote Sens. 2021, 13, 1055 6 of 16

3.4. Prediction Process with the Proposed Model

The basic flow of the proposed CEEMDAN-AMLSTM model is shown in Figure 5.
Firstly, the landslide cumulative displacement is decomposed into three components: the
trend term, the periodic term, and the residual term. The three terms are then predicted
separately. The trend displacement is expressed as a monotone increasing function un-
der the influence of internal geological factors. The prediction of the trend term can be
carried out by fitting the growth curve with the univariate AMLSTM model. During the
construction of the model, the displacement time series is put into the model only. The
periodic displacement fluctuates under the influence of two external triggers: rainfall and
reservoir water level. Therefore, a multivariable AMLSTM model is established and used
to predict the periodic term. Three time series, the historical periodic displacement, rainfall,
and reservoir water level are put into the model. Furthermore, the residual displacement
affected by random factors shows smooth fluctuation function. The univariate AMLSTM
model is adopted for the prediction work.

Figure 5. The architecture of the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN)-AMLSTM model for landslide displacement prediction.

In the prediction experiments, the majority dataset is used to train the model. The
original time series should be normalized and reshaped to meet the requirements of the
model. After the AMLSTM model is constructed, the prediction ability is tested and
demonstrated with the rest of the dataset.

Ultimately, the cumulative prediction displacement is obtained by adding the trend,
the periodic, and the residual prediction displacements. The prediction results should be
compared with the actual value to verity the performance.

3.5. Evaluation of Model Accuracy

Quantitative analysis were carried out to access the performance of the model. Three
criterions—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2—were
employed to evaluate the prediction work. These metrics are described as follows:

RMSE =

√√√√ I
N
∗

N

∑
i=1

(yi − ŷi)
2 (16)

MAE =
1
N
∗

N

∑
i=1
|yi − ŷi| (17)
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R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (18)

where yi is the measured value, ŷi is the prediction value, and y is the average value.

4. Experiment and Results
4.1. Study Area

The experimental area is located in Baishuihe, Zigui County, the Three Gorges Reser-
voir area of the Yangtze River in China. The Baishuihe landslide is located on the south bank
of the Yangtze River, with a longitude of 110◦32′09′′ and a latitude of 31◦01′34′′ (Figure 6a).
The slope is located on the south bank of the Yangtze River, spreading towards the Yangtze
River in a ladder shape. The elevation of the back edge of the landslide is 410 m, bounded
by the rock-soil boundary, and the front edge is about 70 m. It has been submerged below
the reservoir water level. The east and west sides are bounded by bedrock ridges, and the
overall slope is about 30◦. The length of the north-south direction is 600 m, the width of the
east-west direction is 700 m, the average thickness of the sliding body is about 30 m, and
the volume is 1.26×107 m3. Six Global Navigation Satellite System (GNSS) deformation
monitoring points were installed on the surface of the landslide to form three longitudinal
monitoring profiles (Figure 6b). The displacement was monitored once a month. Figure 7
shows the calculated displacement results from December 2006 to December 2012.
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Figure 6. (a) Location map from Google Earth and (b) Locations of the monitoring Global Navigation
Satellite System (GNSS) stations on the landslide.
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Figure 7. Cumulative displacement monitoring data based on six GNSS points.

It can be seen from Figure 7 that the landslide deformation is characterized by stepwise
progressive creep deformation, and the landslide is still in the energy accumulation stage,
showing a slow creep deformation state. In this experiment, ZG118 and XD01, the two
points with the most abundant dataset, are selected for the prediction work. The measure-
ments from December 2006 to November 2011 are used for training and the measurements
obtained from November 2011 to November 2012 are used for testing. Each time interval
of the train and test dataset is one month. The cumulative displacements, the reservoir
water level, and the rainfall are plotted in Figure 8.

Figure 8. Relationship between rainfall, reservoir water level, and landslide displacement on ZG118 and XD01.

Figure 8 shows that the external periodic rainfall and reservoir water level both have
an important influence. The displacement of XD01 and ZG118 increased significantly
during a period of drastic decrease of the reservoir water level. For example, from May
2009 to July 2009, the reservoir water level dropped from 160 m to 145 m, and their periodic
displacement increased by 200~300 mm, presenting a large step. In addition, heavy rain
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also had an important effect on landslide displacement fluctuations. For example, from
August 2008 to September 2008, the reservoir water level basically did not change but,
due to the occurrence of 300 mm of heavy rain during this period, the landslide also
showed a large deformation of 200 mm. Therefore, the reservoir water level and rainfall
are considered to be the trigger factors of the Baishuihe landslide, leading to the occurrence
of the periodic term displacement.

4.2. GNSS Time Series Analysis

According to landslide analysis theory, the cumulative displacement can be decom-
posed into trend displacement, periodic displacement, and residual displacement using
the CEEMDAN algorithm. The results are as follows (Figure 9):

Figure 9. Three decomposed terms of the GNSS time series: (a) ZG118, (b) XD01.

4.3. Displacement Prediction
4.3.1. Trend Displacement Prediction

Trend displacement is driven by geological conditions. Therefore, the univariate
AMLSTM NN model is used to predict the trend displacement. In order to verify the
validity of the proposed model, the experiment will be benchmarked with LSTM, Random
Forest(RF), RNN, and Support Vector Machine(SVM). The prediction results of the test
dataset are shown in Figure 10.

It can be seen in Figure 10 that the trend displacement of the ZG118 and XD01 points
represent a smooth monotonically properties. The prediction work by the SVM shows the
worst, and the prediction values of the AMLSTM, LSTM, RNN, and RF models show high
agreement with the measured true value. The relative error analysis in Table 1 indicates that
the AMLSTM, LSTM, and RF have excellent performance in trend term prediction work.
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Figure 10. The prediction results of trend displacement by different methods: (a) ZG118, (b) XD01.
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Table 1. The accuracy assessment of trend displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 2.6152 2.1254 1.6785 1.7849 0.9925 0.9981
LSTM 1.6773 3.5006 1.4072 2.2426 0.9969 0.9949
RNN 5.6158 4.8276 4.5776 4.4758 0.9655 0.9904
SVM 23.3985 23.7356 22.6717 23.5418 0.4018 0.7678
RF 1.4897 2.6540 1.3317 2.3943 0.9976 0.9971

4.3.2. Periodic Displacement Prediction

Periodic term is a key component for displacement prediction. According to the
analysis in Section 4.1, the external periodic rainfall and reservoir water level both have
an important influence. In this section, the periodic displacement will be predicted by the
multivariate AMLSTM, and the multivariate LSTM, the SVM, the RF, and the RNN are
used as benchmarks. The predictive periodic displacements by the five models are shown
in Figure 11 and Table 2.

Figure 11. The prediction results of periodic displacement by different methods: (a) ZG118, (b) XD01.
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Table 2. The accuracy assessment of periodic displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 8.3714 6.1623 5.6456 4.5016 0.9404 0.9933
LSTM 10.9127 12.8428 8.5083 10.1266 0.8987 0.9711
RNN 16.1422 18.9561 14.5892 16.7908 0.7784 0.9371
SVM 15.4854 24.2245 14.236 20.2412 0.796 0.8972
RF 25.6368 22.3304 22.0298 18.298 0.441 0.9126

As shown in Figure 11, the predictions of the AMLSTM and LSTM methods are clearly
better than the others, and the quantitative analysis suggest that the AMLSTM achieved
the best performance, along with RMSE, MSE, and R2, in periodic displacement prediction.

4.3.3. Residual Displacement Prediction

Traditionally, the residual term can be regarded as the noise, which is removed during
the decomposition procedure. Throughout the test, the residual term does not belong to the
white noise. Therefore, the prediction work of this term is necessary. In this experiment, the
univariate AMLSTM, LSTM, SVM, RF, and RNN models are used to predict the residual
displacement prediction.

Compared with the trend and the periodic term, the residual term is harder to adopt
in a model because of its random characteristic. As shown in Figure 12 and Table 3, the
AMLSTM offers a better prediction effect than the other four models.

Figure 12. The prediction results of residual displacement by different methods: (a) ZG118, (b) XD01.
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Table 3. The accuracy assessment of residual displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 5.1002 9.8401 4.2185 8.2213 0.7897 0.7132
LSTM 6.4204 11.9279 5.1768 9.7219 0.6667 0.5785
RNN 11.5546 17.0916 9.0241 12.5840 −0.0796 0.1346
SVM 9.7371 19.2705 8.2718 16.4355 0.2333 −0.1001
RF 13.8302 23.4540 10.1748 20.5233 −0.5467 −0.6296

4.3.4. Total Displacement Prediction

The predicted cumulative displacements can be obtained by taking the sum of the
trend, period, and residual displacements. The results are shown in Figure 13 and Table 4.

Figure 13. The prediction results of cumulative displacement by different methods: (a) ZG118,
(b) XD01.
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Table 4. The accuracy assessment of cumulative displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 8.5514 10.249 6.5395 8.0242 0.9748 0.9918
LSTM 11.7059 18.8873 7.8044 13.3813 0.9528 0.9723
RNN 20.4623 21.4569 17.6515 16.3575 0.8556 0.9634
SVM 29.1695 41.3469 25.6171 33.3799 0.7066 0.8673
RF 28.5883 32.0225 23.5398 26.5033 0.7182 0.9204

The results show that, although some of the prediction values slightly deviate from
the real measured data, the AMLSTM model shows the best performance, because this
model not only considers multiple external factors, but also optimizes the LSTM algorithm
by adding an attention layer. It can better reflect the response relationship between dis-
placement and trigger factors. Moreover, the cumulative displacements are predicted badly
by the SVM and RF models.

From a quantitative point of view, the RMSE and MAE of the AMLSTM model are
lower than the LSTM, RNN, SVM, and RF models. These results reveal that the AMLSTM
shows the most stable prediction performance. Secondly, the R2 of the AMLSTM are higher
than the others. The results indicate that the AMLSTM model has done the best accuracy
prediction work. Therefore, the superiority of the AMLSTM can be proved.

5. Conclusions

The traditional landslide prediction model directly deletes the residual items. More-
over, most classic deep learning prediction models do not highlight the impact of important
information on the results, so they cannot accurately predict the displacement. This paper
used the CEEMDAN and the Attention Mechanism, combined with the LSTM NN to estab-
lish a dynamic prediction model for landslide displacement prediction. To corroborate its
feasibility and applicability, the proposed model was applied to the Baishuihe landslide
area, and joint multiple impact factors were considered here for prediction. By comparing
to the prediction effects of other models, the prediction accuracy demonstrated a com-
petitive performance. The results strongly suggest the effectiveness and feasibility of the
AMLSTM model in landslide displacement prediction. This novel CEEMDANAM-LSTM
strategy can be recommended to other landslide prediction works and has great potential
in landslide risk assessment.

Author Contributions: Conceptualization, J.W. and G.N.; methodology, J.W.; software, J.W.; vali-
dation, S.W. and X.R.; formal analysis, S.G.; investigation, G.N. and S.G.; writing—original draft
preparation, J.W.; writing—review and editing, J.W. and H.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was financially supported by the National Key Research and Development
Scheme Strategic International Cooperation in Science and Technology Innovation Program, grant
number: 2018YFE0206500. National Program on Key Basic Research Project (973 Program), grant
number: 2013CB733205.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The dataset we used in this paper includes the GNSS time series, rainfall and
reservoir water level data set of Baishuihe landslide provided by Chinese National Cryosphere
Desert Data Center (http://www.crensed.ac.cn/portal/, accessed on 9 February 2021). The authors
acknowledge Google Earth for providing the map and Origin software. Thanks to the editor Aguero
Gui and the anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.crensed.ac.cn/portal/


Remote Sens. 2021, 13, 1055 15 of 16

References
1. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
2. Bejar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al.

Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876.
[CrossRef]

3. Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [CrossRef]
4. Intrieri, E.; Gigli, G.; Casagli, N.; Nadim, F. Brief communication “Landslide Early Warning System: Toolbox and general

concepts”. Nat. Hazard. Earth Syst. 2013, 13, 85–90. [CrossRef]
5. Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater

level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [CrossRef]
6. Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme

learning machine. Eng. Geol. 2017, 218, 173–186. [CrossRef]
7. Casagli, N.; Catani, F.; Del Ventisette, C.; Luzi, G. Monitoring, prediction, and early warning using ground-based radar

interferometry. Landslides 2010, 7, 291–301. [CrossRef]
8. Ren, F.; Wu, X.; Zhang, K.; Niu, R. Application of wavelet analysis and a particle swarm-optimized support vector machine to

predict the displacement of the Shuping landslide in the Three Gorges, China. Environ. Earth Sci. 2015, 73, 4791–4804. [CrossRef]
9. Huang, J.; Griffiths, D.V. Return Mapping Algorithms and Stress Predictors for Failure Analysis in Geomechanics. J. Eng. Mech.

2009, 135, 276–284. [CrossRef]
10. Mufundirwa, A.; Fujii, Y.; Kodama, J. A new practical method for prediction of geomechanical failure-time. Int. J. Rock Mech. Min.

2010, 47, 1079–1090. [CrossRef]
11. Saito, M. Forecasting the Time of Occurrence of a Slope Failure. In Proceedings of the 6th International Conference on Soil

Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; Volume 2, pp. 537–541.
12. Saito, M. Forecasting time of slope failure by tertiary creep. In Proceedings of the 7th International Conference on Soil Mechanics

and Foundation Engineering, Mexico City, Mexico, 13–16 July 1969; Volume 2, pp. 677–683.
13. Hoek, E.; Bray, J. Rock Slope Engineering, Revised 2nd ed.; Publication of Institution of Mining & Metallurgy: London, UK, 1977.
14. Mohammadi, S.; Taiebat, H. Finite element simulation of an excavation-triggered landslide using large deformation theory. Eng.

Geol. 2016, 205, 62–72. [CrossRef]
15. Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Mayer, J.; Anderson, M.; Holcombe, L. Integration of a limit-equilibrium model into a

landslide early warning system. Landslides 2014, 11, 859–875. [CrossRef]
16. Ma, J.; Tang, H.; Liu, X.; Hu, X.; Sun, M.; Song, Y. Establishment of a deformation forecasting model for a step-like landslide

based on decision tree C5.0 and two-step cluster algorithms: A case study in the Three Gorges Reservoir area, China. Landslides
2017, 14, 1275–1281. [CrossRef]

17. Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel
kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [CrossRef]

18. Zhu, X.; Xu, Q.; Tang, M.; Li, H.; Liu, F. A hybrid machine learning and computing model for forecasting displacement of
multifactor-induced landslides. Neural Comput. Appl. 2018, 30, 3825–3835. [CrossRef]

19. Graves, A.; Mohamed, A.R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp.
6645–6649.

20. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015,
arXiv:1506.00019.

21. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
22. Mirikitani, D.T.; Nikolaev, N. Recursive Bayesian Recurrent Neural Networks for Time-Series Modeling. IEEE Trans. Neural Netw.

2010, 21, 262–274. [CrossRef] [PubMed]
23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
24. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural

Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef]
25. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef]
26. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks. Available online: https://doi.org/10.1007/978-3-64

2-24797-2 (accessed on 1 February 2012).
27. Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory (LSTM) Method on Displacement Prediction of

Multifactor-Induced Landslides. IEEE Access 2019, 7, 54305–54311. [CrossRef]
28. Xing, Y.; Yue, J.; Chen, C. Interval Estimation of Landslide Displacement Prediction Based on Time Series Decomposition and

Long Short-Term Memory Network. IEEE Access 2020, 8, 3187–3196. [CrossRef]
29. Xing, Y.; Yue, J.; Chen, C.; Cong, K.; Zhu, S.; Bian, Y. Dynamic Displacement Forecasting of Dashuitian Landslide in China Using

Variational Mode Decomposition and Stack Long Short-Term Memory Network. Appl. Sci. 2019, 9, 2951. [CrossRef]
30. Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide

displacement. Landslides 2019, 16, 677–694. [CrossRef]

http://doi.org/10.1130/G33217.1
http://doi.org/10.3390/rs9090876
http://doi.org/10.1016/S0013-7952(01)00093-X
http://doi.org/10.5194/nhess-13-85-2013
http://doi.org/10.1007/s10346-005-0049-1
http://doi.org/10.1016/j.enggeo.2017.01.016
http://doi.org/10.1007/s10346-010-0215-y
http://doi.org/10.1007/s12665-014-3764-x
http://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(276)
http://doi.org/10.1016/j.ijrmms.2010.07.001
http://doi.org/10.1016/j.enggeo.2016.02.012
http://doi.org/10.1007/s10346-013-0416-2
http://doi.org/10.1007/s10346-017-0804-0
http://doi.org/10.1007/s10346-018-1022-0
http://doi.org/10.1007/s00521-017-2968-x
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1109/TNN.2009.2036174
http://www.ncbi.nlm.nih.gov/pubmed/20040415
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/TNNLS.2016.2582924
http://doi.org/10.1162/089976600300015015
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1007/978-3-642-24797-2
http://doi.org/10.1109/ACCESS.2019.2912419
http://doi.org/10.1109/ACCESS.2019.2961295
http://doi.org/10.3390/app9152951
http://doi.org/10.1007/s10346-018-01127-x


Remote Sens. 2021, 13, 1055 16 of 16

31. Parikh, A.; Täckström, O.; Das, D.; Uszkoreit, J. A Decomposable Attention Model for Natural Language Inference. arXiv 2016,
arXiv:1606.01933.

32. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

33. Luong, M.; Pham, H.; Manning, C. Effective Approaches to Attention-based Neural Machine Translation. arXiv 2015,
arXiv:1508.04025.

34. Fu, Q.; Li, S.; Wang, X. MSCNN-AM: A Multi-Scale Convolutional Neural Network with Attention Mechanisms for Retinal Vessel
Segmentation. IEEE Access 2020, 8, 163926–163936. [CrossRef]

35. Li, F.; Gui, Z.; Zhang, Z.; Peng, D.; Tian, S.; Yuan, K.; Sun, Y.; Wu, H.; Gong, J.; Lei, Y. A hierarchical temporal attention-based
LSTM encoder-decoder model for individual mobility prediction. Neurocomputing 2020, 403, 153–166. [CrossRef]

36. Ding, Y.; Zhu, Y.; Feng, J.; Zhang, P.; Cheng, Z. Interpretable spatio-temporal attention LSTM model for flood forecasting.
Neurocomputing 2020, 403, 348–359. [CrossRef]

37. Desai, C.S.; Samtani, N.C.; Vulliet, L. Constitutive modeling and analysis of creeping slopes. J. Geotech. Eng. 1995, 121, 43–56.
[CrossRef]

38. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide
in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [CrossRef]

39. Li, Y.; Sun, R.; Yin, K.; Xu, Y.; Chai, B.; Xiao, L. Forecasting of landslide displacements using a chaos theory based wavelet
analysis-Volterra filter model. Sci. Rep. 2019, 9, 1–9. [CrossRef] [PubMed]

40. Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition
and WA-GWO-BP model. Landslides 2020, 17, 567–583. [CrossRef]

41. Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term
memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [CrossRef]

42. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng.
Sci. 1998, 454, 903–995. [CrossRef]

43. Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive
noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu,
HI, USA, 16–20 April 2011; pp. 4144–4147.

44. Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal
processing. Biomed. Signal Proces. 2014, 14, 19–29. [CrossRef]

45. Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination
algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–451. [CrossRef]

46. Han, J.; van der Baan, M. Empirical mode decomposition for seismic time-frequency analysis. Geophysics 2013, 78, O9–O19.
[CrossRef]

47. Raffel, C.; Ellis, D.P.W. Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems. arXiv 2015,
arXiv:1512.08756.

http://doi.org/10.1109/ACCESS.2020.3022177
http://doi.org/10.1016/j.neucom.2020.03.080
http://doi.org/10.1016/j.neucom.2020.04.110
http://doi.org/10.1061/(ASCE)0733-9410(1995)121:1(43)
http://doi.org/10.1016/j.enggeo.2016.02.009
http://doi.org/10.1038/s41598-019-56405-y
http://www.ncbi.nlm.nih.gov/pubmed/31882832
http://doi.org/10.1007/s10346-019-01314-4
http://doi.org/10.1016/j.cageo.2017.10.013
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1016/j.bspc.2014.06.009
http://doi.org/10.1016/j.enconman.2017.01.022
http://doi.org/10.1190/geo2012-0199.1

	Introduction 
	GNSS Time Series Analysis 
	Landslide Evolution Analysis 
	Decomposition of Displacement Time Series 

	Attention Mechanism—LSTM Foresting Framework 
	LSTM 
	Attention Mechanism 
	Attention Mechanism—LSTM Model 
	Prediction Process with the Proposed Model 
	Evaluation of Model Accuracy 

	Experiment and Results 
	Study Area 
	GNSS Time Series Analysis 
	Displacement Prediction 
	Trend Displacement Prediction 
	Periodic Displacement Prediction 
	Residual Displacement Prediction 
	Total Displacement Prediction 


	Conclusions 
	References

