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Abstract: Estimating water reflectance accurately from satellite optical data requires implementing
an accurate atmospheric correction (AC) scheme, a particularly challenging task over optically
complex water bodies, where the signal that comes from the water prevents using the near-infrared
(NIR) bands to separate the perturbing atmospheric signal. In the present work, we propose a new
AC scheme specially designed for the Rio de la Plata—a funnel-shaped estuary in the Argentine—
Uruguayan border—highly scattering turbid waters. This new AC scheme uses far shortwave

Chedetfor infrared (SWIR) bands but unlike previous algorithms relates the atmospheric signal in the SWIR
updates

P to the signal in the near-infrared (NIR) and visible (VIS) bands based on the decomposition into
Citation: Gossn, J.L; Frouin, R.; principal components of the atmospheric signal. We describe the theoretical basis of the algorithm,

Dogliotti, AL Atmospheric analyze the spectral features of the simulated principal components, theoretically address the impact

ion of Satelli ical . . S
Correction of Satellite Optica of noise on the results, and perform match-ups exercises using in situ measurements and Moderate
Imagery over the Rio de la Plata
Highly Turbid Waters Using a

SWIR-Based Principal Component

Resolution Imaging Spectrometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS)
imagery over the region. Plausible water reflectance retrievals were obtained in the NIR and VIS
Decomposition Technique. Remofe bands from both simulations and match-ups using field data—with better performance (i.e., lowest
Sens. 2021, 13, 1050. https:// errors and offsets, and slopes closest to 1) compared to existing AC schemes implemented in the
doi.org/10.3390/rs13061050 NASA Data Analysis Software (SeaDAS). Moreover, retrievals over images in the VIS and NIR bands
showed low noise, and the correlation was low between aerosol and water reflectance spatial fields.
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1. Introduction

Publisher’s Note: MDPI stays neutral In atmospheric correction (AC) of optically complex waters such as the Rio de la Plata

(RdP), the black water assumption in the near-infrared (NIR) bands on which traditional
AC schemes rely [1,2] is usually invalid due to the high backscattering produced by the
high concentration of suspended particulate matter (SPM) present in the water [3-5]. Fur-
thermore, over RdD, the iterative schemes based on the NIR bands—such as [6,7]—usually
do not provide good estimates in Moderate Resolution Imaging Spectrometer (MODIS)

= images due to either the saturation of NIR bands or limitations in the bio-optical model
Copyright: © 2021 by the authors. 564 t0 estimate the water reflectance in the NIR and visible (VIS) bands. Although other
Licensee MDPI, Basel, Switzerland. strategies based on the black water assumption in the shortwave infrared (SWIR) bands
have already been proposed [8,9], in this work we explore the possibility of implementing
this strategy but with a different extrapolative scheme based on the principal component
analysis (PCA) of a set of radiative transfer simulations in which only the atmosphere and
the air-water interface effects are considered (i.e., where water reflectance, p., is equal
to zero). The main difference with existing AC schemes is that the quantities used for
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extrapolation are obtained from the variance—covariance matrix of the set of simulations
and not from non-linear estimators such as the ratio of the signals at the correction bands,
€(A1, Ap). Other authors such as Gross et al. 2007 [10] have implemented a PCA-based
AC, but they used a full-spectrum decomposition on both the atmospheric and water
reflectance. This approach imposes spectral constraints on the latter, as other full-spectrum
approaches such as POLYMER [11] do. Contrary to this, our scheme does not depend on
any assumption on the water reflectance except over the far SWIR where we assume negli-
gible water-leaving radiance. This is considered a robust assumption even for extremely
high suspended sediment concentrations, given the very strong absorption of liquid water
in these bands, [12-14]. Our AC also relies on the assumption of spectral smoothness
of the atmospheric (Rayleigh-corrected) reflectance, i.e., a high correlation between the
SWIR and NIR atmospheric signals, an assumption that strongly holds, especially at long
wavelengths [15-17]. Although this AC was intended to be applied to the NIR bands and
then be coupled to a conventional extrapolative method from the NIR, in this paper we
analyzed the possibility of estimating the water reflectance in the VIS by applying a direct
extrapolation from the SWIR to the VIS.

In the present study, the performance of our approach—hereafter referred to as the
PCA-SWIR approach—was theoretically tested from a set of radiative transfer simulations
combining various atmospheric conditions and in situ measurements of water reflectance
collected in the RAP. Additionally, various PCA-SWIR schemes were analyzed using dif-
ferent combinations of far-SWIR bands present in the MODIS, Visible Infrared Imaging
Radiometer Suite (VIIRS), and future Satélite Argentino-Brasilefio para Informacion Ambi-
ental del Mar (SABIA-Mar) sensors. The degradation of the AC performance when applied
to MODIS/ Aqua images due to sensor noise was addressed by a geostatistical approach
combined with radiative transfer simulations. The PCA-SWIR AC was then applied to
VIIRS and MODIS imagery over RdP and a match-up exercise was performed using in situ
data from RdP. Results obtained using the PCA-SWIR13 scheme, i.e., SWIR bands tagged
as 1 and 3, were compared to other existing ACs. Finally, a spatial analysis of the retrieved
aerosol and water reflectance was performed using different ACs.

2. Materials and Methods
2.1. Algorithm Description

The PCA-SWIR AC starts from assuming a negligible contribution of the water-leaving
radiance over the total radiance budget received by the satellite sensor at top-of-atmosphere
(TOA) in the SWIR bands and assuming a high correlation of the aerosol signal between
the SWIR bands and the VIS/NIR bands. Consider the following expression for the
Rayleigh-corrected (RC) reflectance at top-of-atmosphere (TOA), pgc, [1]:

PRC= PatTpgttpy, @

where p,, Tpg, and tpy, are the aerosol, glint, and water reflectance contributions at TOA,
and T and t are the direct and total (direct + diffuse) transmittance factors, respectively. In
this equation, pgc is defined as Lrc/ [Fo cos(0s)] where Lic is the respective Rayleigh-
corrected radiance, Fy the extra-terrestrial solar irradiance, and 05 the solar zenith angle, and
Py, is defined as 7Ly, /E4 where L, is the water-leaving radiance and E4 the downwelling
solar irradiance just above the surface. Assuming that the water reflectance in the SWIR is
negligible (the so-called black pixel assumption) and selecting regions that are not affected
by direct sun glint, the RC reflectance in the SWIR and VIS-NIR bands (subscript “VN")
can be expressed as:

PRC(Aswir) ~ Pa( Aswir), 2)
PrC(AVN) = P2 (AvN) HHAVN) Pw (AVN)- 3)

We propose to model the aerosol term as a combination of principal components of a
set of radiative transfer simulations in which the water reflectance is set to zero (pw = 0)
(see Section 2.2). The principal components correspond as usual to an orthogonal basis
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of eigenvectors of the variance—covariance matrix of the set of simulated RC reflectance
values. Assuming that most of the explained variance is expected to be contained in the
first two or three principal components, the aerosol reflectance in the VIS/NIR bands,
pa(AyN), can be obtained as:

Pa(AvN) ~ arel G +azey ya+pa(Avn), @)
where ejl’)%f‘l represents the VN component of the j-th principal component of the set
of simulations, a; and a, represent the projections of the first N components, and <->
represents the mean value of the aforementioned ensemble of simulations.

Notice that the total number of eigenvectors is N + 1, i.e., the number of SWIR bands
(N =2 or N =3 depending on the scheme) plus the VIS/NIR band to be corrected, meaning
that the last principal component is assumed to have negligible contribution to the aerosol
signal in Equation (4). Given that the N first components explain >95% of the variance
in the considered set of simulations (see Section 4.1.1), this assumption is considered as
reasonable. The projections of the N first principal components (hereafter N = 2 for brevity),
aj and ap, can then be obtained by inverting the linear system composed of Equation (2)
specified at the two SWIR bands and assuming the same decomposition as in Equation (4):

< eISWIRI € SWIRI ) ( ay ) _ ( PrC(Aswir1) > _ << RC(AswiIr1) )> 5)
PCA PCA :

€1 SWIR2  €2,SWIR2 a2 PrC (Aswir2) Prc (Aswir2)

The N x N matrix (2 x 2 in this example) that appears on the left hand side of
Equation (5) is a subset of the variance—covariance matrix of size (N + 1) x (N + 1) and
is the fundamental matrix of the scheme, herein M, being Mj/)\ = ejI’)%A G=1,... N,and
A =SWIR], ... SWIR-N). Any error in the right-hand side of Equation (5) (sensor noise,
calibration error, or error introduced in the obtention of pyc), is potentially amplified by
the linear inversion and the bound to such error amplification is measured by the condition
number of M:

Cond(M) = [[M]|[M~], ©6)

where |[M|| = m;%({ ”?ﬁ(’ﬁ‘”z }, being x an N-tuple and || ||, the conventional Euclidean norm.
X 2

Once a; and aj are obtained from Equation (5), they are replaced in Equation (4) and
the aerosol reflectance at the band of interest, p, (Ayn), is subtracted from the Rayleigh-
corrected signal, leaving the term t(Ayn)pw(Avn) in Equation (3). Finally, the water re-
flectance is obtained using the following simplified expression to calculate the total trans-
mittance, t(Ayn), proposed by Tanré et al., 1979 [18]:

t(A)= e~ (2T +§Ta(N)m, -

where m = sec(6s) + sec(0y) is the air mass factor and where an average anisotropy factor
of 2/3 is assumed for aerosols. To estimate the transmittance factor, the following aerosol
optical thickness T,(A\) was used:

(V)= 0.06( - OOAnm) o ®)

This expression is a power law where the Angstrom exponent is fixed at 1, as in
Steinmetz et al., 2011 [11], and the value at t,(500 nm) = 0.06 corresponds to the mode of
the set of values measured at the CEILAP-BA AERONET station located in Buenos Aires
(approximately 3 km from RdP northwest coast). Naturally, the anisotropy factor and
the aerosol optical thickness are not fixed in nature, but this simplified expression for the
transmittance is preferred in this work given that the focus is on the PCA extrapolation
procedure and the fact that the approximations used to obtain the transmittance factor
typically have a low impact over the total error budget of the AC in comparison to other
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sources of error. It must be reinforced that these constraints are posed only over the
transmittance factor (a second order correction factor) and not over the set of simulations

from which e]P CA

algorithm and to apply it to both images and simulated data.

is derived. Figure 1 schematizes the steps performed to calibrate the

VALIDATION CALIBRATION VALIDATION
MODIS/VIIRS SOS 1 p, " [ASD/TriOS] [
Pron [L1B] ProalP,, =0 ProalPu™"
Pre Pa Pre
tpWPCA e PCA tpWPCA
pwPCA [Sat] | pwPCA [SOS] |

Figure 1. Global scheme of the methodology developed in this study. In red boxes are the sources/inputs: satellite data
(Moderate Resolution Imaging Spectrometer (MODIS)/ Visible Infrared Imaging Radiometer Suite (VIIRS)), simulated data
using the successive orders of scattering radiative transfer code (SOS) and field measurements (Analytic Spectral Device
(ASD)/”Tri” Optical Sensors (TriOS)). In blue boxes the outputs: the principal component analysis (PCA) eigenvectors and
the PCA-shortwave infrared (SWIR)-derived satellite and simulated water reflectance. Gray solid arrows symbolize each of
the intermediate steps in each process, and the dashed black arrows show the comparisons that were performed to test

the algorithm.

2.2. Radiative Transfer Simulations

To simulate the top-of-atmosphere (TOA) reflectance in the spectral bands of the
sensors listed in Table 1, the Centre National d’Etudes Spatiales/Successive Orders of
Scattering (CNES-SOS) radiation transfer code v5.0 [19,20] was used to produce two sets
of simulations:

Table 1. Spectral bands of the sensors used to theoretically test the SWIR-PCA algorithm. The bands
in which the black water assumption is valid are marked in green. In yellow, the bands in which this
assumption is affected only with very high sediment concentrations.

Band Tag MODIS VIIRS SABIA-Mar
BLUE 443 nm 443 nm 443 nm
GREEN 555 nm 551 nm 555 nm
RED 645 nm 667 nm 665 nm
NIR1 748 nm 745 nm 750 nm
NIR2 859 nm 862 nm 865 nm
SWIR1 1240 nm 1238 nm 1240 nm
SWIR2 1640 nm 1601 nm 1640 nm
SWIR3 2130 nm 2257 nm

Set 0: This set was used to calibrate the principal components of the atmospheric signal,
i.e., the eigenvectors of the variance—covariance matrix of the set in the VIS/NIR/SWIR
bands. It was composed of CNES-SOS simulations with null water reflectance (pw = 0).
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Set W: This set was used to theoretically evaluate the performance of the AC in the
VIS/NIR bands. It was composed of CNES-50S simulations where a subset of 22 water
reflectance spectra measured with an Analytic Spectral Device (ASD) was used as input
instead of the black water condition of Set 0 (Figure 2). The inclusion of water reflectance to
the CNES-SOS code is done through the addition of a Lambertian (isotropic non-polarized)
term in the surface Mueller matrix, which also contains the Fresnel reflectance term (for
further detail see [19]). This subset of 22 measurements was selected in order to span
a large range of measured water reflectance in the RdP with a pseudo-uniform step,
i.e., trying to cover in the most uniform possible way all the range of water reflectance
values that were measured in the region of interest in order to avoid sampling biases
in the retrievals. The reflectance in each band of interest (Table 1) was calculated using
the spectral response functions (SRFs) that are available from the NASA Ocean Biology
Processing Group (OBPG) webpage [21] in the cases of MODIS and VIIRS, and using
square-shaped SRFs defined by the centers and bandwidths reported by CONAE in the
case of the SABIA-Mar sensor (Dr. Carolina Tauro, Principal Investigator of the SABIA-Mar
mission, personal communication).

" BLUE GREEN RED NIR1 NIR2
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=5 l
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Figure 2. Water reflectance spectra measured in the Rio de la Plata (RdP) with ASD — (a), solid black lines - and spectral

response functions (SRFs) of the ocean color sensors MODIS, VIIRS, and Satélite Argentino-Brasilefio para Informacion
Ambiental del Mar (SABIA-Mar) (squared SRFs) at the visible (VIS) /near-infrared (NIR) (a) and SWIR (b) bands considered

in this study (see Table 1).

The remaining parameters used as input to CNES-SOS are detailed in Table 2. The
Rayleigh scattering due to air molecules was parameterized following the optical thick-
nesses and molecular depolarization ratio reported by Bodhaine et al., 1999 [22], using an
e-folding molecular height scale of 8 km, i.e., assuming an isothermal-barotropic atmo-
sphere. The aerosol physical properties, characterized by their granulometry and complex
refractive index, were parameterized assigning linear combinations of the continental,
maritime, and urban scenarios proposed by the World Meteorological Organization [23].
Assuming no prior information regarding aerosol type, we considered equally all the
15 combinations produced by combining these three types of scenarios in quarters, e.g.,
maritime 25%, continental 25%, urban 50%, or maritime 25%, continental 75%, urban 0%.
An e-folding height scale of 2 km was assumed for aerosols. Their concentrations were
parameterized by the aerosol optical thickness at surface and at a reference wavelength of
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500 nm, 7,(500 nm), log-normally distributed with a mode of 0.06, determined from sun-
photometric measurements made at the CEILAP-BA AERONET station in the 1999-2013
period [24]. The range of surface wind speeds (used by the SOS code to calculate surface
roughness) was selected based on the wind measurements at the Aeroparque Meteoro-
logical Station—located just by the RdP river in the city of Buenos Aires—for the period
1976-2014. The values of 0, 2, 4, 8, and 16 m/s were chosen, geometrically distributed,
given that the most probable wind speeds were within the range of 4 to 6 m/s, and winds
greater than 14 m/s were recorded in much less than 1% of the measurements. In the
simulations, the effect of whitecaps was not considered, given their negligible contribution
in the highly reflective waters of interest in this study.

Table 2. Atmospheric, surface, geometric, and optical parameters used as input to the sets of
simulations using Centre National d’Etudes Spatiales/Successive Orders of Scattering (CNES-SOS).

CNES-SOS Parameter Input Value/Range
400 nm to 2500 nm. step 2 nm (VIS/NIR) and
A (Wavelength) 10 nm (farr) SWIR).
05 (Solar Zenith Angle, SZA) 15° to 60° (step 15°)
Oy (Viewing Zenith Angle, VZA) 0° to 45° (step 15°)
¢ (Relative Azimuth Angle, RAA) 0° to 180° (step 15°)
pw (Water reflectance) Set W: ASD in situ (RdP), see Figure 2
w (Wind speed) 0,2,4,8,16 m/s
ny (Relative air-water interface) 1.334
T; (Rayleigh optical thickness) Bodhaine et al., 1999 [22]
5 (Depolarization Factor) Bodhaine et al., 1999 [22]
H; (e-folding height scale for molecules) 8 km
Ta (Aerosol optical thickness at 500 nm) 0:0.1:0.4
dV,/dInr (Aerosol granulometry) Continental, Marine, and Urban scenarios [23]
n, + im, (Refractive index, aerosols) Continental, Marine, and Urban scenarios [23]
H, (e-folding height scale for aerosols) 2km
Nmax (Maximum scattering order) 20
Lyo1 (Polarization index) 1 (consider polarization)

Rayleigh correction was performed over both sets of TOA simulations (Sets 0 and
W) before computing the associated eigenvectors to Set 0 and applying the PCA scheme
to Set W. To achieve this, the code was run twice for each subset to compute the TOA
reflectance (9%8%) with two conditions: (i) using the input values specified by Table 2, and
(ii) assuming a black marine environment (py = 0) and no aerosol content (t, = 0). The
results from (ii) were subtracted from those from (i) to yield the RC signal, both in Sets 0
and W:

P = 935 [Air + Aerosols 4 Surf + Water] — p39 [Air -+ Surf], )

where Surf stands for the air-water interface. To prevent an overrepresentation of sun
glint on the PCA eigenvectors, we discarded the subset of sun-observation geometries and
wind speed combinations—in both Sets 0 and W—where the reflectance due to sun glint
exceeded the threshold of 0.005. To perform this pre-selection, the sun glint reflectance,
pg, was computed separately by generating a set of simulations with null water-leaving
radiance reflectance and no atmosphere (p =0 and T, = T, = 0).

The PCA-SWIR AC over the simulated RC reflectance ensemble (Set W) was applied
using the four possible SWIR band combinations (see Table 1), i.e., PCA-SWIR12 when using
SWIR bands 1 and 2, and the same for PCA-SWIR13, PCA-SWIR23, and PCA-SWIR123.

2.3. Other AC Algorithms and Match-up Procedure

We applied the PCA-SWIR scheme and other existing ACs on MODIS (onboard
Aqua and Terra) and VIIRS (onboard Suomi-NPP and NOAA20 platforms) imagery over
RdP for the dates when field measurements were collected within the period 2012-2020
(Section 3.1). Even though we tested all the four possible PCA-SWIR schemes over the
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imagery, in the current paper we only show the global intercomparison between existing
ACs and PCA-SWIR13, since this is the only option that does not make use of the band
SWIR2, which is no longer operational in MODIS/Aqua. Apart from PCA-SWIR13, the
following ACs implemented in the SeaDAS/L2Gen ocean color Level2 processor [21] were
also applied and considered in the match-up exercise (also summarized in Table 3):

e  NIR multi-scattering extrapolative approach (GW94-NIR): This AC was proposed by
Gordon and Wang 1994 [1] and computes the aerosol signal accounting for multiple
scattering effects and assuming black water in the NIR. It was the standard AC
implemented for Sea-viewing Wide Field-of-View Sensor (SeaWIFS) imagery and is
suitable for open waters;

e  Iterative scheme in the NIR (ITER-NIR): This AC is based on an iterative procedure to
subtract the non-zero contribution of the water to the NIR signal based on a conver-
gence strategy and on a semi-empirical model for the water reflectance in the NIR and
VIS. It is described in [6,7]. This AC has been shown to underestimate water reflectance
and even fail to produce any retrieval in RdP’s maximum turbidity front [5,17], but it
is considered here because it is the standard AC implemented by L2Gen in SeaDAS;

e  SWIR multi-scattering extrapolative approach (GW94-SWIR): This AC computes the
aerosol signal accounting for multiple scattering effects and assuming black water
in two specified bands in the SWIR. It is similar to the Gordon and Wang 1994 [1]
approach, except it is adapted to SWIR bands [4,5,8];

e Rayleigh correction scheme (RC): This AC only removes the effect of Rayleigh scatter-
ing and molecular absorption, i.e., it does not correct the contribution of aerosols to
the TOA reflectance. This AC was considered because it is reasonable to test the extent
to which an aerosol correction is necessary over the RdP’s highly reflective waters.

Table 3. Specific inputs (aerosol correction type “aer_opt” and wavelengths of the corrector bands “aer_wave_short” and

“aer_wave_long”) of each of the studied L2Gen atmospheric corrections (ACs). The band wavelengths used for aerosol
calculations are here represented with the band tags of Table 1, since they depend on each sensor. General inputs to L2Gen
that were not changed among ACs are mentioned in the text. GW94-NIR, NIR multi-scattering extrapolative approach;
ITER-NIR, standard NASA's iterative scheme in the NIR; GW94-SWIR, SWIR multi-scattering extrapolative approach; RC,

Rayleigh correction.

Atmospheric Correction

(AC) Aer_Opt (Description) Aer_Wave_Short Aer_Wave_Long
GW94-NIR —1 (Multi-scattering with 2-band model selection) NIR1 NIR2
ITER-NIR -2 (Multl—sc:attermg.w1th.2—band, RH-ba§ed model NIR1 NIR2
selection and iterative NIR correction)
GW94-SWIR13 —1 (Multi-scattering with 2-band model selection) SWIR1 SWIR3
RC —99 (No aerosol correction) - -

All the aforementioned ACs were run without applying the bidirectional reflectance
distribution function (BRDF) correction (brdf_opt = 0), which accounts for the directionality
of the upwelling radiance. This correction was not applied given that it generally degrades
performance in turbid waters [25]. The gaseous absorption correction was set to account
for ozone, carbon dioxide, nitrogen dioxide, and water vapor (gas_opt = 15). The land and
clouds were masked (using a cloud threshold of 0.018 at the SWIR3 band) as well as pixels
with high sun zenith angle (85 > 60°) and view zenith angle (6, > 70°). The sun glint mask
was not applied (to eventually test the robustness of the PCA-SWIR schemes in sun glint
conditions). Additionally, the HILT and STRAYLIGHT standard masks were switched off
since they usually mask turbid water pixels erroneously. The spatial resolution was fixed
at 1000 m.

For every VIIRS and MODIS scene that corresponded to a quasi-simultaneous field
measurement (a maximum time difference of 30 min was considered), a window of
3 x 3 pixels was extracted, with its central pixel the closest to the reported coordinates of



Remote Sens. 2021, 13, 1050

8 of 26

the field data. In the case of the coastal site at Buenos Aires located at the end of a 500 m
long pier (black dot in Figure 3), the window was intentionally shifted away from land
(1 pixel North, 1 pixel East in sensor geometry) to reduce the impact of land on the window.

33.00 17:35:00

. U‘fu _g_u'aﬁy

-35.25 o M
+ Argentina
- .‘f P, q

Latitude

“O o 1 91 1 36 rof\q’ o o>

)
Longitude

Figure 3. Red-Green-Blue composite in Plate Carrée projection of the Rio de la Plata Estuary as
seen by MODIS/ Aqua (2014-02-16T17:35:00Z). The location of the sites where the field radiometric
measurements were performed are marked in magenta, except for the Fishermen Pier, which has a
specific coastal match-up protocol and is marked in black (see Section 2.3). A red-dashed rectangle
indicates the region used to apply the geostatistical approach to estimate the effect of sensor noise
over the performance of the PCA-SWIR AC (see Section 4.1.4).

Once the window was selected, a filtering protocol was performed on a band-by-
band basis:

1.  If the number of AC-failure pixels (i.e., with NaN) was more than 4 out of 9 (>44.4%),
the window was discarded (no match-up). Otherwise, the median and the standard
deviation of the remaining pixels were taken as the reported value (x) and the absolute
error (uy) of the window, respectively;

2. If the coefficient of variation (CV = ux/x) exceeded 20% at a given band, the station
was discarded (no match-up).

2.4. Evaluation Metrics

To analyze the performance of the ACs, linear regressions between predicted (remotely
estimated or simulated) and observed (in situ) reflectance were performed using a Theil-
Sen linear regressor [26,27], which is less affected by outliers than least-squares regressors.
From these regressions the usual linear regression statistics were obtained, i.e., slope, offset,
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and coefficient of determination R?. For the match-up exercise, the root mean square error
(RMSE), the mean absolute difference (MAD), the mean difference (MD) and the mean
absolute percentage difference (MAPD) were also computed as follows:

1 N N2
RMSE =, | 1= 2(px§—P&f}d) , (10)
1=
1 o e
MAD ==} [Pi—Pis’ | (11)
i=1
1 Nm psaﬁ_pfield
— O, w,1 W,1
MAPD = 100% x No Z | (12)
i=1 Pw,i
1L W e
MD “No (Pif,i—Pvlf,i ) (13)
i=1

where the subscript i accounts for each individual match-up, and Ny, is the total number of
match-ups. Given that the selection criteria mentioned in Section 2.3 might yield different
Nm values for different ACs, the absence of effective retrieval in the computation of the
absolute statistics (i.e., RMSE, MAD, and MAPD) was penalized in the following way:
when the i-th station for a given AC was missing, its value was replaced by the worst
value retrieved by the remaining ACs in the absolute sense (i.e., the one with highest
| pw/isat-pw,iﬁeld ). This was done to minimize biases caused by different N, among ACs.
The total number of real match-ups, Ny, will also be shown as a general indicator of
performance of the ACs.

3. Field Data
3.1. Study Area

The Rio de la Plata (RdP) is a funnel-shaped estuary located at Eastern-Central South
America (Figure 3) and drains the second largest basin in South America, transporting
between 80 and 160 million tons of sediments every year. Several measurements of sus-
pended particulate matter (SPM) concentration were taken during field campaigns over the
period 2012-2020, with values varying from 4.38 g/m? to 940.00 g/m?> (median: 61.40 g/m?,
interquartile range: 48.56 g/m3). The RdP has a stationary maximum turbidity front as-
sociated with a saline front where the fresh waters of the estuary meet the South Atlantic
salty waters [28,29]. The position of this front is mainly controlled by the bathymetry and
coincides with the “La Barra del Indio” shoal in the north sector and with the 5 m isobath in
the Samborombon Bay to the south. The RdP transports large amounts of sediments whose
behavior is relevant for a number of applications in coastal areas. Several studies that
make use of ocean color imagery have been conducted to determine the area of influence
of the Rio de la Plata turbid plume over coastal waters of the Southwest Atlantic adjacent
to the estuary [30-33]. The high-SPM and highly reflective waters of RdP and its extension
(42 km to 220 km wide and 275 km long) make the estuary an excellent site to test ACs over
moderate resolution ocean color radiometers such as MODIS and VIIRS.

3.2. Radiometric Measurements

A total of 55 in situ above-surface radiometric measurements collected during several
field campaigns between 2012 and 2020 in the RdP (Figure 2a) were used both as input
to radiative transfer simulations to theoretically test the PCA-SWIR AC and to perform
match-ups with satellite data. From these 55 measurements, made over waters with SPM
concentration ranging between 6 g/m? and 522 g/m3 and nephelometric turbidity between
9 FNU and 708 FNU (measured using a portable HACH 2100P ISO), 28 were acquired using
a set of three RAMSES/TriOS hyperspectral spectroradiometers (spectral range 350 nm
to 950 nm, spectral resolution 3.3 nm, spectral discretization 2.5 nm), two measuring
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upwelling and downwelling radiances just above surface (L%, and L% 4, respectively)
at a relative azimuth angle from the sun of either 135° or 90° and reciprocal zenithal
angles of 8 = +40°, respectively, and one pointing toward zenith to measure downwelling
irradiance, E** 4. The remaining 27 measurements were acquired with an Analytic Spectral
Device (ASD FieldSpec FR) spectroradiometer (spectral range 350 nm to 2500 nm, spectral
resolution 3 nm between 350 nm and 900 nm and of 10 nm to 12 nm in the range 900 nm
to 2500 nm, with a spectral discretization of 1 nm) that consisted of a single radiometer
connected to an optical fiber of 8° aperture that was sequentially pointed to water and
sky to determine L%* 4 and L°*,, using the same sun-viewing geometry as with TriOS and
pointed to a quasi-Lambertian Spectralon plaque to determine E** 4 by multiplying the
nadir radiance leaving the plaque by 7. The reflectance of the plaque (>0.99 in the range
400-1500 nm) was assumed equal to 1. These measurements were combined to calculate
the water reflectance p,, according to

(LY (A —om(WILS (M)
B3 (A)

pw(A) = , (14)

where pp(W) is the surface radiance reflectance factor taken from Mobley 1999 [34], which
depends on the wind speed, W. Since many of these measurements were taken at coastal
sites or close to the coast, the relation between the surface roughness and the wind speed
used to parametrize the surface radiance reflectance in Mobley 1999 no longer holds. In
those cases, we fixed pys at 0.0256, i.e., at null wind speed. The protocols used with both
radiometers followed the generic “Above-water Method 2” of the NASA 2003 Ocean Optics
Protocols (Mueller et al., 2003 [35]) and followed the recommendations issued by Ruddick
et al.,, 2019 [36,37]. The details of the measurement protocols are described by Knaeps et al.,
2012 [38] for ASD and Tilstone et al., 2001 [39] for TriOS and are thoroughly described in
Gossn 2020 [40].

4. Results
4.1. Theoretical Performance
4.1.1. PCA Eigenvectors

The results presented in this and in several of the following sections vary slightly
among the considered sensors, so they will not be shown for all of them. A set of PCA
eigenvectors is displayed in Figure 4, calculated from SOS simulations (Set 0) in different
bands/sensors for the model that used VIIRS 1241 nm, 1602 nm, and 2257 nm SWIR bands
(PCA-SWIR123). Note that the eigenvectors have dimension N + 1, with N equal to the
number of correction bands used in the corresponding model.

Similar to what was shown by Gross et al., 2007 [10], the first PCA eigenvector
has a smooth spectral shape, showing that the magnitude—spectrally close to white—of
the signal is the first cause of variability between different spectra. This eigenvector is
mainly representing the different concentrations of aerosols and the residual component of
the water surface Fresnel reflection, strongly dependent on the geometry of observation-
illumination and the surface wind. The second eigenvector has a blue signature, which
is mainly due to multiple Rayleigh-aerosol scattering, p;a, highly variable depending on
aerosol type, and more effective in the blue due to a larger Rayleigh optical thickness
in that range. The third and fourth eigenvectors are associated with very small (<5% in
the blue and <2% in the NIR) fractions of explained variance and represent high-order
departures from the spectral shape of the main principal components. Even though they
are not easily interpretable in basic physical terms, their marked spectral features suggest
they are associated to the only physical component of our system whose spectral shape
varies, i.e., aerosols (either through differential granulometry or chemical composition). As
expected, the first two eigenvectors are associated with more than 95% of the variance, as
is shown in Table 4. As an example, Table 5 shows the components of the eigenvectors of
the PCA-SWIR13 AC scheme for sensors MODIS/Aqua and VIIRS/Suomi-NPP.
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Figure 4. PCA eigenvectors, ejPCA (computed using Set 0), at VIIRS VIS/NIR (a—g) bands plus the SWIR bands at 1241 nm
(SWIR1), 1602 nm (SWIR2), and 2257 nm (SWIR3), numbered in decreasing order of explained variance.

Table 4. Cumulative variance explained with one, two, and three principal components of the simulated aerosol reflectance
and inversion conditional numbers for the PCA-SWIR123 and PCA-SWIR13 schemes applied to VIIRS bands.

PCA-SWIR123 (VIIRS)
Explained Variance (%)

PCA-SWIR13 (VIIRS)

Explained Variance (%)

Inversion Inversion
éa;il(;an;; 1 ) 3 Conditional 1 2 Conditional
Component Components Components Number Component Components Number
(Total Used) (Total used)

443 (BLUE) 69.04 95.36 99.43 389.3 67.14 95.42 4.8
551 (GREEN) 73.52 97.04 99.54 26.9 72.46 97.28 4.0
667 (RED) 77.08 97.49 99.69 14.0 76.16 97.70 34
74 (NIR1) 79.44 97.69 99.74 10.3 78.50 97.92 2.9
862 (NIR2) 82.87 98.10 99.81 6.2 81.92 98.38 2.3

The error amplification factors, i.e., the conditional numbers (Equation (6)) of the
inversion matrices (left-hand side of Equation (5)) of each scheme, are reported for each
band in Table 4. Large numbers are associated with matrices closer to non-invertibility and
also with weaker error bounds after inversion (i.e., potentially larger error amplification).
This means that the PCA-SWIR123 scheme, given the high conditional numbers in the blue
(389.3 vs. 4.8), is likely to produce worse retrievals when compared to the two-SWIR-band
schemes, even if the total variance explained by the total used N components is higher in
the PCA-SWIR123 case (99.43 vs. 95.42).
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Table 5. (a). Eigenvector components of the PCA-SWIR13 AC scheme for MODIS/Aqua. Here, Ay,
stands for the wavelength of the band to be corrected (i.e., either the BLUE, GREEN, RED, NIR1, or
NIR2 band). (b). Same as Table 5a, but for VIIRS/Suomi-NPP.

Eigenvector Band to be Corrected
Component BLUE GREEN RED NIR1 NIR2
(a)
e1PCAAipe) 0.56754 0.64103 0.64783 0.63771 0.62218
e;PCA(SWIR1) 0.62019 0.57974 0.57276 0.5766 0.58281
e1PCA(SWIR3) 0.54153 0.50297 0.50226 0.51074 0.52271
P M) 0.80075 0.73023 0.70876 0.69681 0.66258
e,’CASWIRT)  —0.26275 —0.25892 —0.2115 —0.14924 —0.03639
e,PCA(SWIR3)  —0.53829 —0.63223 —0.673 —0.70155 —0.74811
e3"A Ape) —0.19155 —0.2363 —0.27924 —0.32829 —0.41698
e3PCA(SWIR1) 0.73914 0.77257 0.79197 0.80328 0.81179
esPCA(SWIR3)  —0.64574 —0.58932 —0.54297 —0.49696 —0.4088
(b)

e1"CA M) 0.57084 0.64113 0.64876 0.6392 0.62309
e;7CA(SWIR1) 0.62211 0.58309 0.57521 0.57871 0.58499
e1PCA(SWIR3) 0.53583 0.49895 0.49824 0.50648 0.51918

e2"A Ape) 0.79439 0.72537 0.7005 0.68722 0.64802
e,FCA(SWIRT)  —0.25348 —0.24815 —0.19558 —0.13422 —0.01441
e,’CA(SWIR3)  —0.55199 —0.64208 —0.68633 —0.71394 —0.76149

€372 Ape) —0.20758 —0.25057 —0.29734 —0.34518 —0.43798
esPCA(SWIRT) 0.74076 0.77358 0.79428 0.80442 0.81091
e3PCA(SWIR3) —0.6389 —0.58205 —0.52981 —0.48349 —0.38806

4.1.2. Aerosol Signal Estimation (SOS Set 0: Black Water)

The aerosol reflectance retrieved by the PCA-SWIR12 AC applied to the SABIA-Mar
BLUE and NIR1 bands in the conditions used to generate the PCA eigenvectors (Set 0), pPCA,
is displayed in Figure 5. This exercise allows a first evaluation of the aerosol reflectance
estimation prior to the diffuse transmittance correction. In concomitance with what has
been discussed in the previous sections, the performance is markedly worse in the BLUE
than in the NIR due to a higher spectral distance to the SWIR spectral region. It must
be noticed that the PCA-SWIR12 scheme was implemented—with no intermediate steps
involving the NIR bands—to estimate p{“A (412 nm).

In the case of VIIRS bands (Figures 6 and 7), a better performance is observed with
PCA-SWIR123 in the NIR when compared to two-band models (slope closer to 1 and
lower MAD). On the contrary, we observe worse retrievals in the blue, i.e., for p,(489
nm), using the three-band model. This is also evident from an abrupt increase in the
conditional number of the inversion matrix, as the band to be corrected is spectrally further
away from the SWIR bands. The larger conditional number in the blue than in the NIR
occurs for all models (both with N = 2 and N = 3, although markedly larger in the latter
case (see Table 4), indicating that the inversion matrix of the system of Equation (5) is
closer to non-invertibility, which in turn is associated with a low correlation between the
bands in the blue and those in the SWIR. It may be seen as counter-intuitive that adding
information (i.e., adding a band) can degrade the performance of the algorithm, but it must
be emphasized that this only occurs in the blue bands where the correlation to the SWIR is
lower than at higher wavelengths. In the case of the model with three corrective bands,
this lack of correlation and the addition of a component leads to an overrepresentation of
the variability of the reflectance in the blue, implying larger propagation errors.
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Figure 6. Same as Figure 5 but for VIIRS 489 nm band using PCA-SWIR12 (a), PCA-SWIR13 (b), PCA-SWIR23 (c), PCA-
SWIR123 (d) schemes.
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Figure 7. Same as Figure 6 but for 862 nm VIIRS band, (a), PCA-SWIR13 (b), PCA-SWIR23 (c), PCA-SWIR123 (d) schemes.

4.1.3. NIR Water Reflectance Retrieval (SOS Set W)

The retrieved (PCA-SWIR) vs. observed (ASD) water reflectance values in the SABIA-
Mar and VIIRS NIR bands are shown in Figures 8 and 9 using all the PCA-SWIR possible
combinations of SWIR bands, i.e., one in the case of SABIA-Mar (lacking the SWIR3 band)
and four in the case of VIIRS. The results obtained for each of the 22 field reflectance
measurements used in the computation of Set W are displayed as the mean values of
retrieved py"“* (red dots) and the interquartile ranges (IQRs) are represented with red
vertical bars. In general, a good correspondence is observed between the estimated and
measured reflectance values, with low biases and slopes and correlation coefficients close
to 1. Similarly to what was found for the estimates of the aerosol reflectance using the
simulations of Set 0, Figure 9 shows that the three-band model presents lower IQRs, i.e.,
less sensitivity to atmospheric variability, and slopes closer to 1 compared to the two-

band schemes.
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4.1.4. Effect of Noise on MODIS/Aqua Imagery

In order to study the impact of noise on the performance of the PCA-SWIR scheme,
we estimated a noise-equivalent RC reflectance (NEprc) from MODIS/Aqua imagery. We
decided not to use the classic homogeneous area approach of Duggin et al., 1985 [41] given
that it supposes a homogeneous “real” field (the field at zero noise) in the selected area,
a condition that is never met in the Rio de la Plata at the VIS/NIR bands. Instead, we
implemented a geostatistical method, which was first applied to satellite (AVIRIS) images
by Curran and Dungan 1989 [42]. This method assumes a Gaussian noise model, a null
autocorrelation of the noise field, and a null correlation between the noise and the “real”
field. After having verified the geostatistical method on synthetic images of known noise,
it was applied to a set of RC reflectance rasters (L2 product ps using SeaDAS v7.5) of
20 MODIS/Aqua images of the Rio de la Plata over the period 2013-2019 over a small
subregion between 35.26°S and 35.52°S and between 57.05°W and 56.70°W (windows of
40 x 40 pixels approximately, see Figure 3).

Taking the mean of the noise amplitudes in each of the selected subscenes described
in the Methods section, the absolute value of the noise, o, was obtained (Table 6) by es-
timating the nugget of the associated semi-variogram of each subscene, following [42].
These values were used to theoretically evaluate the impact of noise on the AC perfor-
mance on MODIS/Aqua. It was assumed that the noise in the individual bands was not
correlated spectrally.

Table 6. Noise-equivalent RC reflectance for each of the MODIS/Aqua sensor bands in the NIR and
SWIR, obtained by applying the geostatistical method to the RC reflectance of the mentioned set.

Wavelength (nm) (Band Tag) Noise Equivalent Reflectance, NEpgc
748 (NIR1) 0.001845
859 (NIR2) 0.003686
1240 (SWIR1) 0.000279
1640 (SWIR?2) 0.000178
2130 (SWIR3) 0.000174

The effect of noise in the MODIS/Aqua bands on the performance metrics of the
PCA-SWIR algorithm over the set of radiative transfer simulations was found to be low, if
taking into account the low signal-to-noise ratios of the SWIR bands (Table 7).

Table 7. Comparison between performance metrics of simulated water reflectance pyw (PCA) vs. pw
(field) at MODIS/ Aqua 857 nm band (Set W) with and without noise added to simulations. MAD,
mean absolute difference; Int, intercept.

Noise 2
AC/Sensor Added MAD Slope Int R
PCA-SWIR13 No 0.0005 0.984 —0.0006 0.999
MODIS/Aqua Yes 0.0008 1.006 —0.0008 0.998

It should be noted that, as already known, a normally distributed noise—of mean
0—is propagated through a linear system into a normally distributed noise—of mean 0—of
the retrieved quantity, with the amplification of the noise regulated by the conditional
number of the inversion matrix of the scheme. In our case, the output quantity is the
aerosol—and eventually, the water—reflectance in the NIR bands. We consider this method
to be more robust statistically under the effect of noise in comparison to the standard
procedure of using ratios such as (A1, Ay), given that ratios of variables with normally
distributed errors are prone to magnifying the effect of noise over the outputs (especially
under low mean values of the denominator, i.e., under clear atmospheric conditions). This
will be also discussed in the following section.
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a)

4.2. Application to Satellite Imagery
4.2.1. Match-ups

The global scatterplots of the match-up exercise are shown for the NIR1 ~750 nm
(Figure 10) and NIR2 ~860 nm (Figure 11) bands of all the sensors, and the global perfor-
mance metrics are shown in Table 8. We decided not to differentiate TriOS and ASD field
reflectance measurements graphically since no systematic bias was observed between them.
Inside each inset, the satellite-derived water reflectance (p, ') was compared with the field-
measured water reflectance (pfi!d) for ITER-NIR, RC, GW94-SWIR13 and PCA-SWIR13 in
the NIR bands) (see Table 3 for a description of these acronyms). It should be noticed that
different total numbers of effective match-ups are obtained for each AC given the different
AC failure and acceptance ratios after following the quality control criteria described in
Section 2.3. The NIR-iterative (ITER-NIR, a) and standard NIR-black-water (GW94-NIR,
b) ACs tend to underestimate water reflectance at all wavelengths and especially at high
field-reflectance values, frequently failing to retrieve numerical values (seen as lower N
values) or otherwise retrieving negative reflectance.

b)
0.175 ,
AC= ITER-NIR 0175 e re L
N N= 38
0150 RIWSE= 00167 0.150|gmsE= 0.0133 i
=0. MAD= 0.0111
0.125 MAPD; 38.8913 0.125|MAPD= 28.578
— MD= -0.0081 — MD= 0.0102
o Slope= 0.490 o Slope= 0.927
0.100{>'0P ope )
Y Int= 0.0142 pos Y 0-100115¢2°0.0137 *+
-~ R2= 0.847 ~ R2= 0.874
§§0‘075 #Neg= 0 §§0.075 #Neg= 0 ;A§ +
. M2
<0.050 = © MA 0,050 '}:ﬁf""
L e
0.025 Ane—" *  VNOAA20 0.025 ,«5
_ «  VSNPP
0900 0916 09(90 0.016 Q:\QO Q:\"f) 0:\'(90 Q:\"\() 0‘000 09’2’6 Q-Qc)g 0‘6‘6 0300 0}7’6 Qf\’fog 0:{\\6
i field[750]
pie1750] "
c) d)
0.175 0.175
AC= GW94-SWIR13 s ﬁC=3§CA-SWIR13 .
N= 34 =
0.150|RMSE= 0.0114 + 0.150 EDKBEZOO(')%%%Z .
MAD= 0.0075 = 0.
0.125|MAPD= 16.393 7 0.125 méngolosng
— MD= -0.0041 ’ —_ =0.
O (. 100/Slope= 0.935 Y O  100|Slope= 1.029 7
0 Int= 0.0022 e 0 Int= 0.0020 e
~ R2= 0.843 — R2= 0.866 P
0075 Neg= 0 + t §go.o75 #Neg= 0 .#{ +
Q0.050 .,+t&+; QO.OSO .’+t”’* +
: #74 o4
v 4
0.025 . 0.025 ﬂ“’
0.000 //‘/,,,;l:;’/ 0000 ///,u
QO )e) N ) Q© )e) Q 1% Q 2] Q o) Q )e) Q )
o8 o o877 (817 (37 8 (377 ¥ o 87 (9% (O17 (a0 (417 (257 (3]
field .
w 2[750] pf’ve’d[750]

Figure 10. Satellite-derive

field
w

sat
w

d water reflectance (p$3') vs. field water reflectance (piae'®) in the BLUE band (~445 nm) for

MODIS/Aqua (MA), MODIS/Terra (MT), VIIRS/NOAA20 (VNOAA?20), and VIIRS/Suomi-NPP (VSNPP) sensors shown
in red, green, blue, and magenta, respectively. Each inset corresponds to a different AC: (a) NIR iterative scheme (ITER-NIR),
(b) Rayleigh correction AC, i.e., without aerosol correction (RC), (c) SeaDAS SWIR AC using bands SWIR1 and SWIR3
(GW94-SWIR13), and (d) PCA-SWIR13 AC (PCA-SWIR13).
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Figure 11. Same as Figure 10, but in the NIR2 band (~860 nm): (a) NIR iterative scheme (ITER-NIR), (b) Rayleigh correction
AC, i.e., without aerosol correction (RC), (c) SeaDAS SWIR AC using bands SWIR1 and SWIR3 (GW94-SWIR13), and (d)

PCA-SWIR13 AC (PCA-SWIR13).

On the other hand, even if the results of the PCA-SWIR13 scheme in the blue and green
show general overestimation (MD = 0.019 and MD = 0.011, respectively, see Table 8), they
still show better agreement with field data in comparison with those of the GW94-SWIR13
approach (slopes closer to 1, less negative retrievals, and higher N—i.e., fewer AC failures).

In the NIR bands, the Rayleigh correction approach (RC, Figures 10b and 11b) tends
to overestimate water reflectance (with intercepts of 0.012 and 0.014 and MD of 0.0103 and
0.0103 in bands NIR1 and NIR2, respectively) in comparison with the other schemes, all of
which intend to remove the aerosol effect. The PCA-SWIR13 AC clearly shows an improved
performance over the standard NIR procedures. When compared to GW94-SWIR13, a
slightly better performance is attained in the NIR1 band—considering the obtained RMSE,
MAD, MD, MAPD, slope, and R2, and a clear improvement is observed in the NIR2 band,
with retrieved slope and R? close to 1 and RMSE, MAD, MAPD, and MD closer to 0.
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Table 8. Performance metrics of satellite-derived water reflectance (p.52t) vs. field water reflectance (p

field
w

) in the BLUE,

GREEN, RED, NIR1, and NIR2 bands of MODIS/Aqua (MA), MODIS/Terra (MT), VIIRS/NOAA20 (VNOAA20), and
VIIRS/Suomi-NPP (VSNPP) sensors. Results are shown for ITER-NIR, GW94-NIR, GW94-SWIR13, and PCA_SWIR13
ACs. RMSE, root mean square error; MAD, mean absolute difference; MAPD, mean absolute percentage difference; MD,

mean difference.

Band AC N #Neg RMSE MAD MAPD MD Slope Int R?
ITER-NIR 9 5 0.037 0.032 93.7 —0.026  0.074 0.000 0.000
BLUE GW94-NIR 6 6 0.039 0.035 1042  —-0.051 1.011 —0.054  0.663
GW94-SWIR13 20 5 0.031 0.025 70.0 —0.016 —0.154  0.036 0.170
PCA-SWIR13 34 1 0.027 0.024 74.3 0.019 0.330 0.041 0.061
ITER-NIR 16 0 0.035 0.027 34.6 —0.008  0.214 0.039 0.233
GREEN GW94-NIR 17 5 0.043 0.036 49.5 —0.049 —-0.141  0.024 0.072
GW94-SWIR13 36 0 0.025 0.017 22.2 —0.006  0.426 0.037 0.297
PCA-SWIR13 40 0 0.020 0.017 23.9 0.011 0.536 0.046 0.429
ITER-NIR 27 7 0.053 0.040 40.8 —0.033  0.147 0.055 0.047
RED GWO94-NIR 34 1 0.048 0.034 32.9 —0.033  0.503 0.014 0.161
GW94-SWIR13 40 0 0.019 0.015 14.7 —0.002  0.679 0.026 0.656
PCA-SWIR13 40 0 0.023 0.019 20.5 0.013 0.812 0.027 0.671
ITER-NIR 17 0 0.017 0.013 26.9 —0.008  0.490 0.014 0.847
NIR1 GW94-SWIR13 34 0 0.011 0.007 16.4 —0.004  0.935 0.002 0.843
PCA-SWIR13 37 0 0.009 0.007 16.0 0.000 1.029 0.002 0.866
ITER-NIR 21 4 0.022 0.015 50.5 —0.014  0.198 0.012 0.113
NIR2 GW94-SWIR13 32 0 0.016 0.009 32.2 —0.003  0.908 0.001 0.882
PCA-SWIR13 33 0 0.015 0.008 27.5 0.000 0.996 0.000 0.920

A subset of field water reflectance spectra together with the corresponding satellite-
derived reflectance spectra from sensors MODIS/Terra (MT) and VIIRS/Suomi-NPP (VS-
NPP) is shown in Figure 12. These examples show general agreement in spectral magnitude
and shape between field and PCA-SWIR13 spectra, with a tendency to achieve better perfor-
mance in the green-red-NIR region of the spectrum when compared to ITER-NIR, GW-NIR,
and GW-SWIR13 ACs. In the blue region, even though the PCA-SWIR13 scheme com-
paratively performs better than the other schemes, with fewer AC failures and negative
retrievals, it tends to overestimate reflectance in the blue. This overestimation may be
associated with a magnification of the error produced by higher condition numbers of
inversion (Equation (6)) and the simple model of the diffuse transmittance factor expressed
in Equation (7) (see Discussion section).

4.2.2. Spatial Analysis of Water and Aerosol Patterns

Another way of evaluating the quality of an AC is to compare the spatial patterns of
the water and aerosol reflectance. If the algorithm is capable of decoupling both signals
spectrally on a pixel-by-pixel basis, it is also expected that it will do so spatially, even though
water properties/processes may partly affect local aerosol production. When comparing the
performance of PCA-SWIR13 with other ACs (Table 3), we found lower spatial correlations
and lower percentages of AC failures and negative water reflectance pixels, as well as less
noisy aerosol retrievals in the VIS/NIR with the PCA-SWIR13 AC. This is exemplified in
Figures 13 and 14, which display the water and aerosol reflectance maps produced for the
MODIS/ Aqua scene of 2014-05-16T17:35:00Z using the PCA-SWIR13, GW94-NIR, ITER-
NIR, and GW94-SWIR13 ACs in the blue (443 nm) and NIR?2 (859 nm) bands, respectively.
In both bands, the PCA-SWIR13 AC yields the least cross-contamination of the water and
aerosol reflectance, fewer AC failures (shown in white), negative reflectance pixels, and
lower slopes on the p, vs. py relation. Even though a lower slope is observed for GW94-
SWIR13 than for PCA-SWIR13 at 443 nm, this may be associated with the much shorter
range of retrieved water reflectance. In general, the performance is markedly improved
when compared to standard NIR approaches (GW94-NIR and ITER-NIR). Note that the
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GW94-NIR AC is not shown in Figure 14 because this scheme retrieves trivially zero water
reflectance in the NIR bands. When comparing PCA-SWIR13 with GW94-SWIR13, the
slightly lower slope on p;, vs. py indicates that in the selected region (shown inside squared
contours), where the maximum turbidity front of Rio de la Plata is located [43], there is a
slightly better water reflectance estimation. Additionally, a markedly lower percentage of
negative reflectance pixels (0.00% vs. 7.11% in the BLUE band; 1.26% vs. 5.72% in the NIR2
band), lower percentage of AC failures (0.45% vs. 2.31% in the blue band; 0.45% vs. 0.71%
in the NIR2 band) is observed. It is worth noting that PCA-SWIR13 aerosol reflectance
maps are less noisy compared to the traditional extrapolative approach (compare insets (c)
and (f) in both figures).
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Figure 12. Satellite-derived vs. field reflectance (TriOS or ASD in black) using several AC schemes:
ITER-NIR (blue), GW94-NIR (orange), GW94-SWIR13 (green), and PCA-SWIR13 (red) for different
match-ups: (a) RAP_20130227_PP01-11 (VSNPP overpass), (b) RAP_20130430_PP02-03 (MT overpass),
(c) RdP_20130430_PP02-12 (VSNPP), (d) RdP_20151118_St26 (VSNPP), (e) RdP_20160925_St12 (MT),
and (f) RdP_20160925_5t13 (MT). Solid dotted lines show mean values of the 3 x 3 pixel window and
uncertainty areas are shaded. Missing values correspond to AC or match-up failures. Simultaneous
field measured turbidity (obtained using a portable HACH 2100Qis turbidimeter) is indicated inside
each panel.
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Figure 13. Comparison of spatial patterns of water and aerosol reflectance retrieved by PCA-SWIR13, GW94-SWIR13,
GW94-NIR, and ITER-NIR ACs from MODIS/Aqua image of the Rio de la Plata acquired on 2014-05-16T15:35:00Z. RGB
composite (a), water (b,e h k), and aerosol (c,f,i1) reflectance at 443 nm, retrieved using PCA-SWIR13 (b,c), GW94-SWIR13
(e,f), GW94-NIR (h,i), and ITER-NIR (k,1) schemes. Plots show aerosol vs. water reflectance in the Rio de la Plata’s turbidity

front region marked with squares (d,g,j).
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Figure 14. Same as Figure 13 but at 859 nm and not considering the performance of the GW94-NIR scheme, as it retrieves
trivially null water reflectance in the NIR bands. RGB composite (a), water (b,e/h), and aerosol (¢ f,i) reflectance at 748 nm,
retrieved using PCA-SWIR13 (b,c), and GW94-SWIR13 (e,f), ITER-NIR (h,i). Plots show aerosol vs. water reflectance in the
Rio de la Plata’s turbidity front region marked with squares (d,g).

5. Discussion

The new AC presented here has multiple advantages. First of all, it relies on simple
and plausible physical hypotheses which, given the simplicity of the algorithm, can be
tracked and tested with ease. It also has the advantage that the generalization of the
inversion procedure to the use of multiple sets of SWIR correction bands is straightforward,
which is not the case of standard extrapolative procedures that rely on ratios over pairs of
bands. Additionally, given the linear nature of the inversion scheme, this AC keeps the
structure of the noise and also tends to bound the noise better than in the case of band ratios.
This is a key point, since ratios of normally distributed random variables (i.e., assuming
a Gaussian noise model), such as €(A1, A;), might produce drastic amplifications of noise
when the mean value of the denominator (i.e., the aerosol signal at A;) approaches 0, i.e.,
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in clear atmospheric conditions. This noise amplification combined with the error in the
aerosol model produces frequent negative reflectances in spectrally distant bands, such
as the blue. The PCA-SWIR AC has been able to show a considerable reduction of this
undesired result. Although PCA-SWIR has shown general overestimation of the water
reflectance in the blue, this might be easily circumvented in follow-up studies by enlarging
or improving the radiative transfer simulation set (such as improving the quality of aerosol
models or, e.g., assuming a spectrally dependent air-water relative refractive index, [44])
and revising the transmittance correction expression, whose error is amplified in the blue,
given the Angstrom law specified for the aerosol optical thickness. The basic limitation in
the blue, however, is that blue wavelengths are far from SWIR wavelengths, making the
PCA representation of the atmospheric signal inaccurate. Reanalysis data (e.g., MERRA-2)
could also be used to reduce uncertainties on aerosol transmittance.

The PCA-SWIR algorithm presents the main restriction that is only applicable to
sensors containing at least two operational SWIR bands where the black water assumption
is valid. This is an important constraint since many optical sensors lack these bands given
their high marginal costs, and these bands tend to have lower associated signal-to-noise
ratios when compared to the VIS and NIR bands. On the other hand, even though the
performance of the AC was validated using several sources, it should be noted that the Rio
de la Plata field reflectance data used in the study are not evenly distributed among the
complete range of expected values in the region; they are mostly representative of regimes
with moderate suspended matter concentration. Therefore, the inclusion of a higher
number of extremely high reflectance field measurements to the existing in situ database is
highly desirable to assess the comparative performance of these ACs at extremely turbid
regimes. Apart from these restrictions, the PCA-SWIR scheme(s) still has to be evaluated
in optically complex waters under the effect of moderate to high sun glint. In follow-up
studies it will be also necessary to perform intercomparisons between PCA-SWIR routines
that make use of different SWIR band combinations and compare results over each specific
band of each specific sensor. It will also be interesting to compare the PCA-SWIR scheme to
a hybrid PCA and standard extrapolative scheme, in which water signal in the NIR is first
estimated using the PCA-SWIR approach and water signal in the VIS is then computed
using the standard approach (Gordon and Wang 1994) after subtracting the water signal in
the NIR bands.

6. Summary and Conclusions

In this study an atmospheric correction algorithm (herein PCA-SWIR) is proposed
to estimate the reflectance of Rio de la Plata turbid waters in the NIR bands of moderate-
resolution sensors such as MODIS, VIIRS, and SABIA-Mar, which possess high-quality far
SWIR bands. The procedure is based on the decomposition into principal components of
the atmospheric VIS-NIR-SWIR signal, which is a different approach from the traditional
“epsilon” approach to extrapolate from the SWIR bands to the NIR bands. The weight of
the eigenvectors of the variance—covariance matrix of the set of simulations is determined
from the signal at the SWIR bands for each pixel. These weights are then used to calculate
the aerosol signal in the VIS-NIR. A simple diffuse transmittance model is applied to correct
the water signal and finally yield the water reflectance.

The algorithm was theoretically tested using a set of simulated Rayleigh-corrected re-
flectances for a wide range of expected atmospheric conditions and field reflectances of Rio
de la Plata turbid waters. A geostatistical method, previously tested on synthetic images,
was used to estimate the noise-equivalent Rayleigh-corrected reflectance of MODIS/Aqua
images to theoretically assess the effect of noise on the water reflectance retrieval. These
results show that even though SWIR bands tend to have a low signal-to-noise ratio in
comparison to NIR and VIS bands, the high levels of noise have a relatively low impact
on the retrievals in comparison to traditional extrapolative ACs based on ratios. When
considering the effect of noise in the bands involved in the scheme, the relationships be-
tween estimated and observed water reflectance tend to show slopes slightly farther from
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1, slightly higher biases, and slightly lower correlation coefficients. Nonetheless, the overall
observed degradation effect on the performance is acceptably low. This is also observed in
the retrieved aerosol reflectance maps over Rio de la Plata, which tend to show smoother
noise patterns in comparison with the traditional extrapolative SWIR approach.

Although this algorithm was originally conceived to estimate the water signal in the
NIR in order to subsequently subtract it from the total signal and proceed with the usual
extrapolation schemes, its design is not strictly limited to the NIR, so its performance in
visible bands was also tested. As expected, given the decreasing correlations between
the aerosol signal of the SWIR bands and the bands of interest, as the spectral distance
increases, the water reflectance retrievals are not as accurate as in the NIR but are still better
in comparison to existing standard AC approaches.

The theoretical results obtained in the NIR bands are optimal, with low biases and
slopes and correlation coefficients close to 1. In particular, the PCA-SWIR AC that uses
three SWIR bands theoretically performs better in the NIR than those that use two bands,
given that the former manages to represent the atmospheric signal better than the latter.
The PCA-SWIR AC is therefore useful for estimating turbidity and suspended particulate
matter concentration from water reflectance in NIR spectral bands. The reverse occurs in
the blue bands, where the combination of a low correlation between the atmospheric signals
in the blue and SWIR and the use of three main components leads to an overrepresentation
of the variability of the signal in the blue (a phenomenon that is quantitatively determined
with high condition numbers of the inversion matrixes).

The match-up exercise showed frequent failures and negative reflectance retrieval
using the standard approaches and a general overestimation using the just-Rayleigh-
correction approach in the NIR. The SWIR approaches that use the SWIR1 (~1240 nm) and
SWIR3 (~ 2130 nm) bands show better general performance in comparison to other choices
of SWIR bands. In particular, the PCA-SWIR13 performs markedly better in the NIR2
(~860 nm) band compared to the traditional SWIR approach, and slightly better in the case
of the NIR1 (~750 nm) band.

The proposed AC can be applied to any sensor containing at least two bands in the
far-SWIR (i.e., where the black water assumption holds), including Landsat-8/OLI and
Sentinel-2/MSI imagers and is also applicable to optically complex waters other than Rio
de la Plata.
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