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Abstract: A drought, which can be often accompanied by increased temperature, is a key adverse
factor for agricultural plants. Remote sensing of early plant changes under water shortage is a
prospective way to improve plant cultivation; in particular, the sensing can be based on measure-
ment of difference reflectance indices (RIs). We complexly analyzed the efficiency of RIs based on
400–700 nm wavelengths for revealing the influences of water shortage and short-term heating on
plant seedlings. We measured spectra of reflected light in leaves of pea, wheat, and pumpkin under
control and stress conditions. All possible RIs in the 400–700 nm range were calculated, significances
of differences between experimental and control indices were estimated, and heatmaps of the signif-
icances were constructed. It was shown that the water shortage (pea seedlings) changed absolute
values of large quantity of calculated RIs. Absolute values of some RIs were significantly changed for
1–5 or 2–5 days of the water shortage; they were strongly correlated to the potential quantum yield of
photosystem II and relative water content in leaves. In contrast, the short-term heating (pea, wheat,
and pumpkin seedlings) mainly influenced light-induced changes in RIs. Our results show new RIs,
which are potentially sensitive to the action of stressors.

Keywords: difference reflectance indices; stressor-induced changes; significance heatmaps; pea;
wheat; pumpkin; water shortage; drought; heat; remote sensing

1. Introduction

Plant cultivation is an important branch of the world’s economy; the consumption of
plant products increases from year to year. However, environmental conditions are rather
variable [1–3]; the frequency and magnitude of fluctuations in these conditions can be
stimulated under the development of global climate change. There are numerous stressors,
including non-optimal temperatures, high intensities of light, excess precipitations, etc.,
which can decrease plant biomass and crop quality [4,5]. In particular, the factors strongly
influence photosynthesis [6,7], which is a basis of plant productivity.

A soil drought is a key adverse factor for agricultural plants [5,8]. Water exchange and
photosynthesis are important targets of the drought action [9,10]. Their changes are main
reasons for the decrease in the plant productivity. The drought is often accompanied by the
action of an increased temperature that can stimulate negative effects of the drought on
the plant productivity [11]. It is important that even short-term water shortage (hours and
days), which is induced by decreased irrigation [10,12] or the action of osmolitics [13,14],
can induce numerous physiological and biochemical changes in plants. The short-term
water shortage strongly influences photosynthetic processes and transpiration [10,12,14];
decreasing CO2 assimilation and efficiency of photosynthetic machinery, inducing stomata
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closing, suppressing water exchange, and increasing photosynthetic damage are the typical
responses induced the shortage.

Thus, revealing the water shortage action early is a prospective method to minimize
the photosynthetic damage and to protect crops. Developing methods of remote sensing
of stress changes in plants (including drought- and heating-induced changes) [15–20] can
be used for such revelation. These methods should be high-throughput, have spatial
resolution, not influence plants and the environment [21], etc.

Optical methods (including multispectral, hyperspectral, fluorescence, thermal, and
RGB imaging) are effective tools for plant monitoring (see, e.g., [15,21–24]). For example,
measurements of solar-induced fluorescence can be used to estimate the rate of photosyn-
thetic processes [24,25], including remote sensing of photosynthetic stress changes under
the action of drought [26–28]. Thermal imaging can be used to estimate plant transpira-
tion [29,30], including changes under the action of stressors; and RGB imaging can be used
for remote sensing of plant growth and nitrogen nutrition status [31].

Measurements of spectra of reflected light can also be effectively used for estimation
of plant physiological processes [18,21,22,32]. It is known that the spectra can be strongly
related to photosynthetic processes [32–35], transpiration and water exchange [36–39],
the content of pigments [18,40–46] and other biochemical compounds [47–49], ethylene
emission [50,51], signaling processes [52–54], plant growth and development [22,55,56], etc.
Changes in the spectra of reflected light can show responses of plants to short-term and
long-term action of stressors [23,47,57–59].

However, interpreting the measured spectra of reflected light is an important problem
of plant remote sensing. Developing methods of analysis of whole reflectance spectra
(spectral “signatures” [60]) can be an effective solution of the problem. There are numerous
works (e.g., [61–64]) that use methods of machine learning to analyze measurements of
whole reflectance spectra and estimate the physiological processes in plants. However,
machine learning has some limitations; in particular, deep learning, which may be the
most prospective method in this group, requires large amounts of data for learning (e.g.,
thousands or tens of thousands of plant images with identified actions of stressors) [65,66].
Developing mechanistic models of radiative transfer in plant leaves and the canopy is an
alternative method to analyze the relations between plant physiological processes and
reflectance spectra. The models can be focused on the spectra of pigment absorption in the
canopy (e.g., variants of PROSPECT [67–69]), the relationship of radiative transfer in leaves
and canopy to photosynthetic processes [70–72], descriptions of topographic influences on
plant reflectance [73], etc. Using these models can improve the reflectance analysis (e.g.,
to correct reflectance errors related to microslope topography [73] or to accurately estimate
photosynthetic pigment content in plants [68,69]). The limitations of mechanistic models
are mainly related to their complexity because descriptions of radiation transfer can be
strongly dependent on the canopy geometry [72].

Another approach for the analysis of spectra of reflected light is to use narrowband [16–18]
and broadband [22,53] reflectance indices (RIs), which show changes in reflected light
intensity at a specific wavelength (measuring wavelength) relative to another wavelength
(control wavelength). There are many widely used narrowband reflectance indices: normal-
ized difference vegetation index (NDVI) [39,74,75], water index (WI) [36,76] and normalized
difference water index (NDWI) [77], photochemical reflectance index (PRI) [33–35,42,48,78],
near-infrared reflectance of terrestrial vegetation (NIRV) [79], and others [18–22]. The appli-
cation of reflectance indices has some advantages compared to other methods of analysis
of plant reflectance spectra: (i) The possibility to measure based on both multi- and hy-
perspectral cameras; (ii) simple algorithms for calculating RIs; (iii) use of relative units
for RIs and minimization of errors related to light intensity; and (iv) possibility to reveal
specific physiological processes or specific physiological parameters related to specific
wavelengths (e.g., WI and NDWI show water content in plants [36,54,76,77]; PRI is mainly
caused by acidification in chloroplast lumen and shows photosynthetic processes [35,42,80];
etc.). The properties are the basis of using RIs in remote sensing of plant stress changes;
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in particular, drought-induced plant changes can be revealed by measurements of NDVI
and WI at different time and spatial scales [54,76,81–83]. Heating-induced changes in
plants can also be revealed on the basis of the measurements of the indices [81,84].

However, further investigations into using RIs for estimating physiological processes
in plants remain topical. Current RIs are calculated on the basis of analysis of only small
amounts of potential combinations of spectral bands; at that, even small shifts of used
wavelengths can modify sensitivities of the RIs to physiological processes (e.g., earlier
we showed changes in relations between PRI and photosynthetic parameters under such
shifts [59]). Solving this problem can be based on a complex analysis of the efficiency of all
possible RIs, which are calculated based on all combinations of wavelengths of reflected
light in a measured spectrum.

Only a few works have been devoted to this complex analysis [51,85–89]. Correlo-
grams, which are heatmaps of the dependence of the correlation coefficient between RI
and analyzed physiological parameters on the values of two wavelengths (used for RI
calculation), are the main results of these investigations. Their use can simultaneously
show relations of all possible reflectance indices with investigated physiological param-
eters [51,85,89]. Potentially, similar heatmaps of the significance (p) and directions of
differences between spectral indices under control and experimental conditions can be
used to quickly reveal RIs that are sensitive to actions of stressors including drought and
heating; however, this possibility requires an experimental analysis.

The aim of our work was to conduct the complex analysis of the efficiency of using
difference reflectance indices for early revealing the influences of the short-term water
shortage and heating on plant seedlings. Our investigation was focused on the analysis
of RIs calculated on the basis of 400–700 nm wavelengths which form a photosynthetic
activity spectrum [90,91]. Considering the influence of the water shortage and heating on
photosynthesis [7,10,12], the spectral range was expected to be sensitive to action of these
stressors. The investigation was performed in laboratory conditions because investigations
in controlled conditions are widely used approach for primary revealing effective RIs for
remote sensing (see, e.g., [36] for WI, [77] for NDWI, and [33,48] for PRI).

2. Materials and Methods
2.1. Plant Materials and Treatments

We used two- to three-week-old seedlings of pea (Pisum sativum L., cultivar Albumen)
for an investigation of short-term water shortage influence on RIs (in accordance with our
previous work [92]). Plants were cultivated in a sand substrate in a Binder KBW 240 (Binder
GmbH, Tuttlingen, Germany) under a 16/8 h (light/dark) photoperiod at 24 ◦C. The water
shortage was emulated by irrigation absence for five days of the experiment. Control
plants were irrigated every two days. Measurement of reflectance and photosynthetic
parameters was performed every day of the water shortage for experimental and control
seedlings. Quantities of investigated seedlings were 6 for plants under water shortage and
6 for control plants.

The relative water content in the sand substrate was measured as the ratio of difference
between fresh and dry weights to fresh weight; the dry weight of sand was measured after
2 h of heating in a TV-20-PZ-K thermostat (Kasimov Instrument Plant, Kasimov, Russia)
(about 100 ◦C). This content was rapidly decreased after the termination of irrigation:
about 10% of water under control conditions, less than 5% of water on the first day of
water shortage, and less than 0.5% on the following days of the shortage. The method was
also used for estimation of the relative water content and dry weight in the leaves which
were measured every day of water shortage in separate groups of seedlings. First, second,
and third leaves from each investigated plant were analyzed; the relative water content
and dry weight were calculated per leaf. Quantities of investigated seedlings were 6 for all
experimental and control variants.

We used two- to three-week-old seedlings of pea (Pisum sativum L., cultivar Albumen),
wheat (Triticum aestivum L., cultivar Zlata), and pumpkin (Cucurbita pepo L., cultivar
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Mozoleevskaya) for the investigation of short-term heating influence on RIs (in accordance
with [92]). The seedlings were hydroponically cultivated in the Binder KBW 240. The plants
were heated in the thermostat for 30 min at 46.5 ◦C for pea and pumpkin and at 44 ◦C for
wheat in accordance with our previous work [92]. Measurements of leaf plant reflectance
and photosynthetic parameters for each seedling were performed on seedlings without
heat (control plants) and in 1 h and one day after termination of heating (experimental
plants). Quantities of control and heated seedlings were 5 for pea, 6 for wheat, and 6
for pumpkin.

2.2. Measurement of Reflected Light and Maximal Quantum Yield of Photosystem II

The measurement of the reflectance indices and photosynthetic parameters was per-
formed on the second mature leaves of investigated plants (in accordance with our previous
investigation [92]), which were kept at a fixed position (Figure 1).
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Figure 1. Schema of measurements of maximal quantum yield of photosystem II (Fv/Fm) and
intensity of reflected light in leaves of pea, wheat, and pumpkin seedlings. Leaves of investigated
plants were kept at a fixed angle. Measuring light (ML) refers to standard pulses of a weak blue
light (460 nm, 24 µmol m−2 s−1, 2.5 µs pulse length). Saturation pulse (SP; red light, 630 nm,
10,000 µmol m−2 s−1, 300 ms) was used for estimation of Fv/Fm before illumination by white actinic
light (AL). MLs and SPs were generated by Dual-PAM-100, including blocks DUAL-DB and DUAL-E.
A halogen lamp Osram Decostar was used as a source of white AL (about 630 µmol m−2 s−1);
duration of illumination was 9 min. Reflected light (RL) was measured by an S-100 spectrometer.
Angle of light incidence on leaf surface was about 30◦, angle between leaf surface and input for RL
was about 30◦, and angle between leaf surface and direction of SP and ML was about 60◦.

The photosynthetic parameters and intensity of reflected light were simultaneously
measured in leaves, as described in our previous works [52,80,92,93]. A halogen lamp
(3000 K, 20 W, 12 V; Osram Decostar, OSRAM GmbH, Munich, Germany) was the source
of white actinic light. The intensity of leaf illumination was about 630 µmol m−2 s−1.
The distance from the halogen lamp to the leaf was about 15 cm; the angle between the
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leaf’s surface and the direction of the actinic light was about 30◦. The white actinic light was
turned on after the measurement of maximal quantum yield of photosystem II (Fv/Fm).
The total duration of plant illumination by halogen lamp was about 9 min.

A Dual-PAM-100 PAM fluorometer (Heinz Walz GmbH, Effeltrich, Germany) was
used to measure photosynthetic parameters. Plants were adapted under dark conditions for
15 min. The dark (Fo) and maximal (Fm) fluorescence yields in photosystem II (PSII) [24,94]
were measured at the saturation pulse (630 nm, 10,000 µmol m−2 s−1, 300 ms) before initia-
tion of actinic light illumination and measurement of reflected light. In our investigation,
we estimated the damage of the photosynthetic apparatus based on the value of Fv/Fm,
which was calculated as:

Fv
Fm

=
Fm − Fo

Fm
, (1)

The intensity of reflected light by plant leaves was measured by using an S100 spec-
trometer (SOLAR Laser Systems, Minsk, Belarus) connected with a fiber optic cable. The tip
of the cable was equipped with the simplest collimator as a small black tube. The geometry
of the experiment is shown in Figure 1. The angle between the leaf’s surface and the input
of the fiber-optic cable was about 30◦, and the distance from the leaf to the fiber-optic
surface was about 1.5 cm. The spectral range of the S100 was 190–1050 nm, and the spectral
resolution was about 1 nm. The white panel of a QPcard 101 calibration card ver. 3 (Ar-
graph Corp., Carlstadt, NJ, USA) was used for the calibration procedure before measuring
the spectra of reflected light in leaves.

The integration time was 5 s, and continuously repeating measurements were used.
We used two time points for our analysis: after turning on the halogen lamp and after 7 min
of illumination. The final intensity of reflected light at both time points was calculated as
the difference between this intensity under illumination and the dark rate of the signal.

2.3. Calculation of Difference Reflectance Indices and Data Analysis

The calculation of difference reflectance indices and data analysis were based on
several programs, which were developed using the Python 3.8 programming language.
These programs solved the following tasks:

(i) Calculation of all possible difference RIs according to Equation (2):

RI =
I(R1)−I(R2)

I(R1)+I(R2)
, (2)

where I(R1) and I(R2) are intensities of reflected light at R1 and R2 wavelengths (in the
spectral range from 400 to 700 nm). The intensities were averaged in a 3 nm range for
increasing accuracy of the analysis. If R2 ≥ R1 then RI was not calculated. Additionally,
light-induced changes in RIs (∆RIs) were calculated according to Equation (3):

∆RI = RI2−RI1 , (3)

where RI1 was calculated based on I(R1) and I(R2), which were measured immediately
after turning on the halogen lamp (first time point), and RI2 was calculated based
on I(R1) and I(R2), which were measured 7 min after turning on the halogen lamp
(second time point).

(ii) Calculation of significance (p) of differences between control and experimental plants
for all calculated RIs (or ∆RIs); the nonparametric Mann–Whitney U test was used for
estimation of p. Directions of changes were also estimated. Two-dimensional data
arrays (significances and directions of changes for each RI as function of R1 and R2)
were results of this stage of the analysis. The arrays were used for direct revealing the
effective RIs (or ∆RIs) or for following construction of heatmaps.

(iii) Construction of two-dimensional heatmaps based on the arrays. Each pixel of the
heatmaps could show three variants (different colors): significant increase of the
experimental RI or ∆RI (p ≤ 0.05, increase), significant decrease of the experimental



Remote Sens. 2021, 13, 962 6 of 24

RI or ∆RI (p ≤ 0.05, decrease), and absence of significant difference between control
and experimental RI or ∆RI (p > 0.05).

NDVI (Equation (4)) and WI (Equation (5)) were additionally calculated in the ex-
periments because the indices could be used for estimating drought and heating ac-
tion [54,76,81–84]:

NDVI =
I(764 − 796)−I(664 − 676)
I(764 − 796)+I(664 − 676)

, (4)

where I(764–796) and I(664–676) are the intensities of reflected light averaged in 764–796
nm and 664–676 nm ranges, respectively [75].

WI =
I(900)
I(970)

, (5)

where I(900) and I(970) were intensities of reflected light at 900 and 970 nm, respec-
tively [76].

2.4. Statistics

Considering the quantity of repetitions equaling 5–6, their distributions could be
differed from the normal distribution. As a result, we preliminarily used the Shapiro–
Wilk test for estimation of normality of distributions of calculated RIs, ∆RIs, NDVI, WI,
Fv/Fm, and relative water content in control and experiments. The most of investigated
parameters had the normal distribution (data not shown); however, there were parameters
which had not the normal distribution and could not analyzed by methods of parametric
statistical analysis (e.g., Student’s t-test). For standardization of the analysis, we used the
nonparametric Mann–Whitney U test calculated by using the Python 3.8 for analysis of all
investigated parameters. Medians of investigated values were used as a nonparametric
analog of averaged values.

In experiments with water shortage, linear correlation coefficients between calculated
reflectance indices and investigated physiological parameters (Fv/Fm, relative water
content) were calculated. Medians, which were separately calculated on the basis of control
and experimental values for each day of the water shortage, were used for the calculation
(n = 10).

3. Results
3.1. Influence of Water Shortage on Relative Water Content and Maximal Quantum Yield of
Photosystem II

On the first stage of the investigation, we analyzed influencing water shortage on
the relative water content, Fv/Fm, and dry weight of leaves of pea seedlings. The water
shortage was emulated by the absence of irrigation for five days; this water regime quickly
decreased the water content in the sand substrate. Only pea seedlings were used in this
experimental variant because our preliminary experiments showed that they were sensitive
to the water shortage and suitable for investigation of the influence of water deficit on
photosynthetic and spectral properties of leaves [54,92].

Figure 2a shows that the water shortage decreased the relative water content in
leaves. The significant decrease was initiated in the second day of water shortage and
was about 17% in the fifth day. The result showed that decrease of the soil relative water
content induced decrease of the leaf relative water content for the investigated time interval.
Figure 2b shows that significant decrease of Fv/Fm was observed for 2–5 days of the water
shortage development. The strong decrease of Fv/Fm, which probably indicated damage
of photosynthetic machinery, was observed on the fourth day, and especially the fifth day
of the water shortage action. In contrast, Figure 2c shows that the dry weight was not
significantly changed for five days under the irrigation absence.
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Figure 2. Dynamics of the relative water content (a), photosynthetic maximal quantum yield (Fv/Fm) (b), and dry wight
(c) in leaves of pea seedlings subjected to the water shortage and a scatter plot between the relative water content and
Fv/Fm (d). The relative water content and dry wight were calculated per leaf. Control plants were irrigated every two days,
irrigation was not used for five days in experiment. R2 and R are determination and correlation coefficients. Medians are
shown in the figure. * Value significantly differed from control (p < 0.05, Mann–Whitney U test).

After that, we investigated relations between the decrease of the leaf relative water
content and the Fv/Fm decrease. Medians, which were separately calculated for values
in control and experimental seedlings in each day of the water shortage, were used for
calculation of correlation coefficient. Figure 2d shows that the relative water content
in leaves and Fv/Fm were strongly related at the water shortage (R was about 0.82).
The result showed that the water loss was probable to induce the photosynthetic damage
at the emulated water shortage. Thus, this experimental variant could be used for further
investigation of the influence of the water shortage on the RIs of pea leaves.

3.2. Influence of Water Shortage on Difference Reflectance Indices

Further, we investigated influencing the water shortage on difference reflectance
indices in leaves of pea seedlings (Figures 3 and 4). Heatmaps for significances and
directions of water shortage-induced changes in RIs and ∆RIs, which were calculated on
the basis of wavelengths in the 400–700 nm range, were constructed for each day of the
water shortage action.
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leaves in the first (a), second (b), third (c), fourth (d), and fifth (e) days of the water shortage. RIs were calculated based on
equation RI = I(R1)−I(R2)

I(R1)+I(R2)
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for 3 nm). The Mann–Whitney U test was used for p calculations.
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Figure 4. Heatmaps of significances and directions of water shortage-induced changes in ∆RIs in pea leaves in the first
(a), second (b), third (c), fourth (d), and fifth (e) days of the water shortage. RIs were calculated based on equation
RI = I(R1)−I(R2)

I(R1)+I(R2)
, where I(R1) and I(R2) are intensities of reflected light at different narrow spectral bands (averaged for 3 nm).

∆RI (the light-induced change in RI) was calculated as RI2 − RI1. RI1 was calculated based on I(R1) and I(R2) measured
immediately after turning on the halogen lamp (first time point), and RI2 based on I(R1) and I(R2) measured 7 min after
turning on lamp (second time point). The Mann–Whitney U test was used for p calculations.
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Figure 3 shows heatmaps of significances and directions of water shortage-induced
changes in absolute values of RIs in pea leaves in different days of the water shortage.
Two large spectral regions with significant differences between control and experimental
seedlings (with increased and with decreased RIs) and several small regions were observed
in the first day of the water shortage. In the second day, regions with decreased RIs were
absent (excluding separate pixels or small groups of pixels) and areas of spectral regions
with increased RIs were strongly reduced. Since the third day of the water shortage, areas of
spectral regions with significantly changes in RIs were increased. On the fifth day of the
water shortage, areas of the spectral regions with significant changes in absolute values of
RIs formed the most part of total area of the heatmap (about 71%).

Figure 4 shows heatmaps of significances and directions of water shortage-induced
changes in ∆RIs (the light-induced change in RIs) in pea leaves in different days of the
water shortage. There were only small spectral regions and separate pixels in the heatmaps
with significant differences between control ∆RIs in experimental and control plants in the
first, second, and third days of the water shortage. Positions of the regions and pixels were
varied in different days of the water shortage. Since the fourth day of the water shortage,
large spectral regions with positive and negative changes in ∆RIs were observed. In the
fifth day of the water shortage, areas of the spectral regions with significant changes in
∆RIs were about 30% from total area of the heatmap.

The results showed that the water shortage action could influence the number of
RIs; changes in their absolute values were more expressive than changes in ∆RIs. Several
spectral regions with significant differences between RIs (or ∆RIs) were observed in specific
days of the water shortage. For example, a large spectral region with decreased RIs (R1
was about 640–690 nm, R2 was about 500–650 nm) was revealed in the first day (Figure 3a)
but it was absent in the second day (Figure 3b). In contrast, there were spectral regions
with significant differences which were observed for several days of the water shortage.
For example, a large spectral region with increased RIs (R1 was about 560–640 nm, R2 was
about 520–600 nm) was observed since the third day of the water shortage (Figure 3c–e).

3.3. Analysis of Efficiencies of Difference Reflectance Indices for Revealing Water Shortage-Induced
Changes in Seedlings

In the next stage of our work, we directly analyzed the two-dimensional data arrays,
which included significances and directions of changes for each RI as function of R1 and R2.
Revealing RIs, which were changed on initial stages of the water shortage and remained
changed after that, was main task of this analysis because the indices could be potentially
considered as markers of action of drought on plants.

Table 1 shows that there were only a small portion of RIs (less than 2%), which were
significantly changed for 1–5 or 2–5 days of the water shortage. In contrast, about 25% of
the total quantity of RIs was changed for 3–5 days of the water shortage and more than
50% of all RIs was changed for 4–5 days of the water shortage. Percentages of changed
∆RIs were lower, e.g., about 15% was changed for 4–5 days of the soil water shortage.

Table 1. Percentages of RIs and ∆RIs, which were significantly changed for different time intervals
after the water shortage initiation.

Title 1 1–5 Days 2–5 Days 3–5 Days 4–5 Days 5 Days

RIs 0.1903% 1.7504% 22.8691% 51.0274% 71.1568%
∆RIs 0% 0% 1.5221% 15.6012% 31.3166%

RIs, which were significant changed for 1–5 and 2–5 days of the water shortage,
were the most interesting for analysis because they were sensitive to the earliest action of
the water shortage. Table 2 shows these RIs and their correlations with the relative water
content and Fv/Fm in leaves of pea seedlings. Only absolute values of RIs were analyzed.
Additionally, Table 2 shows NDVI and WI, which are widely used indices for estimating
the drought action on plants [54,76,81–83].
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Table 2. Time ranges of efficiencies of absolute values of RIs for the water shortage sensing and correlation coefficients
between RIs and investigated physiological parameters (Fv/Fm and the relative water content in leaves). Correlation
coefficients with absolute values more than 0.90 are marked by bold.

Index R1, nm R2, nm Time Range of RI
Efficiency (p < 0.05)

Correlation
Coefficient

between RI and
Fv/Fm

Correlation
Coefficient

between RI and
Water Content

Direction of
Changes in RI

NDVI 764–796
(780)

664–677
(670) 3–5 days 0.9513 * 0.8931 * decrease

WI 900 970 5 day 0.4052 0.6318 decrease

RI 1 621 442 1–5 days −0.7435 * −0.8618 * increase
RI 2 629 442 1–5 days −0.7606 * −0.8814 * increase
RI 3 633 442 1–5 days −0.7539 * −0.8576 * increase
RI 4 637 442 1–5 days −0.7636 * −0.8654 * increase
RI 5 700 442 1–5 days −0.7223 * −0.8281 * increase
RI 6 475 450 2–5 days −0.6312 −0.8849 * increase
RI 7 487 421 2–5 days −0.8396 * −0.8985 * increase
RI 8 487 458 2–5 days −0.7208 * −0.8039 * increase
RI 9 491 421 2–5 days −0.8666 * −0.8983 * increase

RI 10 496 421 2–5 days −0.8326 * −0.9099 * increase
RI 11 496 479 2–5 days −0.6760 * −0.8831 * increase
RI 12 496 483 2–5 days −0.6754 * −0.8997 * increase
RI 13 500 421 2–5 days −0.8300 * −0.9272 * increase
RI 14 500 450 2–5 days −0.7071 * −0.9244 * increase
RI 15 500 471 2–5 days −0.8178 * −0.9721 * increase
RI 16 500 479 2–5 days −0.6811 * −0.9096 * increase
RI 17 500 483 2–5 days −0.7159 * −0.9491 * increase
RI 18 504 421 2–5 days −0.8219 * −0.9346 * increase
RI 19 504 450 2–5 days −0.7061 * −0.9328 * increase
RI 20 504 471 2–5 days −0.7963 * −0.9404 * increase
RI 21 504 479 2–5 days −0.7075 * −0.9309 * increase
RI 22 508 421 2–5 days −0.7957 * −0.9308 * increase
RI 23 512 421 2–5 days −0.7642 * −0.9077 * increase
RI 24 613 604 2–5 days −0.9252 * −0.9184 * increase
RI 25 629 421 2–5 days −0.7970 * −0.8835 * increase
RI 26 633 421 2–5 days −0.7998 * −0.8851 * increase
RI 27 637 421 2–5 days −0.7968 * −0.8817 * increase
RI 28 654 421 2–5 days −0.8061 * −0.9084 * increase
RI 29 654 442 2–5 days −0.8077 * −0.9210 * increase
RI 30 658 421 2–5 days −0.8101 * −0.9074 * increase
RI 31 658 442 2–5 days −0.8099 * −0.9202 * increase
RI 32 662 421 2–5 days −0.8173 * −0.9121 * increase
RI 33 662 442 2–5 days −0.8173 * −0.9213 * increase
RI 34 667 421 2–5 days −0.8183 * −0.9063 * increase
RI 35 667 442 2–5 days −0.8166 * −0.9135 * increase
RI 36 671 421 2–5 days −0.8153 * −0.9033 * increase
RI 37 671 433 2–5 days −0.8441 * −0.8884 * increase
RI 38 675 421 2–5 days −0.8237 * −0.9037 * increase
RI 39 679 421 2–5 days −0.8288 * −0.9027 * increase
RI 40 683 421 2–5 days −0.8317 * −0.8973 * increase
RI 41 687 421 2–5 days −0.8399 * −0.9041 * increase
RI 42 687 433 2–5 days −0.8822 * −0.8702 * increase
RI 43 692 421 2–5 days −0.8431 * −0.9067 * increase
RI 44 692 442 2–5 days −0.8250 * −0.9145 * increase
RI 45 696 421 2–5 days −0.8414 * −0.9190 * increase
RI 46 696 442 2–5 days −0.8020 * −0.9117 * increase

*, the correlation coefficient was significant. Correlation coefficients were calculated on the basis of medians of values of RIs in control and
experimental seedlings; the averaging was performed for each day of the water shortage (n = 10).
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Table 2 shows that there were five reflectance indices, which were significantly
increased since the first day of the water shortage, and another 41 reflectance indices,
which were significantly increased since the second day of the water shortage. The most
of these RIs were strongly correlated with Fv/Fm and the relative water content in leaves
of pea seedlings. NDVI was also strongly related to the physiological parameters; how-
ever, it was significantly changed since the third day of the water shortage. Correlation
coefficients between WI and investigated physiological parameters were lower than ones
for other RIs (e.g., the coefficient between WI and the relative water content was 0.63).
The result was in a good accordance with literature data [76] which showed that average
correlation coefficient between WI and the relative water content was about 0.66. Signifi-
cant change in WI was observed in the fifth day of the water shortage. Thus, revealed RIs
seemed to be more effective markers of the water shortage action in investigated plants
than NDVI and WI.

Dynamics of NDVI, WI, and several revealed RIs in control and experimental pea
seedlings were separately investigated. We analyzed the RI(621,442) calculated on the
basis of reflected light intensities at 621 and 442 nm, RI(500,471) calculated on the basis
of reflected light intensities at 500 and 471 nm, and RI(692,421) calculated on the basis of
reflected light intensities at 692 and 421 nm. RI(621,442) was selected because it was signifi-
cantly changed for 1–5 days of the water shortage. RI(500,471) and RI(692,421) were selected
because they were calculated on the basis of different spectral regions (green-blue and
red-blue regions, respectively) and were strongly correlated to physiological parameters.

Figure 5 shows that all selected RIs had relatively stable dynamics in control plants;
in contrast, the NDVI and, especially, WI dynamics were more varied under control condi-
tions. A magnitude of RI(692,421) changes was more than the magnitude of NDVI changes
(about 0.2 and about 0.3, respectively). The magnitudes of RI(621,442) and RI(500,471)
changes were lower (about 0.015 and about 0.05, respectively); however, the magnitudes
were comparable to the magnitudes of other widely-used reflectance indices (e.g., PRI [59]).

3.4. Influence of Short-Term Heating on Maximal Quantum Yield of Photosystem II and Difference
Reflectance Indices

It is known [11] that development of soil drought is often accompanied by increased
temperature actions; at that, durations of these actions (daily temperature changes and/or
direct heating of leaves induced by sunlight) can be strongly shorter than the duration
of soil drought. Considering this point, we additionally investigated influencing the
short-term heating on Fv/Fm and reflectance indices. Earlier, we showed that the short-
term heating could strongly influence photosynthetic parameters and PRI in pea, wheat,
and pumpkin seedlings [92]. As a result, wheat and pumpkin seedlings were additionally
investigated in the experiment with the short-term heating. Experimental Fv/Fm and
reflectance indices were measured in 1 h and one day after the action of high temperature
on seedlings of pea, wheat, and pumpkin.

It was shown that Fv/Fm was significantly decreased in 1 h after the short-term
heating in pea, wheat, and pumpkin seedlings (Figure 6). In pea, Fv/Fm did not recover in
one day after the heating. In wheat and pumpkin, Fv/Fm partially recovered in this time.

Figure 7 shows that heatmaps of significances and directions of heating-induced
changes in absolute values of RIs. Two large spectral regions with significant differences
between control and experimental seedlings (with increased and decreased RIs) and several
small regions were observed in pea and pumpkin leaves in 1 h after the heating. The spectral
regions with increased RIs were strongly decreased in one day after the heating (especially,
in pumpkin leaves); the spectral regions with decreased RIs were practically absent after
this time interval. In wheat seedlings, there were only several small spectral regions (and
separate pixels) with significantly increased absolute values of RIs in 1 h and one day after
the short-term heating. Spectral regions and separate pixels with decreased absolute values
of RIs were absent in wheat seedling.
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Figure 5. Dependence of (a) the normalized difference vegetation index (NDVI), (b) the water index (WI), (c) the difference
reflectance index RI(621,442) was calculated based on R1 = 621 nm and R2 = 442 nm, (d) the difference reflectance index
RI(500,471) was calculated based on R1 = 500 nm and R2 = 471 nm, and (e) the difference reflectance index RI(692,421) was
calculated based on R1 = 692 nm and R2 = 421 nm for pea seedlings over duration of water shortage. Experimental plants
were not irrigated; controls were irrigated every two days. Medians are shown in the figure. * Value significantly differed
from control (p < 0.05, Mann–Whitney U test).
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Figure 6. Maximal quantum yield of photosystem II (Fv/Fm) in control and in 1 h and one day
after heating of whole plant for (a) pea, (b) wheat, and (c) pumpkin. Seedlings were heated in a
TV-20-PZ-K thermostat for 30 min at 46.5 ◦C for pea and pumpkin and 44 ◦C for wheat. Medians are
shown in the figure. * Value significantly differed from control (p < 0.05, Mann–Whitney U test).

Figure 8 shows that heatmaps of significances and directions of heating-induced
changes in ∆RIs (the light-induced change in RIs). Several large spectral regions with
significant differences between control and experimental seedlings (with increased and
with decreased RIs) and several small regions were observed in pea, wheat, and pumpkin
leaves in 1 h after heating. Some spectral ranges were specific for different investigated
species. For example, a large spectral region with decreased ∆RIs (R1 was about 525–575 nm,
R2 was about 460–540 nm) was observed in wheat seedlings in 1 h after the short-term
heating but it was absent in pea and pumpkin seedlings. In contrast, some spectral ranges
with significant changes in ∆RIs were observed in all investigated plants. For example,
a large spectral region with decreased ∆RIs (R1 was about 570–610 nm, R2 was about
510–570 nm) was observed in all pea, wheat, and pumpkin seedlings in 1 h after the
short-term heating.

The large areas of the spectral regions with changed ∆RIs were observed in one
day after the short-term heating in pea seedlings. Some spectral regions were like the
regions in 1 h after the heating; for example, the spectral region with decreased ∆RIs
(R1 was about 570–610 nm, R2 was about 510–570 nm) or spectral region with increased
∆RIs (R1 was about 675–700 nm, R2 was about 400–650 nm). Only small spectral areas
with significant changes in ∆RIs were observed in one day after the short-term heating in
pumpkin seedlings. Finally, only separate pixels in the heatmap showed significant changes
in ∆RIs in one day after the short-term heating in wheat seedlings. The results seemed
to be similar to different recoveries of photosynthetic damages in different investigated
species (the Fv/Fm recovery absence in pea seedlings and the partial recovery in wheat
and pumpkin seedlings, Figure 6).
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, where I(R1) and I(R2)

are intensities of reflected light at different narrow spectral bands (averaged for 3 nm). The Mann–Whitney U test was used
for p calculations.
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Figure 8. Heatmaps of significances and directions of heating-induced changes in ∆RIs in pea leaves
in (a) 1 h and (b) one day after the heating, wheat leaves in (c) 1 h and (d) one day after the heating,
and pumpkin leaves in (e) 1 h and (f) one day after the heating. RIs were calculated based on the
equation RI = I(R1)−I(R2)

I(R1)+I(R2)
, where I(R1) and I(R2) are intensities of reflected light at different narrow

spectral bands (averaged for 3 nm). ∆RI (the light-induced change in RI) was calculated as RI2 – RI1.
RI1 was calculated based on I(R1) and I(R2) measured immediately after turning on the halogen lamp
(first time point), and RI2 based on I(R1) and I(R2) measured 7 min after turning on lamp (second
time point). The Mann–Whitney U test was used for p calculations.
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3.5. Analysis of Efficiencies of the Water Shortage-Sensitive Reflectance Indices for Revealing
Heating-Induced Changes

Finally, we analyzed the question: Could the revealed RIs, which were sensitive to
water shortage-induced changes (see Table 2), be significantly changed after the short-term
heating? Only pea seedlings were investigated to increase accuracy of comparison between
water shortage- and heating-induced changes in absolute values of RIs.

The two-dimensional data arrays, which included significances and directions of
heating-induced changes for each RI as function of R1 and R2, were directly analyzed.
It was shown that 31 RIs from Table 2 were significantly increased in 1 h after the short-
term heating and 2 RI was significantly increased in one day after that (Table 3). NDVI was
significantly decreased in 1 h after the short-term heating; however, the significant change
was absent in one day after the heating. Significant changes in WI were absent.

Table 3. Changes in absolute values of NDVI, WI, and the water shortage sensitive RIs (from Table 2)
after the short-term heating.

Index 1 h 1 Day Index 1 h 1 Day

NDVI Decrease - RI(658; 421) Increase -
WI - - RI(658; 442) Increase -

RI(487; 421) Increase - RI(662; 421) Increase -
RI(491; 421) Increase - RI(662; 442) Increase -
RI(496; 421) Increase - RI(667; 421) Increase -
RI(496; 479) Increase - RI(667; 442) Increase -
RI(500; 421) Increase - RI(671; 421) Increase -
RI(500; 450) Increase - RI(671; 433) Increase -
RI(504; 421) Increase - RI(675; 421) Increase -
RI(504; 450) Increase - RI(679; 421) Increase -
RI(508; 421) Increase - RI(683; 421) Increase -
RI(613; 604) Increase Increase RI(687; 421) Increase -
RI(633; 421) Increase - RI(687; 433) Increase -
RI(633; 442) Increase - RI(692; 421) Increase -
RI(637; 421) Increase - RI(692; 442) Increase -
RI(654; 421) Increase - RI(696; 421) Increase -
RI(654; 442) Increase - RI(487; 458) - Increase

The RIs from Table 2, which were not significantly changed after the short-term heating, were not shown.

The results showed that there were RIs which were sensitive to both the water shortage
and heating; however, the indices were mainly sensitive to plant changes, which were
observed immediately after action of the increased temperature (in 1 h after the heating).
Long-term changes in plants (changes, which were observed in one day after the heating)
did not influence absolute values of 44 from 46 RIs, which were sensitive to the soil drought
(see Tables 2 and 3).

4. Discussion

Soil drought, which is often accompanied by increased temperatures [11], is a key
adverse factor for agricultural plants [5,8]. Early revelation of the water shortage action is
a prospective way of the photosynthetic damage decrease and crop protection; the revela-
tion can be based on the remote sensing of water shortage- and, maybe, heating-induced
changes in plants [15–20]. Measurements of spectra of reflected light, which can be strongly
related to content of pigments [18,40–46], photosynthetic processes [32–35], transpiration
and water exchange [36–39], etc., can be effective tools for remote sensing of plant physio-
logical processes [18,21,22,32] including the induction of stress changes [23,47,57–59].

There are numerous reflectance indices (e.g., NDVI, PRI, WI, NDWI, and
NIRV [33–36,39,42,48,74–79]) which are calculated on the basis of narrow spectral bands of
reflected light and used for plant remote sensing. Using RIs for analysis of reflected light
spectra has the number of preferences including the possibility to measure based on both
multi- and hyperspectral cameras, simple algorithms for calculating RIs, the use of relative
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units for RIs and minimization of errors related to light intensity, and the possibility to re-
veal specific physiological processes or specific physiological parameters related to specific
wavelengths. The reflectance indices can be used for remote sensing of water shortage-
and heating-induced changes in plants (e.g., NDVI, WI, NDWI, or PRI [54,76,77,81–83,92]).

However, current RIs are calculated on the basis of analysis of only small amounts
of potential combinations of spectral bands; at that, even small shifts of the used wave-
lengths can modify the sensitivities of RIs to physiological processes (e.g., see [59]). As a
result, the next step in development of methods of using RIs is their complex analysis,
which includes estimation of efficiencies of all possible RIs, which are calculated based on
all combinations of wavelengths of reflected light in the measured spectrum [51,85–89].
Construction of two-dimensional heatmaps, which show the efficiency of each possible
RI (e.g., correlation coefficients between the RI and physiological parameters in correl-
ograms [51,85–89]) as function of two wavelengths used for the calculation of this RI,
is actively used for the complex analysis. In the current work, we analyze the similar
heatmaps; however, significances and directions of water shortage- and heating-induced
changes in RIs are estimated in our complex analysis. There are several important points
which were shown in the current work.

First, we show that the heatmaps showing significances and directions of stressor-
induced changes in RIs and ∆RIs (400–700 nm wavelength range) can be used for the
complex revealing RIs and ∆RIs, which are sensitive to the short-term water shortage
and heating (see Figures 3, 4, 7 and 8). In the heatmaps there are both spectral regions
and separate pixels with significantly increased or decreased RIs and ∆RIs. It shows that
both correlograms [51,85–89] and heatmaps of significances and directions of changes (our
results) can be used for the analysis of efficiencies of reflectance indices as markers of
stressor actions.

Second, the analysis of influencing the emulated water shortage on pea seedlings
shows that water shortage-induced changes in absolute values of RIs are more expressive
than the changes in ∆RIs (the light-induced change in RIs): the changes in RIs are initiated
earlier (Figures 3 and 4) and spectral regions with these changes are larger (Table 1).
There are both “specific” (significant changes in RIs are only observed at specific days after
the water shortage initiation) and “universal” (significant changes in RIs are observed for
several days of the water shortage action) spectral regions with drought-sensitive RIs in
the heatmaps (Figure 3).

Further analysis shows that there are five RIs increased for 1–5 days of water shortage
and other 41 RIs increased for 2–5 days of the shortage (Table 2). These RIs are more
sensitive to water shortage then NDVI (increased for 3–5 days of water shortage) and WI
(increased in 5th day), which are widely used for the remote sensing of drought-induced
changes in plants [54,76,81–83]; the most of the RIs are strongly correlated to Fv/Fm and the
relative water content in leaves. All 46 RIs are based on wavelengths related to absorption
spectra for carotenoids and chlorophyll a and b [95]. It is additionally shown that at least
some revealed RIs (e.g. RI(621,442), RI(500,471), and RI(692,421)) are more stable under
control conditions than NDVI and WI (Figure 5). It is an important property because age-
dependent dynamics of absolute value of reflectance index can strongly limit the RI using
(e.g., changes in absolute value of PRI under control conditions can limit the index using for
estimation of water shortage action on plants [92,96]). Considering absorption spectra for
carotenoids and chlorophyll a and b [95], it can be additionally speculated that RI(621,442)
is mainly related to the contents of carotenoids and chlorophyll a, RI(500,471) is mainly
related to the contents of carotenoids and chlorophyll b, and RI(692,421) is probably related
to the contents of chlorophyll a and b. Finally, 32 from these 46 RIs are also sensitive to
short-term heating (Table 3), which is important considering the relations between drought
and increased temperature [11].

Third, the analysis of influencing short-term heating on pea, wheat, and pumpkin
seedlings shows that the heating influences absolute values of RIs in pea and pumpkin
seedlings in a similar manner; in contrast, there are only minimal changes in RIs in wheat
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seedlings (Figure 7). However, the analysis of ∆RIs (the light-induced change in RIs) shows
that there are many spectral regions with significant changes in ∆RIs, which are similar in
pea, wheat, and pumpkin seedlings at 1 h after the short-term heating (Figure 8). In one
day after heating, the regions are minimal in wheat and pumpkin seedlings, but they
remain in pea seedlings. Both results are in a good accordance with photosynthetic damage
because Fv/Fm is significantly decreased 1 h after the short-term heating in pea, wheat,
and pumpkin seedlings; in contrast, Fv/Fm partially recovers in wheat and pumpkin
seedlings and is decreased in pea seedlings in one day after the heating.

It can be supposed that the differences in efficiency of RIs and ∆RIs can be related to
the sensitivity of absolute values of the indices and their light-induced changes to different
groups of processes. Changes in absolute values in RIs are probable to be mainly related to
changes in content and composition of photosynthetic pigments [24,58], which can be af-
fected by water shortage [97,98]. In contrast, ∆RIs are light-induced changes in RIs for 7 min
of illumination. This means that ∆RIs should be related to light-induced physiological
changes in this time interval. It is known that there are numerous photosynthetic changes,
which are formed in this time interval (activation of electron transport chain [99], the forma-
tion of different components of non-photochemical quenching [100,101], changes in the elec-
trochemical gradient of H+ [100,102], etc.), and influence plant reflectance (e.g., [35,42,80]).
Damaging the processes probably results in plant heating [92]; this damage can explain
changes in ∆RIs in our experiments.

Thus, our results show that the complex analysis of efficiencies of RIs (and ∆RIs),
which is based on the calculation of all reflectance indices (and their light-induced changes)
in the measured spectral range of reflected light, on following the estimation of significances
and directions of differences between RIs (and ∆RIs) in control and experimental plants,
and on the construction of heatmaps of these significances and directions, which can be
used for revealing new reflectance indices, and that are sensitive to stressors (by example
of the 400–700 nm spectral range and the water shortage and heating).

It should be noted that our results are shown in laboratory experiments. It means that
efficiencies of the specific RIs, which were sensitive to short-term water shortage in our
work, require additional verification in field conditions in future. Potentially, efficiencies
of revealed reflectance indices can be modified by complicated geometry of canopy in
comparison to fixed leaf, fluctuations in environmental conditions (e.g., changes in light
intensity or wind gusts), spatial heterogeneity in the investigated field (e.g., different plant
growth density), etc. Additionally, it cannot be excluded that RIs, which are sensitive to
early plant physiological changes under water shortage, will not be sensitive to physio-
logical changes under long-term drought. As a result, further verification of the revealed
specific indices in all noted cases is important problem of future investigations.

In contrast, it can be expected that the general proposed approach based on com-
plex analysis of significance of changes in RIs and ∆RIs can be used for both leaf and
canopy levels, different species, various stressors, different spatial and temporal scaled,
etc. This means that the approach seems to be perspective for development of methods of
remote sensing of action of stressors on agricultural plants in fields by multi- and hyper-
spectral imaging that will increase food security and support a sustainable agriculture.

5. Conclusions

In the current work, we performed complex analysis of the efficiency of using differ-
ence reflectance indices for early revealing the influences of the short-term water shortage
and heating on plant seedlings. In laboratory experiments, it was shown that calculation of
all possible RIs and ∆RIs based on 400–700 nm spectral range and construction of heatmaps
of significances of differences between control and experimental seedlings could be used
for revealing indices, which were sensitive to plant changes induced by water shortage and
heating. Using this approach, we showed that there were a number of RIs that were more
sensitive to action of water shortage than NDVI and WI; some of the indices were also
sensitive to heating action. It was additionally shown that absolute values of reflectance
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indices were more sensitive to the action of water shortage. In contrast, light-induced
changes in the indices were more sensitive to the action of heating.

New specific reflectance indices, which are sensitive to stressors in our work, can be
potentially used for early revealing action of water shortage on plants; i.e., they can
contribute to development of methods of plant remote sensing. However, a check of their
efficiency in changeable environmental conditions, in different spatial and temporal scales,
in different plant species, and under action of different stressors is an important future
task because it cannot be excluded that efficiencies of the RIs may be strongly modified in
these cases.

In contrast, it is very probable that the general proposed approach based on complex
analysis of significance of changes in RIs and ∆RIs can be used for revealing reflectance
indices, which will be effective tool for plant remote sensing at all noted cases. Therefore,
another important task of future investigations is further analysis of efficiency of this
approach for different experimental and field conditions.
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14. Altuntaş, C.; Demiralay, M.; Sezgin Muslu, A.; Terzi, R. Proline-stimulated signaling primarily targets the chlorophyll degra-

dation pathway and photosynthesis associated processes to cope with short-term water deficit in maize. Photosynth. Res. 2020,
144, 35–48. [CrossRef] [PubMed]

15. Pinter, P.J.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop
Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [CrossRef]

16. Yang, C. Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical
Application Example. Engineering 2020, 6, 528–532. [CrossRef]

17. Zarco-Tejada, P.J.; Berjón, A.; Miller, J.R. Stress detection in crops with hyperspectral remote sensing and physical simulation
models. In Proceedings of the 2004 Airborne Imaging Spectroscopy Workshop, Bruges, Belgium, 8 October 2004; pp. 1–5.

18. Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm.
Remot. Sens. 2014, 93, 98–111. [CrossRef]

19. Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal in-frared
remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [CrossRef]

20. Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant
Phenotyping. Plant Dis. 2016, 100, 241–251. [CrossRef] [PubMed]

21. Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging technologies in phytopathology:
State of the art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [CrossRef]

22. Prabhakar, M.; Prasad, Y.G.; Rao, M.N. Remote sensing of biotic stress in crop plants and its applications for pest management.
In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M., Eds.;
Springer: Dordrecht, The Netherlands, 2012; pp. 517–545.

23. Gorbe, E.; Calatayud, A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci.
Hortic. 2012, 138, 24–35. [CrossRef]

24. Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van Der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A.
Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot.
2014, 65, 4065–4095. [CrossRef]

25. Zhang, C.; Atherton, J.; Peñuelas, J.; Filella, I.; Kolari, P.; Aalto, J.; Ruhanen, H.; Bäck, J.; Porcar-Castell, A. Do all chlorophyll
fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ.
2019, 42, 3264–3279. [CrossRef] [PubMed]

26. Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought onset mechanisms revealed by
satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 2015,
120, 2427–2440. [CrossRef]

27. Liu, L.; Yang, X.; Zhou, H.; Liu, S.; Zhou, L.; Li, X.; Yang, J.; Han, X.; Wu, J. Evaluating the utility of solar-induced chloro-phyll
fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Sci. Total Environ. 2018, 625,
1208–1217. [CrossRef]

28. Wang, C.; Beringer, J.; Hutley, L.B.; Cleverly, J.; Li, J.; Liu, Q.; Sun, Y. Phenology Dynamics of Dryland Ecosystems Along the
North Australian Tropical Transect Revealed by Satellite Solar-Induced Chlorophyll Fluorescence. Geophys. Res. Lett. 2019, 46,
5294–5302. [CrossRef]

29. Jones, H.G.; Stoll, M.; Santos, T.; de Sousa, C.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring sto-matal
closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [CrossRef]

30. Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the
remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [CrossRef]
[PubMed]

31. Lee, K.-J.; Lee, B.-W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J.
Agron. 2013, 48, 57–65. [CrossRef]

32. Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelas, J. A re-motely
sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092.
[CrossRef]

33. Peñuelas, J.; Garbulsky, M.F.; Filella, I. Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New
Phytol. 2011, 191, 596–599. [CrossRef] [PubMed]

34. Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing
of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297.
[CrossRef]

35. Zhang, C.; Filella, I.; Garbulsky, M.F.; Peñuelas, J. Affecting factors and recent improvements of the photochemical reflectance
index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens. 2016, 8, 677. [CrossRef]

http://doi.org/10.1111/ppl.12540
http://doi.org/10.1016/S0168-9452(98)00010-7
http://doi.org/10.1111/ppl.12926
http://www.ncbi.nlm.nih.gov/pubmed/30663056
http://doi.org/10.1007/s11120-020-00727-w
http://www.ncbi.nlm.nih.gov/pubmed/32112235
http://doi.org/10.14358/PERS.69.6.647
http://doi.org/10.1016/j.eng.2019.10.015
http://doi.org/10.1016/j.isprsjprs.2014.03.016
http://doi.org/10.3390/rs11101240
http://doi.org/10.1094/PDIS-03-15-0340-FE
http://www.ncbi.nlm.nih.gov/pubmed/30694129
http://doi.org/10.1146/annurev-phyto-080417-050100
http://doi.org/10.1016/j.scienta.2012.02.002
http://doi.org/10.1093/jxb/eru191
http://doi.org/10.1111/pce.13620
http://www.ncbi.nlm.nih.gov/pubmed/31325364
http://doi.org/10.1002/2015JG003150
http://doi.org/10.1016/j.scitotenv.2017.12.268
http://doi.org/10.1029/2019GL082716
http://doi.org/10.1093/jxb/erf083
http://doi.org/10.1071/FP09123
http://www.ncbi.nlm.nih.gov/pubmed/32688709
http://doi.org/10.1016/j.eja.2013.02.011
http://doi.org/10.1073/pnas.1606162113
http://doi.org/10.1111/j.1469-8137.2011.03791.x
http://www.ncbi.nlm.nih.gov/pubmed/21627667
http://doi.org/10.1016/j.rse.2010.08.023
http://doi.org/10.3390/rs8090677


Remote Sens. 2021, 13, 962 22 of 24

36. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.
Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

37. Sarlikioti, V.; Driever, S.; Marcelis, L. Photochemical reflectance index as a mean of monitoring early water stress. Ann. Appl. Biol.
2010, 157, 81–89. [CrossRef]

38. Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV
platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117,
322–337. [CrossRef]

39. Hmimina, G.; Dufrêne, E.; Soudani, K. Relationship between photochemical reflectance index and leaf ecophysiological and
biochemical parameters under two different water statuses: Towards a rapid and efficient correction method using real-time
measurements. Plant Cell Environ. 2014, 37, 473–487. [CrossRef]

40. Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y. Analysis of airborne optical
and thermal imagery for detection ofwater stress symptoms. Remote Sens. 2018, 10, 1139. [CrossRef]

41. Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [CrossRef]
42. Gamon, J.; Peñuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.

Remote. Sens. Environ. 1992, 41, 35–44. [CrossRef]
43. Penuelas, J.; Baret, F.; Filella, I. Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance.

Photosynthetica 1995, 31, 221–230.
44. Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a refectometer. New Phytol. 1999, 143, 105–117.

[CrossRef]
45. Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance

Spectroscopy. Photochem. Photobiol. 2007, 75, 272–281. [CrossRef]
46. Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic

leaves. Am. J. Bot. 2009, 96, 1861–1868. [CrossRef]
47. Peñuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance indices associated with physiological changes in nitrogen-

and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [CrossRef]
48. Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use

efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [CrossRef] [PubMed]
49. Shrestha, S.; Brueck, H.; Asch, F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements

of rice leaves supplied with different N levels. J. Photochem. Photobiol. B Biol. 2012, 113, 7–13. [CrossRef] [PubMed]
50. Peñuelas, J.; Marino, G.; Llusia, J.; Morfopoulos, C.; Farré-Armengol, G.; Filella, I. Photochemical reflectance index as an indirect

estimator of foliar isoprenoid emissions at the ecosystem level. Nat. Commun. 2013, 4, 2604. [CrossRef]
51. Balzarolo, M.; Peñuelas, J.; Filella, I.; Portillo-Estrada, M.; Ceulemans, R. Assessing ecosystem isoprene emissions by hyperspectral

remote sensing. Remote Sens. 2018, 10, 1086. [CrossRef]
52. Sukhov, V.; Sukhova, E.; Gromova, E.; Surova, L.; Nerush, V.; Vodeneev, V. The electrical signal-induced systemic photosynthetic

response is accompanied by changes in the photochemical reflectance index in pea. Funct. Plant Biol. 2019, 46, 328–338. [CrossRef]
[PubMed]

53. Sukhova, E.; Yudina, L.; Akinchits, E.; Vodeneev, V.; Sukhov, V. Influence of electrical signals on pea leaf reflectance in the
400–800-nm range. Plant Signal. Behav. 2019, 14, 1610301. [CrossRef]

54. Sukhova, E.; Yudina, L.; Gromova, E.; Nerush, V.; Vodeneev, V.; Sukhov, V. Burning-induced electrical signals influence broadband
reflectance indices and water index in pea leaves. Plant Signal. Behav. 2020, 15, 1737786. [CrossRef] [PubMed]

55. Gutiérrez, M.; Norton, R.; Thorp, K.R.; Wang, G. Association of Spectral Reflectance Indices with Plant Growth and Lint Yield in
Upland Cotton. Crop. Sci. 2012, 52, 849–857. [CrossRef]

56. Brandão, Z.N.; Sofiatti, V.; Bezerra, J.R.C.; Ferreira, G.B.; Medeiros, J.C. Spectral reflectance for growth and yield assessment of
irrigated cotton. AJCS 2015, 9, 75–84.

57. Evain, S.; Flexas, J.; Moya, I. A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance
changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens. Environ. 2004, 91,
175–185. [CrossRef]

58. Filella, I.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.F.; Peñuelas, J. PRI assessment of long-term changes in
carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 2009,
30, 4443–4455. [CrossRef]

59. Sukhova, E.; Sukhov, V. Relation of Photochemical Reflectance Indices Based on Different Wavelengths to the Parameters of Light
Reactions in Photosystems I and II in Pea Plants. Remote Sens. 2020, 12, 1312. [CrossRef]

60. Mahlein, A.K.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Spectral signatures of sugar beet leaves for the detection and differentiation
of diseases. Precis. Agric. 2010, 11, 413–431. [CrossRef]

61. Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease
with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 1–12. [CrossRef]

62. Fu, P.; Meacham-Hensold, K.; Guan, K.; Bernacchi, C.J. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities:
An Ensemble Approach Based on Multiple Machine Learning Algorithms. Front. Plant Sci. 2019, 10, 730. [CrossRef]

http://doi.org/10.1080/01431169308954010
http://doi.org/10.1111/j.1744-7348.2010.00411.x
http://doi.org/10.1016/j.rse.2011.10.007
http://doi.org/10.1111/pce.12171
http://doi.org/10.3390/rs10071139
http://doi.org/10.2307/1936256
http://doi.org/10.1016/0034-4257(92)90059-S
http://doi.org/10.1046/j.1469-8137.1999.00424.x
http://doi.org/10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2
http://doi.org/10.3732/ajb.0800395
http://doi.org/10.1016/0034-4257(94)90136-8
http://doi.org/10.1007/s004420050337
http://www.ncbi.nlm.nih.gov/pubmed/28307626
http://doi.org/10.1016/j.jphotobiol.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/22617629
http://doi.org/10.1038/ncomms3604
http://doi.org/10.3390/rs10071086
http://doi.org/10.1071/FP18224
http://www.ncbi.nlm.nih.gov/pubmed/32172742
http://doi.org/10.1080/15592324.2019.1610301
http://doi.org/10.1080/15592324.2020.1737786
http://www.ncbi.nlm.nih.gov/pubmed/32149565
http://doi.org/10.2135/cropsci2011.04.0222
http://doi.org/10.1016/j.rse.2004.03.012
http://doi.org/10.1080/01431160802575661
http://doi.org/10.3390/rs12081312
http://doi.org/10.1007/s11119-010-9180-7
http://doi.org/10.1038/s41598-017-04501-2
http://doi.org/10.3389/fpls.2019.00730


Remote Sens. 2021, 13, 962 23 of 24

63. Gold, K.M.; Townsend, P.A.; Herrmann, I.; Gevens, A.J. Investigating potato late blight physiological differences across potato
cultivars with spectroscopy and machine learning. Plant Sci. 2020, 295, 110316. [CrossRef] [PubMed]

64. Sonobe, R.; Hirono, Y.; Oi, A. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and
Machine Learning Algorithms. Plants 2020, 9, 368. [CrossRef] [PubMed]

65. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future
perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef]

66. Paulus, S.; Mahlein, A.-K. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and
laboratory scale. GigaScience 2020, 9, 90. [CrossRef]

67. Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [CrossRef]
68. Zhang, Y.; Huang, J.; Wang, F.; Blackburn, G.A.; Zhang, H.K.; Wang, X.; Wei, C.; Zhang, K.; Wei, C. An extended PRO-SPECT:

Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b. Sci. Rep. 2017, 7, 6429.
[CrossRef]

69. Jiang, J.; Comar, A.; Burger, P.; Bancal, P.; Weiss, M.; Baret, F. Estimation of leaf traits from reflectance measurements: Comparison
between methods based on vegetation indices and several versions of the PROSPECT model. Plant Methods 2018, 14, 23. [CrossRef]
[PubMed]

70. Ustin, S.L.; Jacquemoud, S.; Govaerts, Y. Simulation of photon transport in a three-dimensional leaf: Implications for photo-
synthesis. Plant Cell Environ. 2001, 24, 1095–1103. [CrossRef]

71. Hikosaka, K.; Kumagai, T.; Ito, A. Modeling canopy photosynthesis. In Canopy Photosynthesis: From Basics to Applications. Advances
in Photosynthesis and Respiration (Including Bioenergy and Related Processes); Hikosaka, K., Niinemets, Ü., Anten, N., Eds.; Springer:
Dordrecht, The Netherlands, 2016; pp. 239–268.

72. Evers, J.B.; Vos, J.; Yin, X.; Romero, P.; Van Der Putten, P.E.L.; Struik, P.C. Simulation of wheat growth and development based on
organ-level photosynthesis and assimilate allocation. J. Exp. Bot. 2010, 61, 2203–2216. [CrossRef]

73. Hao, D.; Wen, J.; Xiao, Q.; Wu, S.; Lin, X.; You, D.; Tang, Y. Modeling Anisotropic Reflectance Over Composite Sloping Terrain.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 3903–3923. [CrossRef]

74. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green
Wave Effect) of Natural Vegetation; Type III Final Rep; The National Aeronautics and Space Administration (NASA)/Goddard
Space Flight Center (GSFC): Greenbelt, MD, USA, 1974.

75. Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R., Jr.; Brown, D.J. Sensitivity of ground-based remote sensing estimates of wheat
chlorophyll content to variation in soil reflectance. Soil Sci. Soc. Am. J. 2009, 73, 1715–1723. [CrossRef]

76. Penuelas, J.P.J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance Water Index WI
(R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [CrossRef]

77. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

78. Sukhova, E.; Sukhov, V. Connection of the Photochemical Reflectance Index (PRI) with the Photosystem II Quantum Yield and
Nonphotochemical Quenching Can Be Dependent on Variations of Photosynthetic Parameters among Investigated Plants: A
Meta-Analysis. Remote Sens. 2018, 10, 771. [CrossRef]

79. Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244.
[CrossRef]

80. Sukhova, E.M.; Yudina, L.M.; Vodeneev, V.A.; Sukhov, V.S. Analysis of Changes in Photochemical Reflectance Index (PRI) in
Relation to the Acidification of the Lumen of the Chloroplasts of Pea and Geranium Leaves under a Short-Term Illumination.
Biochem. Suppl. Ser. A Membr. Cell Biol. 2019, 13, 243–252. [CrossRef]

81. Ali, S.; Henchiri, M.; Yao, F.; Zhang, J. Analysis of vegetation dynamics, drought in relation with climate over South Asia from
1990 to 2011. Environ. Sci. Pollut. Res. 2019, 26, 11470–11481. [CrossRef]

82. Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water
indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [CrossRef]

83. Caturegli, L.; Matteoli, S.; Gaetani, M.; Grossi, N.; Magni, S.; Minelli, A.; Corsini, G.; Remorini, D.; Volterrani, M. Effects of water
stress on spectral reflectance of bermudagrass. Sci. Rep. 2020, 10, 1–12. [CrossRef] [PubMed]

84. Wang, K.; Zhang, X.; Goatley, M.; Ervin, E. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at
Different N Levels. PLoS ONE 2014, 9, e102914. [CrossRef]
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