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Abstract: Vegetation fluctuation is sensitive to climate change, and this response exhibits a time
lag. Traditionally, scholars estimated this lag effect by considering the immediate prior lag (e.g.,
where vegetation in the current month is impacted by the climate in a certain prior month) or
the lag accumulation (e.g., where vegetation in the current month is impacted by the last several
months). The essence of these two methods is that vegetation growth is impacted by climate
conditions in the prior period or several consecutive previous periods, which fails to consider the
different impacts coming from each of those prior periods. Therefore, this study proposed a new
approach, the weighted time-lag method, in detecting the lag effect of climate conditions coming
from different prior periods. Essentially, the new method is a generalized extension of the lag-
accumulation method. However, the new method detects how many prior periods need to be
considered and, most importantly, the differentiated climate impact on vegetation growth in each of
the determined prior periods. We tested the performance of the new method in the Loess Plateau by
comparing various lag detection methods by using the linear model between the climate factors and
the normalized difference vegetation index (NDVI). The case study confirmed four main findings:
(1) the response of vegetation growth exhibits time lag to both precipitation and temperature; (2) there
are apparent differences in the time lag effect detected by various methods, but the weighted time-
lag method produced the highest determination coefficient (R2) in the linear model and provided
the most specific lag pattern over the determined prior periods; (3) the vegetation growth is most
sensitive to climate factors in the current month and the last month in the Loess Plateau but reflects a
varied of responses to other prior months; and (4) the impact of temperature on vegetation growth is
higher than that of precipitation. The new method provides a much more precise detection of the lag
effect of climate change on vegetation growth and makes a smart decision about soil conservation
and ecological restoration after severe climate events, such as long-lasting drought or flooding.

Keywords: climate change; precipitation; temperature; NDVI; time-lag; Loess Plateau

1. Introduction

In recent decades, global climate change has attracted much attention since it has been
assumed to significantly impact territory ecosystems [1–5]. Ecosystem services produced by
such ecosystems are essential to social activities on the earth’s surface. Therefore, the effect
of the climate on ecosystem services has become a boundary object that many researchers
from different study areas have collaboratively worked on, including but not limited to
geography, ecology, climatology, and biology. Much research has contributed to revealing
the impact of different climate factors on vegetation ecosystems in various spatial and
temporal scales [6–11].

Remote Sens. 2021, 13, 923. https://doi.org/10.3390/rs13050923 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3997-1758
https://doi.org/10.3390/rs13050923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13050923
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/5/923?type=check_update&version=3


Remote Sens. 2021, 13, 923 2 of 17

The lag response of vegetation to the climate in time series has been detected in
many studies [12–15]. Such a lag exhibits differences across study regions and vegetation
communities [16]. The differences were detected in the impact of precipitation on grassland
in the Central Great Plains, USA, and Central Asia [17,18]. Braswell et al. [19] found that
different vegetation shows different lag response times to global temperature. The diversity
has also been detected in the precipitation and vegetation in Patagonian Grassland by
Jobbágy and Sala [20]. This impact also exhibits temporal scales dependency, where it is
reported not only on the inter-annual scale but also on seasonal and monthly scales [21,22].
Sala et al. [23] pointed out that the aboveground net primary productivity (ANPP) shows a
lag response to the precipitation in the inter-annual scale. Bunting et al. [24] pointed out
that shrub-land and woodland have a long response in 6–12 months, and grassland has a
shorter response in 3–6 months. Anderson et al. [25] found that the lag responses of the
forest to precipitation and sunlight duration were two months and one month, respectively,
in the Amazon basin. Kong et al. [26] found that the lag time of normalized difference
vegetation index (NDVI) to temperature is not obvious, while the NDVI response lags
behind cumulative precipitation by zero to one month, relative humidity by two months,
and sunshine duration by three months.

We broadly review the method used to represent the time lag [17,27–29] and proposed
typology of paradigms as their essential assumptions, lag, and lag-accumulation to sum-
marize the methods used in the past. To simplify and represent such a process by which
vegetation responds to the climate, these methods generate different assumptions. The lag
method assumes that the climate factors impact the vegetation in the time (month, year,
season, or other scales) of interest in a particular previous month (year, season, or other
scales). With such a method, Wu et al. [30] delivered the spatial pattern of the lag response
of vegetation to global precipitation, temperature, and sunlight duration. Chuai et al. [29]
used this method to detect the lag responses of vegetation communities to precipitation
and temperature on a seasonal scale in the Inner Mongolia Plateau. Different from the lag
method, lag accumulation assumes that the lags of climate impact are from the previous
one or more time periods. With such an assumption, Huang et al. [31] determined the
spatiotemporal patterns of climatic effects on global vegetation growth considering various
scenarios of time-lag and/or accumulation effects; Richard and Poccard [27] analyzed the
spatial patterns of time lag in South Africa and found that the response is not only a lag to a
particular month but also responds to a consecutive period. The lag-accumulation method
delivers more detailed lag information for the response of the ecosystem to climate factors.

Compared with lag, lag accumulation can better represent a continuous effect process
from climate to vegetation, rather than one certain period, where the assumption is that
climate factors share different impacts in different months. However, the climate factors in
lag months may contribute various weights to vegetation. What is the relative contribution
of previous months’ climate to explaining vegetation in the current month?

Considering that the impact of climate on vegetation exhibits, consecutively, diversity
and accumulation [28,32–35], we propose a weighted time-lag method to address the
question. In this method, we consider the ecosystem to have a lag response to climate
factors in previous periods, and precipitation and temperature in the previous months affect
the vegetation growth in the current month at different weights. The time lag responses of
vegetation to climate are detected in order for decision-makers to take action to protect the
ecosystem from incoming changes or disturbance. The new method reveals more detailed
knowledge about the lag response of the ecosystem to climate.

In this study, we use Loess Plateau, China, as a case study to compare the different
results drawn from different lag methods. We have strong background knowledge to verify
the method is running as it is supposed to be, and we can validate the results by many case
studies addressing such a vulnerable ecosystem in the semi-arid area.



Remote Sens. 2021, 13, 923 3 of 17

2. Study Area and Datasets
2.1. Study Area

Loess Plateau (Figure 1), located at the midstream of the Yellow River in China,
with an area of 620,000 km2 [15], is threatened by drought and desertification due to the
uneven and low precipitation and intense evapotranspiration. The precipitation is unevenly
distributed in time and space. The annual precipitation from the southeast (800 mm/year)
to the northwest (150 mm/year) gradually decreases, while the precipitation in high-flow
years is approximately triple or quadruple that in low-flow years. Moreover, the annual
average temperature also appears a gradient from the southeast (14.3 ◦C) to the northwest
(4.3 ◦C) [36].
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Figure 1. The location of the Loess Plateau including elevation and the distribution of meteorological stations.

2.2. Datasets

We used NDVI to represent the greenness of vegetation, indicating vegetation growth.
NDVI time series (1982–2013), retrieved from the NDVI3g dataset of GIMMS, were col-
lected by NOAA/AVHRR with a temporal resolution of 15 days and a spatial resolution in
1/12 degree (8 km). Furthermore, we conducted pre-processing such as geometry correc-
tion, radiance correction, and atmosphere correction [30,37]. Finally, we used maximum
value composite to get the monthly NDVI data, which can minimize atmospheric (e.g.,
aerosols) and radiative geometry effects [38].

The meteorological data were obtained from the Chinese climate academic and science
dataset (http://data.cma.cn/, accessed on 2 January 2021), including the month-averaged
temperature and month-accumulated precipitation in a period of 1982–2013 from 52 me-
teorological stations in the Loess Plateau. We further mapped them by inverse distance
weight with the boundary and spatial resolution of NDVI imagery.

Vegetation classification maps, from 2001 to 2012, were obtained from MODIS land
cover product (MCD12C1) with a spatial resolution of 0.05 degree (5.6 km). We further
chose the unchanged vegetation type through Boolean calculation and resampled it with
the spatial resolution and boundary of NDVI (Figure 2). Finally, we choose three types of
vegetation, Mixed Forest (466 pixels), Grassland (4594 pixels), and Barren or Sparse Vegeta-
tion (93 pixels). It is mainly Mixed Forest in the southeast, Barren or Sparse Vegetation in
the northwest, and the others are Grassland.

http://data.cma.cn/
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3. Proposed Method

To properly understand the proposed method, it is necessary to also understand
some of the most known methods in the literature; these methods include the No-lag
method, the Lag method, and the Lag-accumulation method. Once these methods have
been explained, we will propose a new method, named the weighted time-lag method.
Then, different linear regression strategies are adopted to evaluate the superiority of the
proposed method.

3.1. Previous Lag Methods

There are two knowledge bases of the method to be proposed:
(1) The maximum length of periods in which vegetation respond to climate
Considering the scale dependency [24] of time lag, to provide an example, we compare

the differences of methods in detecting the month lag of vegetation response to precipitation
and temperature. This monthly lag is detected within three months [25,30]; therefore,
we use it as an assumption that the furthest time lag of climate is the third-to-last month,
which still impacts vegetation in the current month.

(2) Different periods contribute unevenly to vegetation
Figure 3, as an example, demonstrates the consecutive variation of impact intensity

of climate on vegetation [34], where the x-axis refers to the time (month), and T is the
current month; the y-axis refers to impact weights of climate. Curves with different colors
refer to the impact variation of the climate in a particular month, where the y-value at
the intersection (triangles) of the curve and the dashed line of the different months are
the impact weights of this climate factor on vegetation. The blue curve, for example,
is the variation of the impact weights of a climate factor in (T − 2) month, and it is more
influential in (T − 2) and (T − 1) and weaker in (T) and (T + 1).

Vegetation in the current month (T), for example, is impacted by climate factors in
months (T − 3), (T − 2), (T − 1), and T (Figure 3), where the y-value at the intersection
(triangles) of these curves in month T refers to the weights of climate in each month.
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Figure 3. Consecutive impacts of climate factors on vegetation in different months. Note: The curves
of red, blue, yellow, and green represent the influence of climate factors from (T − 3), (T − 2), (T − 1),
and T months to vegetation growth in the following months, respectively. The triangle represents the
intersection of the curve and the dashed line. The y-value at the intersection represents the influence
weights of the climate factors on vegetation in the corresponding month.

We reviewed previous lag methods and categorized different methods based on their
characteristics in the following ways.

(1) No lag method. Since this method does not consider the time lag, it only uses
the climate in month T to detect the vegetation response to climate. From the weight
perspective, the weights for the climate in different months, (T − 3), (T − 2), (T − 1), and T,
would be 0, 0, 0, and 1, respectively.

(2) Lag method. This method assumes the vegetation in T month is only impacted by
the climate in the month, which has the maximum of the square of correlation coefficient
(R2) in linear regression through input climate in months (T − 3), (T − 2), (T − 1), and T,
respectively. In other words, this method assigns the weights to the climate in these months
as follows: 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; and 0, 0, 0, 1. Then the weighted mean values of
climate are calculated and input into linear regression. Obviously, the lag method is an
extension of the no lag method in considering the time lag if there is one.

(3) Lag-accumulation method. This method further extends the lag method in con-
sidering that the average value of consecutive months may achieve the highest R2 in the
regression if any of a particular month cannot. In other words, this method not only
considers the impact of time lag in a specific month but also assumes that it could come
from consecutive months. For weight, the schemes formulated with this method are shown
in Table 1. However, it fails to consider the different impacts of climate in each month
(Figure 3) in time series, since the arithmetic means or the sum value of climate factors in
the consecutive periods are used as the independent variable in the regression. In other
words, their impacts are given equal weight.

Table 1. Weight combinations of the lag-accumulation method in different months.

Schemes Number of Consecutive
Months

Weights
Month (T − 3) Month (T − 2) Month (T − 1) Month T

1

1

1.0 0 0 0
2 0 1.0 0 0
3 0 0 1.0 0
4 0 0 0 1.0
5

2
0 0 0.5 0.5

6 0 0.5 0.5 0
7 0.5 0.5 0 0
8

3
0 0.33 0.33 0.33

9 0.33 0.33 0.33 0
10 4 0.25 0.25 0.25 0.25



Remote Sens. 2021, 13, 923 6 of 17

3.2. Proposed Weighted Time-Lag Method

Considering that the effects of climate factors (e.g., temperature, precipitation) on
vegetation are continuity, diversity, and accumulation, a weighted time-lag method is
proposed to obtain the weights of the effects of climate factors in different periods on
subsequent vegetation growth. We chose different weighting schemes based on the pro-
posed method and constructed a certain number of candidate climate factor series. Then,
we calculated the R2 of the candidate climate factor series and NDVI series and selected
the highest one as the final R2 of the pixel, and the corresponding weighting scheme of
the climate factor series is the final scheme. The process is shown as follows: (1) Assign
PT−3, PT−2, PT−1, and PT as the weights of a climate factor in (T − 3), (T − 2), (T − 1),
and T months, where the threshold of them are in [0,1] and PT−3 + PT−2 + PT−1 + PT = 1.
(2) Set their sampling interval as SI (SI ≤ 1.0). Therefore, the number of probable weight
combinations is M = C3

3+1/SI ; moreover, we obtained a set of corresponding weighted
mean values of climate with the number of M. (3) Input those weighted mean values
in the linear regression with NDVI. (4) The optimal weight combination is achieved by
meeting a criterion (maximum R2, for example). Therefore, the detected weights are the
corresponding PT−3, PT−2, PT−1, and PT.

The value of SI is set to 0.1 with M = C3
3+1/0.1 = 286 probable weight combinations

(Table 2). In the following parts, for convenience, we will use methods 1–4 to refer to the
no lag, lag, lag-accumulation, and the proposed weighted time-lag methods, respectively.

Table 2. The weight combinations of the weighted time-lag method (partial).

Schemes
Weights

Schemes
Weights

Schemes
Weights

T − 3 T − 2 T − 1 T T − 3 T − 2 T − 1 T T − 3 T − 2 T − 1 T

1 0 0 0 1 151 0.2 0.3 0.5 0 277 0.8 0 0 0.2
2 0 0 0.1 0.9 152 0.2 0.4 0 0.4 278 0.8 0 0.1 0.1
3 0 0 0.2 0.8 153 0.2 0.4 0.1 0.3 279 0.8 0 0.2 0
4 0 0 0.3 0.7 154 0.2 0.4 0.2 0.2 280 0.8 0.1 0 0.1
5 0 0 0.4 0.6 155 0.2 0.4 0.3 0.1 281 0.8 0.1 0.1 0
6 0 0 0.5 0.5 156 0.2 0.4 0.4 0 282 0.8 0.2 0 0
7 0 0 0.6 0.4 157 0.2 0.5 0 0.3 283 0.9 0 0 0.1
8 0 0 0.7 0.3 158 0.2 0.5 0.1 0.2 284 0.9 0 0.1 0
9 0 0 0.8 0.2 159 0.2 0.5 0.2 0.1 285 0.9 0.1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 1 0 0 0

3.3. Regression Strategy

We adopt linear regressions to analyze the time-lag patterns of climate factors impact-
ing vegetation, respectively. Considering the different responses of vegetation communities,
or even of the same vegetation in a different area, we studied on a pixel scale to reveal
the response pattern of vegetation to climate. Furthermore, descriptive statistics were
implemented to clarify the different performances of the four methods in linear regression.

We adopted Equation (1) to reveal the different performance of the methods in linear
regression and the time lag response of vegetation to precipitation and temperature:{

NDVIi,j(k) = am
i,j(k)·PREm

i,j(k) + bm
i,j(k)

NDVIi,j(k) = cm
i,j(k)·TEMm

i,j(k) + dm
i,j(k)

(1)

where NDVIi,j refers to the NDVI time series in the growing season (April to October)
from 1982–2013 of the (i, j) pixel; ai,j and bi,j refer to the slope and intercept in the NDVI
linear regression with precipitation of the (i, j) pixel; ci,j and di,j denote those with the
temperature of the (i, j) pixel; m is the method index from methods 1 to 4; k is the index of a
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scheme of a corresponding method; the numbers of schemes of the methods (m = 1 to 4)
are 1, 4, 10 and 286. For example, when m = 3, k = 1, 2, . . . , 10.

To explore the response mechanism of NDVI to climate factors in different growing
months (April–October) using method 4, Equation (2) was used for the regression of NDVI
with temperature or precipitation in different months.{

NDVIn
i,j(k) = an

i,j(k)·PREn
i,j(k) + bn

i,j(k)
NDVIn

i,j(k) = cn
i,j(k)·TEMn

i,j(k) + dn
i,j(k)

(2)

where NDVIn
i,j refers to the NDVI time series in the nth month from 1982–2013 of the (i, j)

pixel; the value of n ranges from 1 to 7, which corresponds to April to October; the meaning
of other symbols is similar to that of equation 1.

4. Results

Our study uses the long-term series of NDVI and climate factors in linear regression
during 1982–2013 on the Loess Plateau. The superiority of the proposed method is proved
by comparing the previous methods from the spatial distribution and statistical results
of time lag. Based on this, the new method is used to further explore the time lag effect
between climate factors and vegetation in different months.

4.1. Comparison of the Different Lag Method in Linear Regression

To evaluate the effects of precipitation and temperature on vegetation, we used linear
regression for each climate factor of four methods. Figures 4 and 5 are the correlation
coefficients (r) of NDVI-precipitation and NDVI-temperature. The correlation between
NDVI and climate factors is mainly positive, while there are some differences in the
southern area in the Loess Plateau, which is mainly dominated by Cropland, which is
determined by planting cycles and irrigation. Generally, climate factors and NDVI are less
related in method 1, which does not consider the time lag, where those of precipitation and
temperature are 0.51 (the average of the absolute correlation coefficients (|r|) of all pixels,
the same below) and 0.67, respectively. The climate factors formulated by method 2, which
consider the time lag to be a certain month, exhibit a higher |r| value with NDVI, 0.53,
and 0.75, respectively. Method 3, which extends method 2 under considering consecutive
months, enhances the |r| values to 0.61 and 0.78. Method 4 shows the best performance
with the highest |r| value among the four methods, where the |r| values are 0.62 and 0.79.
The results indicate that our method outperforms other methods, which show the highest
correlation between climate factors and vegetation.
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Figure 4. The correlation coefficient between normalized difference vegetation index (NDVI) and precipitation was
formulated by different time lag methods.
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Figure 5. The correlation coefficient between NDVI and temperature was formulated by different time lag methods.

The time-lag patterns detected by methods 2 to 4 are shown in Figures 6–8. Consider-
ing that method 2 only considers the effect of time lag, it can only reveal the time lag of the
impact of precipitation and temperature on vegetation. The results are shown in Figure 6a,b,
indicating that the time lag of the impact of precipitation and temperature are 0 or 1 month
in arid and semi-arid areas, and 3 months in semi-humid areas. In addition to considering
time lag, method 3 also considers the accumulation of precipitation and temperature effects
on vegetation. Figure 7a,c show the time lag of precipitation and temperature effects,
respectively, and Figure 7b,d show the accumulation of those effects, respectively. It can
be seen that the time lag of precipitation and temperature are mainly 0 months, while the
accumulation is mainly 1 or 2 months. In other words, method 3 reveals that the impact
of precipitation and temperature mainly comes from the last 1 or 2 months. In contrast
with methods 2 and 3, the proposed method (method 4) can obtain the impact weights
of climate factors in the previous three months and the current month on the vegetation
of the current month. Method 4 (Figure 8) provides the best weights per pixel for climate
factors in different months by the highest R2, which cannot be detected by the other two
methods. Figure 8a–d represent the impact weight combinations of (T − 3), (T − 2), (T − 1),
and T months’ precipitation on T month’s NDVI, respectively, and Figure 8e–h represent
the weight combinations of temperature, respectively. The weight combinations of the two
climate factors are different, but the higher weights of both mainly concentrate in the last
two months, where the average of the weights of precipitation and temperature in T month
for all pixels are 0.51 and 0.53, respectively, and the average of the weights in (T − 1) month
are 0.36 and 0.42, respectively.
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Figure 6. Time lag of climate impact on vegetation formulated by method 2; 0 represents no time lag,
1 represents one-month lag, 2 represents two-month lag, 3 represents three-month lag.
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Figure 7. Time lag and accumulations of climate impact on vegetation formulated by method 3.
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Figure 8. Weight combinations of climate impact on vegetation formulated by method 4.

4.2. The Statistics of the Results of Linear Regression

Descriptive statistics (Figure 9) are implemented to reveal the time-lag patterns of the
four methods in each vegetation community, where the data are the arithmetic mean values
of |r| in each method. Three results can be inferred from Figure 9: (1) The |r| values of
Grassland with climate factors are the highest in different methods. (2) The |r| values of
vegetation with its temperature are higher than those of its precipitation. (3) There is an
increase in |r| values from methods 1 to 4.
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Figure 9. The average |r| of NDVI of each vegetation community with precipitation and temperature formulated by each
method. (a) Precipitation; (b) temperature.

The negative r suggests in some areas of the south of the study region (Figures 4 and 5),
and the corresponding pixels show obvious differences in time lag from those with positive
r (Figures 6–8). Moreover, the statistic results of method 4, for example, show that the
pixels with negative r are mainly located in Cropland since the ratios of the number of the
pixels with negative r in each vegetation (Mixed Forest, Grassland, Cropland, Barren or
Sparse Vegetation) to the whole are 7.94% (37 pixels), 0.00% (0 pixels), 28.39% (289 pixels)
and 2.15% (2 pixels), respectively, in precipitation; 0.21% (1 pixel), 0.00% (0 pixels), 14.24%
(145 pixels), and 0.00% (0 pixels) in temperature.

Figures 10–12 show the average calculated from Figures 6–8. The results are as follows:
(1) Vegetation communities exhibit diverse time lags; however, they generally show

the same gradient pattern in lag values detected in methods 2 to 4. This pattern consists of
two levels, which are Mixed Forest, Grassland, and Barren or Sparse Vegetation. The corre-
sponding lag values, precipitation in method 2 for example, are 0.13, 0.39, and 0.49 months
(Figure 10).
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(2) There is an increase in the accuracy of the time-lag responses of vegetation from
methods 2 to 4. For example, the time-lag responses of Grassland are around 0.4 months
to precipitation and 0.75 months to the temperature detected by method 2 (Figure 10).
However, the impacts detected by method 3 come from the last two months for both
climate factors (Figure 11). Method 4 (Figure 12) further enhanced the accuracy in showing
the impacts of time lag mainly contributed by 52%, 39%, and 8% from the recent three
months in precipitation and 48% and 49% from the recent two months in temperature.

(3) The lag values or their contributions to climate factors are similar in each method.
The lag impacts of precipitation and temperature to Mixed Forest in method 4 (Figure 12),
for example, are 65% and 73%, contributed by the current month and 32% and 26% by
last month.

(4) In terms of method 4 (Figure 12), the time lag impacts of precipitation and tempera-
ture are mainly contributed by the recent two months, where their contribution proportions
are 90% and 97%, but there are some differences in types of vegetation. The contribution
proportion from the current month and last month are similar in Grassland and Barren or
Sparse Vegetation. However, the impact contribution to Mixed Forest is mainly concen-
trated in the current month, where it is about 70% for both climate factors, and that of the
last month is about 30%.
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Figure 10. Average values (dot) and standard deviations (I-shaped lines) of the lag patterns detected
by method 2. I—Mixed Forest; II—Grassland; III—Barren or Sparse Vegetation.
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Figure 11. Average values (dot) and standard deviations (I-shaped lines) of the lag patterns detected
by method 3. I—Mixed Forest; II—Grassland; III—Barren or Sparse Vegetation.



Remote Sens. 2021, 13, 923 11 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 12. Average values of the lag patterns detected by method 4. (a) Precipitation; (b) tempera-

ture; Ⅰ—Mixed Forest; Ⅱ—Grassland; Ⅲ—Barren or Sparse Vegetation. 

4.3. Linear Regression of NDVI and Climate Factors in Different Months Using the Weighted 

Time-Lag Method 

Method 4 was used to analyze the correlation between NDVI and different climate 

factors in the monthly time series from 1982 to 2013 in the Loess Plateau. Figures 13 and 

14 show the significance level (P) of NDVI with precipitation and temperature in differ-

ent months. The average value of precipitation in the significant areas during the grow-

ing season (April to October) was 53.31% (P < 0.05) and was greater than temperature, 

which averaged 39.75% (P < 0.05). There were obvious differences in significant areas 

with the same climate factor and different months. For example, the smallest number of 

significant pixels was for the impact of precipitation on NDVI in April and May, less than 

40% (P < 0.05), while the number of significant pixels of impact on NDVI in July to Sep-

tember increased significantly, reaching more than 65% (P < 0.05). The number of signif-

icant pixels in which temperature had the smallest influence on NDVI in July and August 

were less than 35% (P < 0.05), and the largest in April and May, reaching more than 45% 

(P < 0.05). 

 

Figure 13. The significance level of a linear regression between NDVI and precipitation in different months. 

73%

48%
55%

26%

49%
44%

65%

52% 48%

32%

39% 45%

8% 6%

0

20

40

60

80

100(b)

w
ei

g
h

ts
 /

%

 month (T-3)  month (T-2)  month (T-1)  month T

classifications

Ⅰ Ⅱ Ⅲ Ⅲ

classifications

ⅡⅠ

(a)

0

20

40

60

80

100

w
ei

g
h

ts
 /

%

(a) Apr (b) May (c) Jun (d) Jul

(e) Aug (f) Sep (g) Oct

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 12. Average values of the lag patterns detected by method 4. (a) Precipitation; (b) temperature;
I—Mixed Forest; II—Grassland; III—Barren or Sparse Vegetation.

4.3. Linear Regression of NDVI and Climate Factors in Different Months Using the Weighted
Time-Lag Method

Method 4 was used to analyze the correlation between NDVI and different climate
factors in the monthly time series from 1982 to 2013 in the Loess Plateau. Figures 13 and
14 show the significance level (p) of NDVI with precipitation and temperature in different
months. The average value of precipitation in the significant areas during the growing
season (April to October) was 53.31% (p < 0.05) and was greater than temperature, which
averaged 39.75% (p < 0.05). There were obvious differences in significant areas with the
same climate factor and different months. For example, the smallest number of significant
pixels was for the impact of precipitation on NDVI in April and May, less than 40% (p < 0.05),
while the number of significant pixels of impact on NDVI in July to September increased
significantly, reaching more than 65% (p < 0.05). The number of significant pixels in which
temperature had the smallest influence on NDVI in July and August were less than 35%
(p < 0.05), and the largest in April and May, reaching more than 45% (p < 0.05).
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Figure 13. The significance level of a linear regression between NDVI and precipitation in different months.
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Figure 14. The significance level of a linear regression between NDVI and temperature in different months.

Figure 15 shows the proportions of significant pixels between NDVI and climate
factors in different months. For different climate factors, positive correlation and negative
correlation were different in different months. The influence of precipitation on NDVI in
April was mainly negatively correlated, while the influence of NDVI in other months (May
to October) was mainly positively correlated. The influence of temperature on NDVI was
different from precipitation. Its influence on NDVI in April and May was mainly positively
correlated and negatively correlated in other months (June to October).
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Figure 15. Percentage of significant pixels obtained by linear regression of NDVI and precipitation/temperature in different
months. (a) precipitation; (b) temperature.

Different vegetation types have different degrees of response to climate factors.
Figure 16 shows that (1) the response characteristics of Mixed Forest to temperature have
obvious monthly differences. The number of significant pixels was the largest in April,
with a proportion of 87% (r = 0.62, p < 0.05), and all were positively correlated, while in
other months, the proportion of significant pixels decreased significantly, especially in
June to September, when the number of significant pixels was relatively small and mainly
negatively correlated. The response characteristics of Mixed Forest to precipitation are not
obvious. Except for the negative correlation in April, the positive and negative correlations
of other months have a certain degree. (2) The response of Grassland to precipitation was
significantly larger than that of Mixed Forest. The proportion of significant pixels in July to
September reached 70%-85%, and it was mainly positively correlated; the corresponding
correlation coefficients are 0.53 (p < 0.05), 0.50 (p < 0.05), and 0.52 (p < 0.05), respectively.
However, the significant pixels affected by April and May were smaller, and the correlation
between NDVI and precipitation in April was mainly negatively correlated. The response
characteristics of Grassland to temperature were significantly different from those of pre-
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cipitation. The influence of temperature on NDVI in April and May was mainly positively
correlated, while in other months (June to October), it was positively correlated in some
pixels, and negatively correlated in some pixels (Figure 13). (3) The response of Barren or
Sparse Vegetation to precipitation was the most significant in July to September, and it was
mainly negatively correlated in April. The response of Barren or Sparse Vegetation to tem-
perature is generally more negatively correlated than positively correlated, and especially
in June.
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5. Discussion
5.1. Comparison of Different Time Lag Methods

The result shows that there is a noticeable improvement in fit closeness (|r|) in linear
regression after considering time lag. This indicates the existence of the impact of time-lag
of climate on vegetation, which is also supported by many studies [13,15,30,39–41].

We consider the previous lag methods as two paradigms: lag and lag-accumulation.
The lag patterns detected by them differ from each other (Figures 6, 7, 10 and 11). The com-
parison results show that the |r| achieved by lag-accumulation is higher than that of lag in
linear regressions (Figure 9). Moreover, the former one is more accurate in the detected lag
patterns; therefore, it is better in revealing the lag mechanism, which is also supported by
previous studies [17,18,27,42]. We believe the main reason is that lag accumulation extends
the lag in considering the impact may come from consecutive periods, which increases the
probability of revealing the mechanism of the time lag.

The new method, the weighted time-lag method, provides the highest |r| in both the
regression model among the three time-lag methods (Figures 4, 5 and 9), indicating that
it has the highest explanatory of precipitation and temperature on vegetation variation.
Moreover, in contrast with the other two, the new method reveals a pattern of the most
accurate weight (Figures 8 and 12), indicating that it can detect the impact intensity of
climate in each month. Concretely, the lag patterns of precipitation and temperature from
months (T − 3) to T are 4.7%, 7.5%, 36.4%, 51.4% and 3.2%, 1.6%, 42.1%, 53.1% (Figure 8).
However, these cannot be detected within lag and lag-accumulation methods. This is
mainly because lag and lag-accumulation models assume the impact comes from one or
more consecutive months, but the new method considers this impact as an accumulation of
different weights from previous periods. In other words, we believe the impact of climate
on vegetation exhibits accumulation, consecutively and shifting [34,43].
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5.2. Impact of Precipitation and Temperature on Vegetation in Loess Plateau

The results of simple linear regression show the vegetation dynamics, especially
responses to the recent two months, and this response varies in vegetation communities in
weight patterns and impact degrees.

The weight patterns of climate in different months shift in the types of vegetation,
and the precipitation and temperature align well in the same vegetation (Figures 10–12).
Grassland and Mixed Forest, for example, are impacted by temperature in the current
month (48% and 73%) and the last month (49% and 26%) detected by method 4. Moreover,
the impacts of precipitation in the recent two months are 52% and 39% in Grassland and
65% and 32% in Mixed Forest (Figure 12). Regions with high vegetation coverage have
a greater demand for water and heat, so the vegetation in these regions (mainly Mixed
Forest) uses the water from precipitation and the heat from higher temperature efficiently
within a short span of time, leading to the bigger weight of the influence of temperature
and precipitation in the current month [26,30]. This indicates that vegetation communities
have differences in response to climate factors; moreover, the precipitation and temperature
have a similar pattern in the same vegetation. This is also supported by Wang et al. [17]
and Guo et al. [42] in Central Great Plains, USA, and Yalu Tsangpo River Basin, China.

The other finding is that the impact of temperature is higher than that of precipitation
in terms of their |r| achieved in simple linear regression with NDVI (Figures 4, 5 and 9).
Moreover, the mean values of the |r| are 0.62 and 0.79 for precipitation and temperature
(Figures 4 and 5). Xu et al. [44] achieved a result of 0.74 and 0.84 for these two mean
values in Inner Mongolia from 1991–2000, which supports this conclusion. For different
vegetation, temperature (or precipitation) has different impact weights, where Grassland
has the highest |r| as 0.84 (or 0.70), and it is obviously higher than others (Figure 9).

Compared with temperature, the impact of precipitation varies in vegetation com-
munities. Specifically, there is a light impact of precipitation on Mixed Forest (|r| = 0.38),
which is obviously lower than that of temperature (|r| = 0.72). This is typically due to the
spatial pattern. The Mixed Forest is mainly located in th southeastern Loess Plateau, which
is a semi-humid area [36]; therefore, it exhibits lower dependency on precipitation. How-
ever, Grassland and Barren or Sparse Vegetation, which are mainly in arid and semi-arid
areas, show higher impacts of precipitation (|r| = 0.70, Grassland; |r| = 0.54, Barren or
Sparse Vegetation), indicating that vegetation has a strong response to precipitation in arid
areas than in humid areas [15,45,46].

5.3. Lag Effects of Climate Factors on Vegetation on the Loess Plateau

The influence of climate factors on NDVI has obvious differences in different months
of the growing season on the Loess Plateau. The response of vegetation to precipitation is
smaller in April and is mainly negatively correlated, while in July to September, the sig-
nificant area is larger and mainly positively correlated, especially for Grassland; that is,
when the temperature is lower in April, precipitation restricts vegetation growth to a
certain extent. Considering that the study area is mainly located in arid and semi-arid areas,
water resources are limited. As the temperature rises in the middle and late stages of the
growing season, precipitation is the main promotion factor of vegetation growth, which is
similar to the research results of Mo et al. [47] and Guo et al. [48]. The effect of temperature
on vegetation growth is mainly positively correlated in April and May and is negatively
correlated from June to September, especially in Mixed Forest. This finding is consistent
with the conclusion of Zhou et al. [49]. That is, at the beginning of the growing season,
the increase in temperature promotes the growth of forests and other vegetation types,
but in the middle of the vegetation growth, the increase in temperature restricts the growth
of forests and other vegetation types. Furthermore, since vegetation is highly sensitive to
temperature changes at the beginning of the growing season [50,51], taking into account
the lag effects, spring warming will reduce frost injury, increase the time for vegetation
to turn green, and promote photosynthesis activity [52], thereby promoting vegetation
growth. Therefore, temperature is mainly positively correlated with NDVI in April and
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May. At the same time, it should be pointed out that the influence of climate change on
vegetation growth has complex multi-scale characteristics [24,53], and the experimental
verification part of this paper only uses the monthly lag as an example; method 4 has been
validated and used, and it needs to be extended to other scales of climate and vegetation
growth in time lag analysis.

6. Conclusions

In this paper, we summarized the different types of methods to detect the time lag;
moreover, we proposed a new weighted method by considering the continuity, shift,
and accumulation of the climate impact on vegetation. We further compared our method
with others within a case study, where we used them in a study to detect the response
of vegetation to the climate in Loess Plateau from 1982–2013. The results address the
differences in lag values detected by diverse methods and the advantages of the new
method, where the new method can reach the most accurate lag patterns of climate factors.

We further applied the new method to study the response of vegetation in the growing
season to the climate in the Loess Plateau. We find that the impact of climate mainly comes
from the current and the last months, where the precipitation pattern aligns well that of
temperature in the same vegetation, and the weights of precipitation (or temperature) vary
in vegetation communities. In addition, the impact of temperature is higher than that of
precipitation across the Loess Plateau. The response of vegetation to climate is a complex
process, exhibiting spatial heterogeneity; therefore, an adequate model is essential to gen-
erate domain knowledge from the study. Our proposed method is just a way to support
scholars to understand such a process better. Further research would focus on ecology
model improvement and the selection of the parameter estimation approach. Moreover,
our method can be still improved, by increasing the amount of the weight combinations in-
crease exponentially with the increase of the independent variables. Therefore, a challenge
remains to efficiently find a more accurate weight combination.
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