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Abstract: The knowledge of the diurnal cycle of precipitation is of extreme relevance to understanding
the physical/dynamic processes associated with the spatial and temporal distribution of precipitation.
The main difficulty of this task is the lack of surface precipitation information over certain regions
on an hourly time scale and the low spatial representativeness of these data (normally surface
gauges). In order to overcome these difficulties, the main objective of this study is to create a 3-h
precipitation accumulation database from the gauge-adjusted daily regional precipitation products
to resolve the diurnal cycle properly. This study also proposes to evaluate different methodologies
for partitioning gauge-adjusted daily precipitation products, i.e., a product made by the combination
of satellite estimates and surface gauge observations, into 3-h precipitation accumulation. Two
methodologies based on the calculation of a conversion factor F between a daily gauge-adjusted
product, combined scheme (CoSch, hereafter), and a non-gauge-adjusted one, the integrated multi-
satellite retrievals for GPM (IMERG)-Early (IMERG, hereafter) were tested for this research. Hourly
rain gauge stations for the period of 2015–2018 over Brazil were used to assess the performance
of the proposed methodologies over the whole region and five sub-regions with homogeneous
precipitation regimes. Standard statistical metrics and categorical indices related with the capability
to detect rainfall events were used to compare the ability of each product to represent the diurnal
cycle. The results show that the new 3-h CoSch products show better agreement with rainfall gauge
stations when compared with IMERG, better capturing the diurnal cycle of precipitation. The biggest
improvement was over northeastern region close to the coast, where IMERG was not able to capture
the diurnal cycle properly. One of the proposed methodologies (CoSchB) performed better on the
critical success index and equitable threat score metrics, suggesting that this is the best product over
the two. The downside, when compared with the other methodology (CoSchA), was a slight increase
in the values of bias and mean absolute error, but still at acceptable levels.

Keywords: rainfall estimates; satellite; gauges; 3-h precipitation; diurnal cycle

1. Introduction

The knowledge of the freshwater distribution across the globe is of vital importance
for the management of natural resources, and precipitation is a central component of the
hydrological cycle, transferring water inside the earth–atmosphere system. The intrinsic
high temporal and spatial variability of precipitation patterns over a given region are
an obstacle to understanding those characteristics. A way to address those issues is to
systematically examine the timing and duration of precipitation events as a function of time
of day [1], since precipitation is modulated by the variability of solar activity (diurnal cycle).
The solar radiation diurnal cycle changes the surface temperature, causing variations in
the convection and cloud formation patterns and, consequently, the precipitation itself.
Therefore, the study of the precipitation diurnal cycle (PDC, hereafter) is important not
only in understanding the physical processes involved in precipitation generation, but
also to evaluate the performance of weather, climate and hydrology models [2–5], being a
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key factor in understanding rainfall variability. In general, convection processes generate
a maximum of rainfall in the afternoon and a minimum in the morning on continental
surfaces, while the opposite occurs over the ocean, resulting from the sea/land breeze
mesoscale circulation [6]. While these are the most significant dynamically forced diurnal
rainfall regimes across the globe, studies suggest a larger variety of PDC regimes over
Brazil. For example, Brito et al. [7] studied in details the different PDC regimes over the
continent and adjacent oceanic areas in northern Brazil, suggesting a new type of regime
with a maximum precipitation in the morning (seaside coastal influence) and another in late
afternoon (continental influence). More recently, a study of Afonso et al. [8] identified seven
regions with different PDC characteristics over Brazil and shows that satellite precipitation
algorithms are better in those regions where thermal-induced heating produces deep
convective clouds than those regions driven by shallow convection or low-level circulation.

The rain gauge networks and weather radars are the main source of precipitation
information overground, but they have limited coverage and, in the case of rain gauges,
limited representativeness. These issues lead to uncertainties for the study of precipita-
tion processes. In this context, satellite-based estimates become a complementary tool for
monitoring precipitation. Geostationary satellite sensors have been used to estimate precip-
itation since the 1980s at cloud scales with low latency and high spatial resolution, but with
limitations due to uncertainties on the relationships between cloud top brightness temper-
ature and surface precipitation on the infrared and visible spectrum. To overcome these
limitations, low-orbit microwave satellite sensors started to be used with the advantage to
provide more accurate estimates, because of the ability of microwave radiation to penetrate
clouds, being sensitive to liquid (water) and solid (ice) hydrometeors. The downside of
passive microwave (PMW) retrievals are the higher latency and lower spatial and temporal
resolution data, because of the low-orbit scan and the portion of electromagnetic spectrum
used to retrieve rainfall.

Although improvements have been made on satellite precipitation estimation tech-
niques over the years, there are still systematic errors due to regional and seasonal rainfall
regimes, and possible random errors, due to the indirect nature of these measurements [9].
In order to minimize these errors, several blended techniques combining satellite data
with rain gauge data have been or are being developed. Linear regression models [10], the
calculation of residuals weighted by the inverse of distance [11], coupling with numerical
models [12–14], and geostatistical techniques such as kriging [15] and others [16] are among
the most utilized methodologies to perform these blending techniques.

Considering the lack of surface precipitation information on the time scale of hours
over certain regions in Brazil [8] and South America [17], and the low spatial represen-
tativeness of these data, the main objective of this study is to create a 3-h precipitation
accumulation database from the gauge-adjusted (hereafter called blended) daily regional
precipitation products (i.e., a product made by the combination of satellite estimates and
surface gauge observations) in order to resolve the diurnal cycle properly. While there are
several algorithms with temporal resolution of 30 min, such as the integrated multi-satellite
retrievals for GPM (IMERG) [18] and the climate prediction center morphing method
(CMORPH) [19], they are not normally gauge-corrected at a daily basis and, when they
are, the latency could be of several days. The use of regional daily blended products [20]
also means that regional gauge networks could be accessed and more rain gauge stations
are included in the blended product. Finally, different methodologies for the creation of
the new database can be evaluated in order to provide the better product for the user’s
community.

This article is structured as follows: Section 2 presents information from the study ar-
eas, precipitation data sets, and statistics metrics used in the validation process.
Section 3 presents the main results of this research and discussion, while the conclusions
are provided in Section 4.
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2. Materials and Methods
2.1. Study Area

Brazil occupies most of the central and eastern part of the South America continent,
with its coast bordering a large part of the Atlantic Ocean. With an area of approximately
8,514,215 km2, it presents a great diversity of landscapes, biodiversity, climate, and pre-
cipitation regimes [8]. While this study is focused on Brazil at a larger scale, because of its
continental dimensions, it is important to consider the influence of different precipitation
regimes. To account for that, the present study opted to continue the work of Rozante
et al. [21], who evaluated daily blended products over five regions with a different rainfall
regime (R1 to R5 see Figure 1). Those regions were created based on analysis over an
18-year time span precipitation database. The region R1 presents well-distributed precip-
itation year-round and is largely influenced by transient frontal systems that carry cold
air masses from temperate and subtropical regions. The R2 covers a large area of Brazil
encompassing the west part of the north region and all the center-west and southeast
regions. With high influence from the South Atlantic convergence zone (SACZ), this region
is characterized by higher precipitation levels in summer (December, January and February
(DJF)) than winter (June, July and August (JJA)). The R3 region, located on the northeast
of Brazil, has the lowest accumulated values of precipitation, because of large-scale sub-
sidence patterns inhibiting cloud formation, and does not present a well-defined rainfall
regime. The R4 is located on the coast of Brazil’s northeast region and presents higher
precipitation during JJA than DJF, and is influenced by the sea breeze circulation. Finally,
the R5 region has the highest accumulated values of precipitation over Brazil, due to the
Intertropical convergence zone (ITCZ), covering the northern part of the north region. The
period of maximum precipitation occurs during January, February and March (JFM).

In this study, six regions were considered, including the Brazil (BR) study area region
that covers the whole country. Therefore, we have the BR box and the R1–R5 sub-regions, all
of which are shown in Figure 1. More details including the data processing and validation
process are in the subsequent sections.
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2.2. IMERG Precipitation Estimates Data

The IMERG algorithm [18] is responsible for intercalibrating, merging, and interpo-
lating all satellite microwave precipitation estimates, together with microwave-calibrated
infrared satellite estimates (IMERG-Early and IMERG-Late products) and precipitation
gauge observations for bias correction purposes (IMERG-Final), but employing the GPM
constellation of satellites. The GPM is considered the successor of Tropical Rainfall Measur-
ing Mission (TRMM) multi-satellite precipitation analysis (TMPA) [22] and has significant
improvements. The orbital inclination has been increased from 35◦ to 65◦, resulting in
greater global coverage, the radar has been upgraded to two frequencies, adding sensitivity
to light precipitation, and the channels of 165.5 and 183.3 GHz were added to the passive
microwave sensor imager, which facilitates the detection of light and solid precipitation [23].
The observation interval for GPM is also 30 min instead of the 3 h interval for TRMM.
The IMERG data are produced by a Bayesian inverse algorithm applied to microwave
brightness temperatures that is run several times for each observation time [24]. The spatial
resolution is 0.1◦ with 30 min of temporal resolution. However, to match the resolution of
gauges data, the data were converted to tri-hourly temporal resolution. The IMERG-Early
version (hereafter, IMERG) for the period of 2015–2018 were used for the creation of the
new 3-h blended and daily products (see Section 2.3) and also for as a benchmark for
low-latency sub-daily products.

2.3. Combined Scheme (CoSch) Precipitation Data

Combined scheme (CoSch) is a regional daily blended precipitation product obtained
with the combination of satellite precipitation estimates and daily gauge observations
data [25]. The methodology is based on the bias correction between satellite and gauge
data, where additive and multiplicative bias correction schemes are applied for each gauge
station on a daily basis. Initially, the rain gauge observations are interpolated with the
nearest neighbor method to match the grid size of the satellite estimates where all regions
with a distance greater than five grid points from the closest station are masked out. In
the remaining regions, the difference between additive/multiplicative bias correction and
observed values is performed. The mean additive and multiplicative bias corrections
schemes are calculated, respectively, by:

CA = sat + cadd = sat +
(
obsi − sati

)
(1)

CM = sat ∗ cmult = sat ∗
(
obsi/sati

)
, (2)

where i represents a gauge station, sat is the precipitation value estimated by satellite and
obs is the value observed by a gauge station. The values of cadd and cmult are, respectively,
the additive and multiplicative bias for each station i and the bar represents the process
of gridding the data. One particular scheme (additive or multiplicative) is selected for
each grid point based on the minimum difference (CA or CM) between that particular bias
correction and the observation. The bias-corrected precipitation in the rest of the land
areas masked out is defined as a weight average of the additive and multiplicative bias
correction schemes as follows:

CoSchi = αCAi + βCMi (3)

where i represents a grid point and CoSchi is the final result for the CoSch scheme. The
weight factors α and β represent the number of times a particular scheme is selected in a 3◦

× 3◦ box centered in the grid box with i divided by the total grid points in that particular
box (excluded all masked points) so that α + β = 1 for every non-masked grid point.

For this study, the CoSch scheme was applied to daily IMERG precipitation estimates
for the period of 2015–2018 and applied to the creation of the blended 3-h products.
Although similar daily blended products are available on a global scale, like IMERG-Final,
CoSch was chosen because it performs better over South America [20].
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2.4. Methodologies for 3-h Database Development

The main philosophy behind the partition of daily data was to transfer the gauge
calibration information on the blended precipitation product in some way to the 3-h version.
To accomplish this, a conversion factor F was calculated between the blended and the
non-blended versions as follows:

F =


PB−D/PNB−D, when PNB−D 6= 0 ⇔ PB−D = FxPNB−D

0, when PNB−D = 0
0, when PB−D = 0 and PNB−D = 0

(4)

where PB-D and PNB-D are, respectively, the blended and the non-blended daily precipitation
products. In this case, the blended product is CoSch (see Section 2.3) and the non-blended
product is IMERG. The F values in the previous step were calculated on a daily basis and
were applied to the creation of the 3-h product version so that:

PB,i = FxPNB,i (5)

where PB,i and PNB,i are, respectively, the 3-h versions of PB-D (the new adjusted product)
and PNB-D (the existent non-gauge-adjusted product). The subscript i represents time
ranging from 1 to 8 (00Z, 03Z . . . ,21Z) and, by construction, the sum of the eight partitions
is the 24 h accumulated daily precipitation, except for those pixels where PB-D is different
to zero and PNB-D is zero on that particular day. In such a case, with F = 0, the sum of the
eight periods is zero and PB is not zero. In order to overcome this issue, in those grid points
where this particular situation occurs, PB,i is calculated by the following equation:

PB,i = PFclim,ixPB−D = (PNB,i/PNB−D)clim,ixPB−D (6)

where PFclim,i is the four-month period climatology (Jan–Apr, May–Aug and Sep–Dec)
of the daily precipitation fraction on time i, and represents the fraction amount of the
daily precipitation that is expected to occur at time i. Figure 2 shows the maps of PFclim,i
calculated for the BR region.

Figure 3 shows a flow diagram to create the 3-h version product with IMERG and
CoSch datasets. From the daily products of IMERG and CoSch, the conversion factor F
is calculated and applied to the 3-h IMERG product resulting in the blended 3-h CoSch
product. In those grid points where CoSch is not zero and IMERG is zero, the CoSch daily
values are multiplied by the PFclim,i values.
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general, the convection generates a maximum of precipitation in the afternoon and a minimum in 
the morning on continental areas. 

Figure 2. Spatial distribution of PFclim,i(%) obtained from the 3-h integrated multi-satellite retrievals
for GPM (IMERG) product precipitation estimates for the period of 2000–2019 over the BR region
from 00Z to 21Z. (a) January to April; (b) May to August; (c) September to December. Note that, in
general, the convection generates a maximum of precipitation in the afternoon and a minimum in
the morning on continental areas.
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Figure 3. Schematic flow chart showing the steps required to create the 3-h versions products with
IMERG and combined scheme (CoSch) datasets. From the daily products of IMERG and CoSch, the
conversion factor F is calculated and applied to the 3-h IMERG product resulting the blended 3-h
CoSch products CoSchA and CoSchB. In the grid points without satellite information, the CoSch
daily values are multiplied by the PFclim,i values in the creation of CoSchB product.

In order to evaluate if the climatological factor (PFclim,i) has a positive impact on the
new product, two CoSch blended 3-h products were created and they were named CoSchA,
where those grid points with climatological correction were excluded, and CoSchB, where
those points were included in the statistics. Because the number of points where PFclim,i
was used is relatively small compared with those points where F is performed, a large
difference is not expected between both products. However, the number of points is enough
to test the sensitivity of the proposed method as shown in the results section (see Section 3).
Figure 4 shows an example of the CoSchB methodology for 01/01/2018 at 03Z.
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Figure 4. The steps required to create the CoSchB version product with IMERG and CoSch datasets
for 01/01/2018 at 03Z. From the daily products of (a) IMERG and (b) CoSch (c) the conversion
factor F is calculated and applied to (e) the 3-h IMERG product resulting (f) the blended 3-h CoSchB
product. Panel (d) shows the grid state regarding daily rainfall measurement data. In the grid points
without satellite information (i.e., gauges only), the CoSch daily values are multiplied by the (h)
PFclim,i values where i here is for 03Z. The difference between the 3-h version of IMERG and CoSch is
also displayed in (g).

2.5. Gauges Validation Process
2.5.1. Gauge Data

The hourly precipitation gauge data was provided by the National Institute for Space
Research (INPE) for the period of 2015–2018 in the form of a compilation from several
agencies [8], including the Brazilian National Institute of Meteorology (INMET), the Na-
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tional Water Agency (ANA), Companhia Energética de Minas Gerais (CEMIG), Agronomic
Institute (IAC) and Sistema Meteorológico do Paraná (SIMEPAR). A quality control was
performed to exclude unrealistic values, check convective rainfall ratios with satellite im-
agery and account for differences in the time resolution data between the agencies. At the
end of the quality control, a total of 1261 stations were selected. The data were interpolated
to a 0.1× 0.1 grid using the simple average for the rain gauges station available at each grid
point (Figure 5) and has a temporal resolution of 3 h. It is possible to see that the sampling
frequency of data is quite uneven along Brazil, with relatively low values (less than 40%
of the total series) for some points in southeastern and southern Brazil. More information
about the gauge data processing, quality control and the cluster analysis performed to
obtain the chosen sub regions are in Afonso et al. [8].
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Figure 5. The spatial distribution and percentage of valid gauge data (Nf) for the period of 2015–2018
on each grid point.

2.5.2. Performance and Statistic Metrics

The main purpose of this validation study is to provide accurate information regard-
ing the regional and seasonal performance of the two CoSch blended 3-h products. Both
were quantitatively and systematically assessed by using some standard statistical metrics
and categorical indices including: the bias (error between satellite precipitation estimates
and observed precipitations); the mean absolute error (MAE); the root mean square er-
ror (RMSE); the Pearson linear correlation coefficient (r) between satellite precipitation
estimates and observed precipitations; the bias score (BSCORE), which is the relationship
between frequencies of estimated event versus frequency of observed event; the probability
of detection (POD), which is the fraction of corrected estimated events; the false alarm ratio
(FAR), which is the fraction of estimated events that did not occur; and the equitable threat
score (ETS), which measures the fraction of estimated and/or observed events that were
correctly predicted, but adjusted by a factor (Hr) based on hits associated with random
chance. r is a dimensionless variable whereas bias, MAE, and RMSE are in units of mm/3 h.
BSCORE, POD, FAR and ETS are categorical indices related to the capability of detection of
rainfall events. More details about the definition of these indices can be found in Wilks [26],
while Tables 1–3 show short descriptions of all the indices mentioned in this study.
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Table 1. List of the statistical indices mentioned in this study. The size of sample is represented by n,
while P and O are, respectively, the estimated (satellite) and observed (gauges) precipitation values.

Statistic Index Equation Unit Best Value

Pearson’s Linear
Correlation
Coefficient

r = ∑n
i=1(Pi−P)∑n

i=1(Oi−O)√
(Pi−P)

2
√
(Oi−O)

2
- 1

Bias bias = ∑n
i=1(Pi−Oi)

n mm/3 h 0

Mean Absolute Error MAE = ∑n
i=1|Pi−Oi |

n mm/3 h 0

Root Mean Square
Error RMSE =

√
∑n

i=1(Pi−Oi)
2

n
mm/3 h 0

Table 2. Contingency table. For this study was considered a threshold value of 0.1 mm.

Observed

Yes No Total

Estimated

Yes Hits (H) False Alarms (F) H + F

No Misses (M) Correct Negatives (C) M + C

Total H + M F + C (H + F + M + C)

Table 3. List of the categorical indices mentioned in this study. These indices are calculated based on
the contingency table values in Table 2.

Statistic Index Equation Best Value

Probability of Detection POD = H/(H + M) 1

False Alarm Ratio FAR = F/(H + F) 0

Success Ratio SR = 1− FAR 1

Bias Score BSCORE = (H + F)/(H + M) 1

Critical Success Index CSI = H/(H + M + F) 1

Equitable Threat Score
ETS = (H − Hr)/(H + M + F− Hr)

where Hr =
(H+M)(H+F)
(H+M+F+C)

1

Collocated gauges and the two CoSch 3-h products data matrices were processed at
a resolution of 0.1◦ and average values for the period of 2015–2018 for all variables were
calculated for BR and its five sub-regions (R1-R5). Taylor diagrams [27] and Roebber’s
performance diagrams [28] were also used to visualize and quantify the performance of
the blended 3-h products.

3. Results and Discussion

Figure 6 shows the mean PDC values for the period of 2015–2018 over all regions.
The IMERG, CoSchA, and CoSchB products are compared against the rain gauge network
observation (OBS) dataset. The analysis reveals that, except for the R4 region and 12Z times,
IMERG tends to overestimate the precipitation values over all regions, while CoSchA and
CoSchB showed better agreement with OBS values. This proves that the CoSch products,
and consequently the proposed methods to create them, improved on the skill achieved
by the IMERG product. The R4 region was the only one where IMERG underestimated
the observed precipitation, but both CoSchA and CoSchB values got closer to OBS values.
However, at 12Z, IMERG showed better results over the BR, R2, R3, and R5 regions. This
suggests that the conversion factor F, which depends on accumulated daily precipitation
values, is overcorrecting the precipitation at this time in particular, resulting in under-
estimated values for the CoSch products. When comparing only the CoSch products,
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Figure 6 suggests that both showed similar results, but with CoSchA having slightly better
agreement with OBS values. More details about the differences between these products,
i.e., bias and MAE, will be discussed in Figure 7.Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 21 

 

 

 
Figure 6. Mean precipitation diurnal cycle (PDC) comparing the satellite precipitation products IMERG (red), CoSchA 
(blue), CoSchB (green), and the rain gauges (OBS) data for the 2015–2018 period over all regions covered at Figure 1. The 
panels show the results for each region, (a) for BR, (b) for R1, (c) for R2, (d) for R3, (e) for R4, and (f) for R5. 

In order to easily visualize which satellite precipitation product more precisely esti-
mated precipitation for each region, Figure 7 shows Taylor diagrams plotted to show the 

Figure 6. Mean precipitation diurnal cycle (PDC) comparing the satellite precipitation products IMERG (red), CoSchA
(blue), CoSchB (green), and the rain gauges (OBS) data for the 2015–2018 period over all regions covered at Figure 1. The
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In order to easily visualize which satellite precipitation product more precisely esti-
mated precipitation for each region, Figure 7 shows Taylor diagrams plotted to show the
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concise statistical summary of how well each one matches the rain gauges data in terms of
their r, normalized standard deviation, and RMSE values. Satellite products with better
performance will lie nearest to the solid circle and line denoted as OBS. When compared to
the IMERG dataset, the CoSch products appeared to significantly reduce the distance to
OBS values with slightly better r values in each region analyzed. When comparing only
the CoSch products, both products show similar variation, but CoSchB has better r values.
This proves that the inclusion of the observed grid points partitioned by the PFclim,i factor
was capable of improving the correlation with observed precipitation.
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Figure 7. Taylor diagrams (a–f) showing the normalized standard deviation, root mean square error (RMSE) and the r
values of mean precipitation (mm/3 h) for the 2015–2018 period between the satellite precipitation products IMERG (red),
CoSchA (blue), CoSchB (green), and the rain gauges (OBS) over all regions covered at Figure 1. Panels (g–l) also show the
mean absolute error (MAE) and bias values. The numbers represent the results for different times (UTC), 1 for 00Z, 2 for
03Z, 3 for 06Z, 4 for 09Z, 5 for 12Z, 6 for 15Z, 7 for 18Z, and 8 for 21Z.

Figure 7 also shows the plot of bias against MAE values to easily visualize which
satellite precipitation product had the best error values. The superiority of the CoSch
products over IMERG is clear, with its lower MAE values and better bias values (closer to
zero) for all regions. The exception is at 12Z, where IMERG showed better results over BR,
R2, R3, and R5 regions. Because bias and MAE here are not normalized by the values of
precipitation, the periods with higher differences are the ones with higher precipitation values,
typically at 00Z, 18Z, and 21Z. When comparing only the CoSch products, CoSchA has better
results than CoSchB, showing that the addition of the grid points without satellite information
and partitioned by the PFclim,i factor did not pay off in terms of bias and MAE performance.
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At this point, is possible to say that the CoSch products showed a distinct behavior in
terms of statistic metrics. While CoSchA has better metrics in terms of bias and MAE, CoSchB
has better results in terms of r. In other words, the inclusion of the grid points observed by
stations did not significantly change the standard deviation between the products, but it was
responsible for the increased bias and MAE values in the CoSchB product.

Figure 8 shows the Roebber’s performance diagrams comparing IMERG and CoSch
products for each region and different times. The results are based on the contingency table
in Table 2 and a threshold value of 0.1 mm/3 h was considered to trigger an event. The
dashed lines represent BSCORE while the contour lines represent the Critical Success Index
(CSI). The best performance occurs when a satellite product has higher values of POD and
Success Ratio (SR), while keeping as near as possible to the 1.0 BSCORE line.
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Figure 8. Performance diagrams summarizing probability of detection (POD), SR, CSI, and bias score
(BSCORE) between the satellite precipitation products IMERG (red), CoSchA (blue), CoSchB (green),
and the rain gauges data for the 2015–2018 period over all regions covered at Figure 1. Each region is
represented by a symbol. The panels show the results for different times (UTC), (a) for 00Z, (b) for
03Z, (c) for 06Z, (d) for 09Z, (e) for 12Z, (f) for 15Z, (g) for 18Z, and (h) for 21Z.
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In terms of BSCORE, all satellite products generally under forecast precipitation
(BSCORE < 1) over regions R1, R3, and R4 for all times, while the other regions over
forecast (BSCORE > 1). The exception is at 12Z, where all products generally under forecast
precipitation. Under forecast here means that the frequency of estimated events is lower
than the frequency of observed events, while over forecast means the opposite. CoSchA
has better BSCORE metrics over regions BR, R2, and R5, while CoSchB over regions R1, R3,
and R4 (see also Table 4).

Table 4. The mean values of BSCORE, POD, false alarm ratio (FAR), and equitable threat score (ETS) for the period 2015–2018
in all sub-regions and BR region. The best metric value for each satellite product and for each region is highlighted with a
grey background.

Box Time
IMERG CoSchA CoSchB

BSCORE POD FAR ETS BSCORE POD FAR ETS BSCORE POD FAR ETS

BR

00 1.59 0.54 0.66 0.20 1.20 0.52 0.57 0.25 1.47 0.61 0.59 0.27
03 1.54 0.51 0.67 0.19 1.17 0.49 0.59 0.23 1.45 0.58 0.60 0.25
06 1.26 0.45 0.64 0.18 0.94 0.43 0.54 0.23 1.16 0.53 0.55 0.27
09 1.09 0.41 0.62 0.17 0.80 0.39 0.51 0.22 0.97 0.47 0.52 0.25
12 0.95 0.36 0.62 0.16 0.70 0.32 0.54 0.18 0.88 0.38 0.56 0.20
15 1.45 0.47 0.68 0.16 1.11 0.44 0.60 0.20 1.33 0.52 0.61 0.22
18 1.92 0.62 0.68 0.18 1.49 0.60 0.59 0.24 1.75 0.69 0.61 0.25
21 1.89 0.62 0.67 0.18 1.44 0.60 0.58 0.25 1.71 0.68 0.60 0.26

R1

00 0.63 0.34 0.46 0.10 0.53 0.33 0.38 0.13 0.95 0.47 0.51 0.21
03 0.61 0.30 0.51 0.08 0.50 0.28 0.44 0.10 0.92 0.39 0.57 0.16
06 0.47 0.25 0.46 0.08 0.38 0.24 0.36 0.10 0.66 0.33 0.50 0.16
09 0.43 0.24 0.44 0.08 0.35 0.23 0.34 0.10 0.58 0.31 0.47 0.14
12 0.41 0.24 0.40 0.08 0.35 0.23 0.35 0.09 0.57 0.29 0.49 0.12
15 0.70 0.33 0.52 0.08 0.59 0.32 0.45 0.10 0.89 0.41 0.54 0.15
18 0.82 0.40 0.51 0.10 0.68 0.39 0.43 0.13 1.09 0.50 0.54 0.18
21 0.75 0.40 0.47 0.11 0.63 0.38 0.39 0.14 1.07 0.51 0.52 0.20

R2

00 1.68 0.53 0.69 0.17 1.21 0.50 0.58 0.23 1.52 0.59 0.61 0.25
03 1.69 0.50 0.70 0.16 1.21 0.48 0.60 0.21 1.52 0.56 0.63 0.23
06 1.34 0.44 0.67 0.16 0.95 0.42 0.56 0.21 1.22 0.50 0.59 0.24
09 1.21 0.40 0.67 0.15 0.83 0.37 0.55 0.20 0.99 0.43 0.56 0.22
12 0.90 0.32 0.64 0.14 0.62 0.28 0.54 0.16 0.81 0.33 0.59 0.17
15 1.51 0.43 0.72 0.13 1.09 0.40 0.63 0.16 1.30 0.46 0.64 0.19
18 2.02 0.60 0.70 0.15 1.52 0.58 0.62 0.21 1.79 0.67 0.63 0.23
21 2.02 0.60 0.70 0.16 1.49 0.58 0.61 0.22 1.76 0.67 0.62 0.24

R3

00 0.57 0.27 0.53 0.09 0.42 0.25 0.41 0.12 1.10 0.36 0.67 0.15
03 0.56 0.26 0.54 0.09 0.42 0.24 0.42 0.12 1.07 0.37 0.65 0.15
06 0.46 0.23 0.49 0.08 0.34 0.22 0.36 0.11 0.93 0.37 0.60 0.18
09 0.33 0.17 0.47 0.06 0.23 0.16 0.32 0.08 0.60 0.30 0.50 0.17
12 0.23 0.12 0.45 0.04 0.16 0.10 0.35 0.05 0.49 0.21 0.57 0.11
15 0.42 0.19 0.54 0.05 0.30 0.17 0.43 0.07 0.90 0.37 0.58 0.19
18 0.79 0.30 0.63 0.07 0.56 0.28 0.50 0.10 1.43 0.48 0.66 0.18
21 0.92 0.33 0.65 0.08 0.60 0.31 0.48 0.12 1.44 0.44 0.70 0.15

R4

00 0.18 0.11 0.37 0.04 0.15 0.11 0.30 0.05 0.82 0.29 0.65 0.10
03 0.18 0.11 0.42 0.04 0.16 0.11 0.33 0.05 0.83 0.31 0.62 0.11
06 0.20 0.12 0.40 0.04 0.17 0.12 0.29 0.05 0.65 0.34 0.48 0.15
09 0.17 0.11 0.37 0.04 0.14 0.10 0.27 0.05 0.55 0.31 0.44 0.15
12 0.18 0.11 0.37 0.03 0.15 0.10 0.31 0.04 0.63 0.26 0.59 0.09
15 0.31 0.17 0.44 0.06 0.26 0.17 0.36 0.07 0.97 0.38 0.61 0.14
18 0.48 0.22 0.55 0.06 0.39 0.22 0.44 0.08 1.39 0.42 0.70 0.12
21 0.36 0.18 0.51 0.05 0.28 0.17 0.39 0.07 1.13 0.35 0.70 0.10

R5

00 2.15 0.54 0.75 0.13 1.43 0.51 0.64 0.19 1.58 0.53 0.66 0.19
03 1.86 0.51 0.72 0.15 1.27 0.48 0.62 0.19 1.48 0.50 0.66 0.19
06 1.62 0.51 0.69 0.16 1.13 0.48 0.58 0.21 1.29 0.50 0.61 0.21
09 1.39 0.48 0.65 0.16 0.96 0.45 0.53 0.22 1.10 0.48 0.56 0.22
12 1.30 0.42 0.68 0.14 0.82 0.36 0.56 0.17 0.93 0.37 0.60 0.17
15 1.55 0.48 0.69 0.13 1.09 0.44 0.59 0.17 1.21 0.46 0.62 0.17
18 2.28 0.69 0.70 0.13 1.66 0.66 0.60 0.21 1.77 0.69 0.61 0.21
21 2.50 0.67 0.73 0.12 1.75 0.65 0.63 0.21 1.86 0.68 0.64 0.21

The CoSch products show distinct behavior when analyzing their POD and SR val-
ues. A higher POD value means that a high frequency of observed events was correctly
estimated, while a higher SR value means that a high frequency of estimated events did
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actually occur, i.e., has a low frequency of false alarms. CoSchB has the best performance
in terms of POD, outperforming IMERG and CoSchA (see also Table 4), with CoSchB
having the lowest performance. However, CoSchA has the best performance in terms
of SR, outperforming IMERG and CoSchB, with CoSchA having the lowest performance.
In other words, CoSchB favors POD performance while CoSchA favors SR performance.
The advantage of CoSchB, although, resides on the higher values of CSI. A higher CSI
value means that a high fraction of both observed and/or forecast events were correctly
predicted, penalizing misses and false alarms (see Table 3). CoSchB consistently has higher
values of CSI in all times and regions when compared to CoSchA and IMERG.

Considering the time of day, the performance diagrams suggest that the general
behavior of the categorical indices are similar, meaning that the differences between regions
are more important than the time of day.

Finalizing, the CoSch products were able to improve performance metrics mainly
in terms of POD (CoSchB) and SR (CoSchA), however, the inclusion of the grid points
observed by stations appears to be responsible for the increased CSI values in CoSchB
product.

Table 4 shows the summary of results for average categorical indices for IMERG and
CoSch products. This table includes the results for BSCORE, POD, FAR, and ETS. The
best metric value for each satellite product and for each region is highlighted with a grey
background. The discussion here will be focused on ETS, since the other indices were
analyzed in the discussion of Figure 8.

The ETS score is similar to CSI but is adjusted to account for hits associated with
random chance. This similarity probably explains why CoSchB had the best metrics of ETS
when compared to CoSchA and IMERG. The regions with higher average precipitation
(BR, R1, R2) generally had higher ETS values, while the opposite occurred with the others
(R3 and R4).

4. Conclusions

In order to resolve the diurnal cycle of precipitation, this study proposed the creation
of a 3-h precipitation accumulation database from blended daily regional precipitation
products. The methodology was based on the calculation of a conversion factor F between
the blended, CoSch, and the non-blended, IMERG, satellite products. Two CoSch blended
3-h products were created, named CoSchA and CoSchB. The main purpose was to verify
if the addition of the grid points without satellite information, partitioned by the PFclim,i
factor, would improve the performance. Collocated gauges and the two CoSch 3-h products
data matrices were processed at a resolution of 0.1◦ and average values for the period 2015–
2018 were calculated for BR and five sub-regions (R1-R5) with different rainfall regimes.
The performance was accessed by using standard statistical metrics and categorical indices
related to the capability of detection of rainfall events. The validation of CoSch products
was based on 3-h rainfall comparisons with the Brazil rain gauge network for the 2015–2018
years. The main findings of this study are summarized as follows:

For the analyzed period, IMERG tends to overestimate the precipitation values over
Brazil but generally was capable of capturing the diurnal cycle of precipitation. The
exception was the region R4, where IMERG underestimates precipitation and was not
capable of capturing the diurnal cycle.

The CoSch products show a better agreement with rainfall gauge stations than IMERG,
proving that the proposed methods to create them were able to improve on the skill
achieved by the IMERG product. Also, they were capable of at least correcting the daily
cycle observed over the R4 region, while still overestimating the values.

Considering the performance in terms of statistic metrics, the CoSchA product has the
best metrics in terms of bias and MAE, while CoSchB has the best metrics in terms of r. The
CoSch products have better performance overall than IMERG in these metrics.

The analysis over categorical indices shows that CoSchB favors POD performance,
while CoSchA favors SR (or FAR) performance. The advantage of CoSchB, although,
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resides on the better performance metrics of CSI and ETS, meaning that this is, maybe, the
best reason to classify CoSchB as a better product than CoSchA. Again, the CoSch products
have better performance overall than IMERG in these metrics.

The addition of the grid points without satellite information, i.e., only observed by
stations and partitioned by the PFclim,i factor on the CoSchB product, was responsible for
increasing r values and the POD, CSI, and ETS metrics. The downside was a slight increase
in the values of bias and MAE, but still at acceptable levels.

The results obtained so far suggest that improvements in the 3-h CoSch technique
could be made in the future. One example is investigating why the results at 12Z were
slightly worse than the other times. The proposed 3-h database creation technique could
also be analyzed over other regions of the globe.
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