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Abstract: Accurate spatial information of agricultural fields is important for providing actionable
information to farmers, managers, and policymakers. On the other hand, the automated detection of
field boundaries is a challenging task due to their small size, irregular shape and the use of mixed-
cropping systems making field boundaries vaguely defined. In this paper, we propose a strategy
for field boundary detection based on the fully convolutional network architecture called ResU-Net.
The benefits of this model are two-fold: first, residual units ease training of deep networks. Second,
rich skip connections within the network could facilitate information propagation, allowing us to
design networks with fewer parameters but better performance in comparison with the traditional
U-Net model. An extensive experimental analysis is performed over the whole of Denmark using
Sentinel-2 images and comparing several U-Net and ResU-Net field boundary detection algorithms.
The presented results show that the ResU-Net model has a better performance with an average
F1 score of 0.90 and average Jaccard coefficient of 0.80 in comparison to the U-Net model with an
average F1 score of 0.88 and an average Jaccard coefficient of 0.77.

Keywords: deep learning; fully convolutional neural networks; image segmentation; field boundary
detection; cropland monitoring; U-Net; ResU-Net

1. Introduction

Accurate agricultural mapping is of fundamental relevance for a wide array of applica-
tions [1]. Especially government agencies and administrative institutions like the European
Union rely on information about the distribution, extent, and size of fields as well as acreage
of specific crops to determine subsidies or enforce agricultural regulations [1]. Growing
concern about sustainable agricultural practices and reasonable crop management requires
new rules to be enforced by law and monitored regularly [2]. This raises the need for
up-to-date knowledge about the state of croplands on a regional level [3,4].

Additionally, parcel mapping indirectly provides information on agricultural practices,
mechanization, and production efficiency [1,5]. An important precondition for accurate
agricultural monitoring is knowledge of field extents, while knowledge of field location
may also be introduced into crop type mapping and land use classifications in the form of
object-based techniques [4].

Traditionally, field extent is obtained either from existing cadastral maps or via manual
delineation and labeling of fields. This requires in-situ campaigns or high-resolution aerial
imagery. The process can be very accurate but also slow, costly, and labor-intensive.
Furthermore, it lacks repeatability and is often very subjective [1,3]. This is particularly
problematic in very remote regions or if budget or labor constraints do not allow for regular
assessments. Due to these limitations, many agencies are still relying on decades-old
cadastral maps that do not represent the current state of field management [4].

The use of existing maps or previous surveys is not sufficient in many applications. For
example, in areas of predominantly smallholder farms with frequently varying cropping
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practices, crop rotations, and changing fields, cadastral maps and field statistics become
obsolete very quickly [1]. This is where Remote Sensing comes into play. Satellite imagery,
in particular, allows for cost-effective, comparatively frequent, and fully automatic obser-
vations. In the related literature, there are many examples of the use of Earth Observation
(EO) data for agricultural cropland monitoring [6,7].

Field boundary detection may be achieved by traditional segmentation techniques.
Image segmentation approaches in literature may be broadly categorized into edge de-
tection and region-based approaches. Edge detection methods are the most popular and
locate relevant boundaries in the image. They do, however, fail to organize image features
into consistent fields because they cannot guarantee closed polygons [8,9]. This may be
alleviated by post-processing to arrange extracted boundaries into coherent polygons [10].
Alternatively, region-based methods are used for segmentation, for example by progres-
sively merging or splitting adjacent areas in an over-segmented image based on spectral
properties around a set of k-means [11–14]. Region-based algorithms produce a set of
segments representing individual fields but sometimes fail to locate boundaries at the
natural or visible edges of the highest gradient or linearity. Other studies combine a set of
extracted image features with a classifier, e.g., neural networks, to detect boundaries [1,10].

Many recent studies of automatic edge detection algorithms, make use of Convo-
lutional Neural Networks (CNN) algorithms. They have shown a remarkable capacity
to learn high-level data representations for object recognition, image classification, and
segmentation [7,15–18].

The first popular modern CNN model was AlexNet proposed in 2012 [19]. In AlexNet
convergence rate is higher than the classical machine learning models and over-fitting
is effectively prevented [20]. In 2014 VGGNet was proposed as an upgraded version of
AlexNet with more layers and greater depth [21]. VGGNet showed that the accuracy of
image recognition can be improved by increasing the depth of the convolutional network.
It further revealed that multiple consecutive small-scale convolutions contain more nonlin-
ear expressions than a single large-scale convolution and that smaller-sized convolution
kernels can reduce the computation cost and hasten convergence [20].In recent years, many
more advanced architectures were introduced. GoogLeNet, for example, uses an inception
structure to replace convolution and activation functions [22]. In this model, the complexity
of the network is increasing with its width. GoogLeNet adaptively learns how to choose the
convolution kernel size [20]. It also improves the generalization capability of the convolu-
tion model and increases the complexity of the network structure, using 1 × 1 convolution
operations while maintaining the order of magnitude of the number of parameters [20].
Although increasing network depth can improve recognition accuracy, it will also de-
grade the gradient [20]. ResNet solved this problem by introducing residual blocks in
the network that are shortcuts between parameter layers [22]. The modifications in the
ResNet model increase the convergence rate and also improve recognition accuracy [20].
However, all the above-mentioned models need lots of training data. This problem has
been solved by a model called U-Net introduced by Ronneberger et. al. 2015 [20]. U-Net is
a fully convolutional network that works with very few training images and yields more
precise segmentation.

In the Remote Sensing field, CNNs are used for very diverse applications, including
scene classification [23], land-cover and land-use classification [24–29], feature extraction
in hyperspectral images [30–32], object localization and detection [33,34], digital terrain
model extraction [35,36], and informal settlement detection [37,38]. Here, CNN approaches
often significantly increased detection accuracy and reduced computational costs compared
to other techniques [39].

CNNs have also been used for field boundary detection. Persello et al., 2019 proposed a
technique based on a CNN and a grouping algorithm to produce a segmentation delineating
agricultural fields in smallholder farms [40]. Their experimental analysis was conducted
using very high-resolution WorldView-2 and 3 images. The F1 scores for their model are
0.7 and 0.6 on two test areas. Xia et al., 2019 proposed a deep learning model for cadastral
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boundary detection in urban and semi-urban areas using imagery acquired by Unmanned
Aerial Vehicles (UAV) [41]. Their model can extract cadastral boundaries (with an F1 score
of 0.50), especially when a large proportion of cadastral boundaries are visible. Masoud
et al., 2019 designed a multiple dilation fully convolutional network for field boundary
detection from Sentinel-2 images at 10 m resolution [42]. They merged results with a novel
super-resolution semantic contour detection network using a transposed convolutional
layer in the CNN architecture to enhance the spatial resolution of the field boundary
detection output from 10 m to 5 m resolution. The F1 score they have obtained from their
model is 0.6.

To our knowledge, a detailed analysis of U-Net and Res-UNet (a model inspired by
the deep residual learning and U-Net model) CNN algorithm for automatic field boundary
detection has not been presented so far in the literature, although it can be very competitive
in terms of accuracy and speed for image segmentation. The purpose of the present paper
is to demonstrate the potential of the Res-UNet approach for a fast, robust, accurate, and
automated field boundary detection approach based on Sentinel-2 data. We compare the
Res-UNet results with outputs of a U-Net deep learning model. The paper is organized
into 4 sections. In Section 2, the proposed CNN model is presented. Section 3 contains
experimental results and discussion. The conclusion follows in Section 4.

2. Proposed Method

We propose a ResU-Net convolutional neural network to detect field boundaries in
Sentinel-2 imagery. The main advantage of using the U-Net architecture is that it works
with very few training images and yields more precise segmentation [43].

2.1. U-Net Architecture

The U-Net model was developed by Ronneberger et al. for biomedical image seg-
mentation [44]. The U-Net architecture contains three sections: encoder, bottleneck, and
decoder. The innovative idea in U-Net is that there are a large number of feature channels
in the decoder section, which allow the network to propagate context information to higher
resolution layers. A plain neural unit as used in U-Net is shown in Figure 1.

Figure 1. Plain neural unit used in U-Net.

The U-Net model uses the valid part of each convolution without any fully connected
layers which allow the seamless segmentation of arbitrarily large images via an overlap-tile
strategy [45]. Most U-Net models presented in the related literature are trained with the
stochastic gradient descent algorithm. Soft-max is used for calculating the energy function.
Then the cross-entropy (Ent) is used to penalize the deviation of Plx (estimated distribution)
from 1 using:

Ent = ∑
x=β

w(x)log(Plx(x) (1)

where l : β → (1, . . . , n) is the true label of each pixel and w is a weight map. To predict the
border region of the image the missing context is extrapolated by mirroring the input image.

2.2. Residual U-Net (ResU-Net) Architecture

He et al. proposed the Residual neural Network (ResNet) to facilitate training and
address degradation problems such as vanishing gradients in deep networks [46]. Each
residual unit can be illustrated as a general form

yn = h(xn) + R(xn, wn) (2)

xn+1 = f (yn) (3)
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where xn, xn+1 are the input and output of the nth residual unit, R(·) is the residual function,
f (yn) is the activation function and h(xn) is an identity mapping function. In ResNet,
multiple combinations of Batch Normalization (BN), ReLU activation, and convolutional
layers exist. ResU-Net combines the strengths of both deep residual learning and the U-Net
architecture [44] to improve performance over the default U-Net architecture [46]. Figure 2
shows the residual unit with identity mapping used in ResU-Net.

Figure 2. Residual unit with identity mapping used in the ResU-Net.

Similar to U-Net, ResU-Net comprises three parts: encoding, bridge, and decoding.
The first part encodes the input image into compact representations. The second part
serves as a bridge connecting the encoding and decoding paths. The last part recovers
the representations to obtain a pixel-wise categorization, e.g., semantic segmentation.
After the last level of the decoding phase (in both U-Net and ResU-Net architecture), a
1× 1 convolution and a sigmoid activation layer is used to project the multi-channel feature
maps into the desired segmentation [46].

2.3. Study Area and Dataset

The proposed method is trained and verified on a dataset covering the entire landmass
of Denmark (Figure 3). Denmark is a country in Northern Europe, bordering Germany
to the south. It is part of the so-called Nordic countries (incl. Sweden, Norway, Finland,
and Iceland). Denmark has a total land area of 42,937.80 km2, of which an estimated 60%
is cultivated [47] (21% more than the average for the European Union in 2016) [48]. For
Denmark, this proportion has remained stable for at least 10 years according to Eurostat
statistics [48,49]. In 2018, about half of the cultivated area was used for the production
of cereals, primarily winter wheat and spring barley [50]. According to the “Precision
agriculture 2018” publication by Statistics Denmark, about 32% of farms have been involved
in continuing education programs during 2018. More than 23% of the farms of the country
use precision agriculture technology regularly [50]. These investments in agriculture
put Denmark among the leading countries in terms of primary production efficiency
worldwide.

Figure 3. Denmark as the study area.
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In our study, we used free-of-charge Sentinel-2 data. The Sentinel-2 constellation
consists of two satellites (A and B), launched in June 2015 and March 2017, respectively. It
is part of the Copernicus program by the European Commission in collaboration with the
European Space Agency. Both satellites carry the MultiSpectral Imager (MSI) instrument
with 13 spectral bands in total. Compared to other missions such as Landsat, Sentinel-2
offers several improvements. First, it adds spectral bands in the red-edge region that are
particularly useful for vegetation applications, as well as a water vapor absorption band.
Second, the spatial resolution of bands in the visible and near-infrared region is increased
to 10 and 20 m. Third, the full mission specification of the twin satellites flying in the
same orbit but phased at 180◦, is designed to give a high revisit frequency of 5 days at
the Equator. We have used bands 2, 3, 4, 8 of Sentinel-2 L1C data at 10 m resolution. The
product is top of atmosphere reflectance, orthorectified, co-registered. Sentinel-2 images
were obtained for the year 2017. Training requires images with low cloud coverage for field
boundaries to be identifiable. For each tile, the Sentinel-2 image with a cloud coverage
percentage of less than 0.1% was used.

2.4. Network Training

While working on training the model for field segmentation, it became clear that a
field boundary/non-field boundary classification using the proposed model generates poor
accuracy. A classifier of this type was not able to classify boundaries between adjacent
fields at the resolution of Sentinel-2. To solve this, we instead treated the ground truth as
three different classes: background (e.g., urban area, forests, water bodies), field and field
boundary. Field boundary polygons were produced by taking the edges of each polygon
in each shapefile and applying a buffer of 5 m to obtain a boundary region that is 10 m
across, the width of a Sentinel-2 pixel. An inverse buffer of 5 m was applied to the field
polygons to ensure that fields and boundaries did not overlap. The final shapefiles were
then rasterized to produce a classification image for use in model training (Figure 4).

Figure 4. A schematic view of the ground truth data preprocessing phase.

Two Sentinel-2 images from July 2017 are tiled into 512× 512 pixels (10,650 image tiles
in total). Field boundary labels for model training, comprising of 100,000 field polygons,
were obtained for the year 2017 by Soilessentials [51] through manual labeling, using GPS
enabled smartphones and tablets. We omitted fields that were not clearly discernable in
Sentinel-2 imagery, e.g., very small fields (area less than 400 m2).

We randomly selected 70% of the dataset for training, distinguishing three classes:
field boundaries, agricultural fields, and all other land covers. The dataset was balanced
to contain 50% boundary and 50% non-boundary samples. The Adam algorithm was
employed to optimize the weights of the network in the training stage with an initial
learning rate of 0.001. The training was performed using the Tensorflow platform on a PC
with 16 GB DDR memory and an NVIDIA Geforce GTX 1080 GPU with 11 GB of memory
running Ubuntu 16.04.

We have followed the same procedure for selecting hyperparameters for both U-Net
and ResU-Net models; Hyperparameters of the models were obtained as follows:

• A set of 10 neural networks is randomly generated from a set of allowed hyperparam-
eters (Unit level, conv layer, input size, and filter size for each layer);
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• Each network is trained for 1000 epochs and its performance on the validation set is
evaluated. We have chosen this large number of epochs to ensure that each network
achieves the best possible performance, and save the best performing set of weights
for each network to prevent overfitting;

• The worst-performing networks are discarded, while the better-performing ones are
paired up as "parents". "child" networks are then created, which randomly inherit
hyperparameter values to form the next generation of networks, while the worst-
performing values "die out";

• There is also a small probability for random mutations in the child networks - hyper-
parameter values have a small chance of randomly changing;

• This process is repeated for 10 generations, leaving only the best performing net-
work architectures;

2.5. Accuracy Assessment

There are metrics in the literature for formally assessing a segmentation result based
on reference segments, in this case, hand-delineated fields. Examples include similarity
metrics quantifying the average distance between reference and predicted boundaries,
or the difference in area between reference and predicted segments. Locational accuracy
is certainly useful for assessing the most important aspect for the application of field
boundary detection. Therefore, we assess the quality of our field boundaries model using
the F1 score and Jaccard Index.

The F1 score is the harmonic mean of the precision and recall, where a score of 1 repre-
sents an optimal result (perfect precision and recall). The F1 score gives a good overview
of the difference in area between the reference and trial segments. The mathematical
representation of the F1 score is written as

F1 =
TP

TP + (FP+FN)
2

(4)

where TP is the number of true positives, FP is the number of false positives, FN is the
number of false negatives. The Jaccard Index (also known as the Jaccard coefficient) is a
statistic used in understanding the similarities between sample sets. The mathematical
representation of the index is written as

Jac(A, B) =
|A ∩ B|

|A| + |B| − |A ∩ B| (5)

If A and B are both empty, Jac(A, B) = 1. We compare results with the U-Net model
presented in Persello et al., 2019 which achieves state-of-the-art performance in field
boundary detection [40].

3. Experimental Results

The F1 Score and Jaccard coefficient of the generated models are reported in Table 1.
With an average F1 score of 0.90 and average Jaccard coefficient of 0.80 results of the ResU-
Net model are better than those of the U-Net model (average F1 score of 0.88 and average
Jaccard coefficient of 0.77) and are the best among all other methods (e.g., SegNet model
presented in Persello et al., 2019 with an F1 score of 0.7) presented in the field boundary
detection field.
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Table 1. F1 Score and Jaccard coefficient comparisons of the generated models. Best performance
highlighted in bold.

Model Name (Unit Level, Conv Layer, Input Size) F1 Score Jaccard Coefficient

ResU-Net (8, 15, 256 × 256) 0.87 0.74

ResU-Net (10, 19, 512 × 512) 0.94 0.87

ResU-Net (12, 23, 1024 × 1024) 0.91 0.79

U-Net (8, 15, 256 × 256) 0.89 0.76

U-Net (10, 19, 512 × 512) 0.92 0.83

U-Net (12, 23, 1024 × 1024) 0.83 0.72

4. Discussion

From the comparisons in the experimental results section, it is shown that ResU-Net
can obtain comparable performance with other methods and has a better ability to model
generalization. Moreover, ResU-Net is easy to train and takes less time than other models
in the literature. This approach led us to the network architecture outlined in Table 2 for
both U-Net and ReU-Net, which was trained using the Adam optimization algorithm.

Table 2. The best network structure of U-Net and ResU-Net.

Input Unit Level Conv Layer Stride Output Size

512 × 512 × 4

Encoding

Level 1
Conv 1 1 512 × 512 × 16

Conv 2 1 512 × 512 × 16

Level 2
Conv 3 2 256 × 256 × 32

Conv 4 1 256 × 256 × 32

Level 3
Conv 5 2 128 × 128 × 64

Conv 6 1 128 × 128 × 64

Level 4
Conv 7 2 64 × 64 × 128

Conv 8 1 64 × 64 × 128

Bridge Level 5
Conv 9 2 32 × 32 × 256

Conv 10 1 32 × 32 × 256

Decoding

Level 6
Conv 11 1 64 × 64 × 128

Conv 12 1 64 × 64 × 128

Level 7
Conv 13 1 128 × 128 × 64

Conv 14 1 128 × 128 × 64

Level 8
Conv 15 1 256 × 256 × 32

Conv 16 1 256 × 256 × 32

Level 9
Conv 17 1 512 × 512 × 16

Conv 18 1 512 × 512 × 16

Output Level 10 Conv 19 1 512 × 512 × 3

In general, the interpretation of some boundaries is ambiguous. In the first example in
Figure 5a, it is difficult to decide if the structures visible in the highlighted area are actual
field boundaries or only anomalies within otherwise coherent fields. In this case, the model
detected some but not all the structures highlighted in the reference data. Such ambiguity
may also vary with the timing of the input image used for prediction in case the structures
are only temporarily visible.
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Figure 5. The left column represents the original image, the middle column the ground truth data,
and the right column the proposed model results. Rows represent different subsets. (a) difficult to
decide if the structures visible in the highlighted area are actual field boundaries or only anomalies
within otherwise coherent fields. (b) the model result indicates the highlighted area would probably
be interpreted as one large field while the reference data suggests it being multiple separate fields
(c) the difficulty of interpretation date.

This example also demonstrates that even non-agricultural areas with similar charac-
teristics to some croplands (e.g., different types of forests) have been segmented successfully.
Context information is very important when analyzing objects with complex structures.
Our network considers context information of field boundaries, thus can distinguish field
boundaries from similar objects such as agricultural croplands, forests, or grasslands.

Issues, however, arise from field patterns and only weakly visible boundaries. In the
(b) example in Figure 5b, the model result indicates the highlighted area would probably
be interpreted as one large field while the reference data suggests it being multiple separate
fields. When looking at the original image, this separation is only vaguely visible. In this
case, the available image may not be the most appropriate one for distinguishing these
fields as they are clearly all fallows and barely distinguishable at this time of the year.
Imagery from different stages of the growing season may reveal a clearer pattern. These
types of boundaries, however, pose a challenge during data labeling as well since they are
often not even clearly distinguishable for a human interpreter.

The objects highlighted in the (c) example in Figure 5c again show the difficulty of
interpretation date. These areas may actually be fields or meadows or, more likely given
their vicinity to an urban area, greenspaces like parks (further supported by the reference
data). The model correctly detected the whole surrounding area as non-agricultural but
apparently considered some patches as farmland due to their similarity to fully grown
crops and meadows. Possibly, a distinction of different types of non-agricultural areas
would help prevent this.

It is shown that the ResU-Net model produces less noisy but more completely changed
regions (e.g., the whole fields) and better inner regional consistency. U-Net can get a clearer
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boundary of the fields than ResU-Net. Smaller fields were occasionally missed or merged
into larger fields in U-Net. This can be explained in part by issues in inconsistent boundaries
or some falsely detected boundaries within the fields. However, in the ResU-Net model,
smaller fields are not missed and detected in detail. Both models (ResU-Net and U-Net)
are less susceptible to noise and the background and get clearer changed regions (e.g., the
whole fields) compared to other models in the literature [40–42].

5. Conclusions

In this paper, we proposed a field boundary detection model based on the deep fully
convolutional network architecture called ResU-Net to produce a segmentation delineating
agricultural fields. The experimental analysis conducted using Sentinel-2 imagery of
Denmark shows promising results. The proposed model compares favorably against state-
of-the-art U-Net models in terms of the accuracy in terms of F1 score and Jaccard coefficient
metrics. A visual inspection of the obtained segmentation results showed accurate field
boundaries that are close to human photo-interpretation. These results demonstrate that
the proposed model could facilitate fast and accurate boundary extraction be that may be
incorporated into an object-based cropland analysis service. Other aspects that need to be
further investigated are the use of multi-temporal data and the fusion of panchromatic and
multispectral bands within a multiscale field boundary detection scheme.
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