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Abstract: Conventional methods of plant nutrient estimation for nutrient management need a huge
number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and
expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the
appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to charac-
terize the foliar nutrient status of mango through the development of spectral indices, multivariate
analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database
within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for
the development of spectral indices and multivariate model development. The normalized difference
and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal
component regression, and support vector regression (SVR) were ineffective in predicting any of the
leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the
best to predict most of the nutrients. Based on the independent validation performance and summed
ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD)
≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus,
potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and
elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study
revealed the potential of using hyperspectral remote sensing data for non-destructive estimation
of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed
within operational retrieval workflows for precision management of mango orchard nutrients.

Keywords: chemometrics; hyperspectral remote sensing; multivariate modeling; precision nutrient
management; VNIR spectroscopy

1. Introduction

Over the last two decades, advancements in remote sensing technologies such as the
use of reflectance spectroscopy, airborne and satellite technology, and statistical analysis
approaches thereof have made it easy to understand several key processes and components
of plants such as plant population [1–3], grain yield and biomass [4–8], pigment or chloro-
phyll [9–11], water stress response [12–15], nutritional status [16–21] or pest and disease
identification [22–25]. Yet, in-field proximal sensing to estimate the nutritional status of the
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crops is an economical and technical challenge [26]. The commonly employed statistical
approaches to retrieve the information on plant biomass, pigment, and foliar nutrient status
from hyperspectral data include (1) linear regression methods—reflectance, derivative
types, reflectance transformation, narrowband vegetation indices (VIs), (stepwise) multi-
ple linear regression, principal component analysis/regression (PCA/PCR), partial least
square regression (PLSR), (2) non-linear regression methods—random forest regression
(RFR), artificial neural network (ANN), support vector regression (SVR), Gaussian process
regression (GPR), (3) physically-based methods—radiative transfer model (RTM) inversion,
and (4) Hybrid methods—combination of minimum two methods [27,28], usually machine
learning regression model which is trained over a RTM data base. The VIs are established
to enhance sensitivity to vegetation characteristics [29], while minimizing confounding
factors such as soil background, canopy geometry, leaf optical properties, and atmospheric
conditions [30,31]. Previously, VIs have been extensively used for estimating and mapping
foliar nitrogen (N) [28], water and chlorophyll contents [28,32–38], phosphorus (P), sulfur
(S), and potassium (K) [16,39,40]. In [41], the oil palm nutrient content was retrieved using
VIs. A normalized difference and simple ratio of the reflectance at 1423 nm and 1877 nm
correlated with N with R2 = 0.53, while that of 1164 nm and 1238 nm correlated to calcium
(Ca) with R2 = 0.50. The P, K, magnesium (Mg), boron (B), copper (Cu), and zinc (Zn)
had moderately positive correlations (R2 of 0.33–0.49). The results obtained by them were
better than those for the commonly used or published VIs. A canopy reflectance-based
ratio of difference index was used successfully by [42] to estimate the leaf N content at
different growth stages of litchi and achieved accuracies with a coefficient of determina-
tion (R2) > 0.50 and root means square error (RMSE) < 0.14. The most frequently used
hyperspectral VIs are simple ratio and normalized difference index derived from two or
more narrow wavelengths or wavebands. The advantage of VI is that they are simpler and
use a few sensitive wavelengths and wavebands, however, the disadvantage is that the
information available in other parts of the spectrum is not considered or lost [43].

At the field level, predicting foliar or canopy mineral nutrients other than N are
less effective particularly for P, K, and S [44], and other macro- and micronutrients using
conventional statistical analysis of the spectral data. However, rapid development in
spectroscopy for plant mineral nutrient analysis has opened up for use of visible (VIs,
400–700 nm) and near infra-red (NIR, 700–1300 nm) range for nutrients such as K [45] and
Ca and Mg [46]. Modeling with the spectral reflectance data provides a convenient and
interpretable means to understand the fundamental interactions of plant conditions with
radiant energy detected by multispectral or hyperspectral sensors. This comparison might
help to understand their comprehensive performance from the perspective of model accu-
racy, simplicity, robustness, and interpretation and would guide in selecting the optimal
method for estimating plant nutrients at various levels. Modeling of the hyperspectral
imaging and non-imaging spectroscopic data has been proven to capture the variations
in biochemical components in plant leaves and canopies such as chlorophyll, N, P, and
K [30,32,47]. Multivariate analysis models (i.e., chemometrics) such as multiple linear
regression (MLR), stepwise MLR, partial least square regression (PLSR), principal compo-
nent regression (PCR), etc. have been used to characterize the plant nutrient status from
the spectral characteristics. A reasonable apple leaf N prediction accuracy was achieved
by [48] using PLSR and MLR of raw reflectance (R2 = 0.77 and 0.78, respectively) and first-
derivative reflectance (R2 = 0.77 and 0.77, respectively). [49] achieved significant prediction
of the Mg, P, S, K, and Ca of the tallgrass prairie vegetation using PLSR of the normalized
difference standardized data in the wavelength range of 470–800 nm. The spectral data
standardization by normalized difference reduced the background interference in the leaf
reflectance. A multivariate analysis with PCR of spectral data could predict the macro- and
micro-nutrients in the oil palm leaves with R2 = 0.56–0.90 [41]. [50] successfully selected
rubber tree leaf P sensitive wavelengths using the Monte Carlo-uninformative variable
elimination combined with the successive projections algorithm and predicted it using
MLR with a prediction accuracy of R2 = 0.69. Using PLSR of the hyperspectral image
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data in a wavelength range of 500–1700 nm of maize and soybean, [51] determined the
macronutrients content (N predicted best followed by P, K, and S) (R2 = 0.69–0.92 and
ratio of performance to deviation (RPD) = 1.62–3.62) and micronutrients (Cu and Zn were
best predicted, followed by Fe and Mn) (R2 = 0.19–0.86, RPD = 1.09–2.69) satisfactorily.
The predictions of sodium and B were not satisfactory. Machine learning models are a
unique and robust technique to analyze and model any data being non-linear and non-
parametric [21,52,53]. Use of a combination of linear multivariate analysis models such
as PLSR and principal component analysis (PCA) with non-linear and non-parametric
models such as artificial neural network (ANN) [54–57] elastic net (ELNET), support vector
regression (SVR), Gaussian process regression (GPR), multivariate adaptive regression
spline (MARS), random forest (RF), extreme gradient boosting (XGB), generalized additive
model (GAM), and k-nearest neighbor (KNN) [20] has been reported to retrieve infor-
mation from spectral features. The machine learning models are capable of performing
numerous calculations in several combinations and are thus useful to reduce the time
involved in the analysis. In [21], the authors predicted the citrus, Valencia-orange, leaf N, P,
K, Ca, Mg, S, Cu, iron (Fe), manganese (Mn), and Zn by using RF, ANN, and KNN of the
spectral reflectance and its first-order derivative with R2 = 0.61 to 0.91. An RF and support
vector machine regression (SVMR) of the airborne hyperspectral remote sensing imagery
data were used by [58] to estimate the N, P, K, Zn, Na, Cu, and Mg with R2 = 0.55–0.78
(with RF) and S and Mn with R2 = 0.68–86 (with SVMR) of the mixed pasture in New
Zealand. They emphasized a better performance of the non-linear machine learning model
(SVMR and RF) than the linear (PLSR). Some of the commonly employed multivariate
modeling techniques to extract information from hyperspectral data and to establish a
relationship between spectral reflectance and measured variables are stepwise MLR [59,60],
PLSR [61,62], successive projections algorithm coupled with MLR [63,64], ANN [63,65],
and SVMR [47,66]. Very recently, a combination of the PCA and PLSR combined learning
models have been used by [20] as a non-destructive tool, to predict the leaf ion (K, Na,
Ca, and Mg) content for phenotyping of rice to salt-stress. They found the prediction
accuracy of different approaches in order as PLSR-combined models > PCA-combined
models > indices-based models. A non-linear SVR based radial basis function (RBF) kernel
predicted critical N concentration in the sugarcane canopy correlated with actual N by
R2 of 0.78 and RMSE of 0.035% [67]. Nutrients with low plant or leaf concentration and
subtle physical absorption features still pose a challenge and less attention has been paid
for its error-free estimation using remote sensing techniques. Hence, studies to develop
techniques that can accurately estimate foliar mineral nutrients are required. Use of the
linear models such as PLSR, PCA, or PCR in combination with the non-linear machine
learning models has been gaining popularity to retrieve information from the hyperspectral
reflectance data [54–56,68]. This can be achieved by using the principal components, latent
variables, or variables selected through variable importance [69] as an input for further
regression or machine learning modeling. These approaches reduce the collinearity and
data dimensionality and increase the computation speed but at the same time retain most of
the information of the original dataset [54,68]. The use of linear and non-linear regression
analysis has been successfully demonstrated in a few studies but very limited information
is available on this aspect in fruit crops, specifically mango.

Mango is the “king of fruits” and its estimated area of cultivation in the world is 5.44
million hectares with production and productivity of 43.3 million tonnes and 7.96 t ha−1,
respectively [70]. In India, mango is grown over 2.52 million hectares and has a productivity
of 6.92 t ha−1. The share of India to the world’s area of cultivation and production is 46%
and 41.6%, respectively. Though the share of area and production of India to the world is
huge, the productivity is lesser than the world’s average and all other mango-producing
countries. In addition to many others, one of the major constraints to the yield is suboptimal
and inappropriate nutrient management [71]. Conventional agronomic methods for plant
nutrient estimation are being practiced regularly at important growth stages, to manage
the fertilizer nutrients [72]. These methods need a huge number of leaf or tissue sample
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collection and analysis which is time-consuming and expensive [48,73]. Remote sensing
could be a viable tool to estimate the plant’s nutritional status and assist in understanding
the appropriate amounts of fertilizer inputs in a cost-, labor- and time-effective manner.

Owing to the limited knowledge available on the use of hyperspectral remote sensing
to characterize the foliar nutrient status in mango, our study was undertaken with the
objectives (1) to compare the efficacy of the spectral indices and chemometric modeling
methods and (2) to develop robust quantification models by combining linear and non-
linear machine learning models to estimate the foliar macro- and micro-nutrient status
of mango.

2. Materials and Methods

The objectives of the current study were achieved through four different steps as
demonstrated in the scheme of Figure 1. A brief outline about the steps is also presented
as follows: Step 1—data collection: field-level leaf sampling and chemical analysis to
determine the nutrient content and measurement of the spectral data in the laboratory;
Step 2—spectral data pre-processing; Step 3—data analysis: development of vegetation
indices and machine learning models, and Step 4—identification of spectral algorithms:
identification of the robust spectral algorithms based on the model prediction evaluation
parameters.

Figure 1. The scheme of the methodology followed in the study.
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2.1. Experimental Setup

Around 400 leaf samples were collected from mango orchards located in North Goa
and South Goa districts of Goa State on the west coast of India (Figure 2). Leaf samples
were collected from mature plants yielding fruits with an approximate age of 8–10 years.
A 4–7-month-old leaf with petiole from the middle of the shoot was collected during
the post-fruiting season, i.e., June–July of the years 2018 and 2019. The sampling was
undertaken for three weeks. The post-fruiting season was selected in the view that the
plant is exhausted of nutrients due to the fruiting in the previous season and gives the actual
idea of the nutritional status. The fertilizer application is normally recommended in the
second fortnight of June or the end of the monsoon season (second fortnight of September).
The post-fruiting stage was ideal for the study to get actual nutritional status and to make
the fertilizer prescription for the subsequent season. The samples were collected on dry
sunny days.
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leaf sampling.

2.2. Spectral Measurements

A total of 40 orchards were identified for the study, and samples from 10 trees from
each orchard were collected, making a total of 400 samples. Immediately after collecting
the leaf samples from the field, they were placed in the thermally insulated box to avoid
any changes in biochemical properties due to change in temperature and transported to
the laboratory. The spectral measurements of the detached leaves were carried out in
the laboratory on the same day of leaf sample collection. Mango leaf samples collected
were scanned to record the spectral data in the wavelength range of 282–1097 nm using
an optical fiber of visible near-infrared spectroradiometer (GER1500, Spectra Vista Corp.,
Poughkeepsie, NY, USA) as non-contact observations. The Spectroradiometer was cali-
brated with the Spectralon® panel (Spectra Vista Corp., Poughkeepsie, NY, USA) (100%
spectral reflectance) before recording the spectral measurement of the leaf samples. The
spectral observations of the adaxial surface of mango leaves were taken within a black box
to reduce the impact of stray light. It was ensured that the leaves cover the full field of
view of the foreoptics (pistol grip). The spectral observations were taken at nadir position
to reduce the impact due to bidirectional reflectance. The calibration was done every after
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five samples were recorded. The spectral reflectance data were collected at a bandwidth of
1.5 nm. Further, spectral resampling at a 1 nm interval was done using spline interpolation.
The spectral data were further smoothed using Savitzky–Golay filtering across a 15 bands
moving window (a window length of 15 and zero polynomial order) to reduce the noise
using “prospectr” package in R software version 3.5.2 [74]. The polynomial order was
zero. A multiple scatter correction to the data was further done using the standard normal
variate technique. Spectral data in the range between 350 nm to 1050 nm was utilized due
to the absence of noise. For each leaf sample, an average of five measurements was consid-
ered as a representative spectral signature. The average spectral reflectance with standard
deviation for the calibration and validation dataset has been presented as Figure 3.

Figure 3. The average spectral reflectance with a standard deviation of the calibration and validation
dataset (The continuous line is the average reflectance and the shaded area is the standard deviation).

2.3. Chemical Analysis

After capturing the leaf spectral data, the samples were oven-dried at 60 ◦C till constant
weight is achieved. The samples were powdered and stored in a zip-lock plastic bag for
further chemical analysis. The powdered leaf samples were digested using a mixture of
nitric acid and perchloric acid as 9:4 v/v proportion for analysis of the P, K, Ca, Mg, S,
Fe, Mn, Zn, Cu, and B [75]. The total N concentration in the mango leaves was estimated
using the modified micro Kjeldahls method [76]. Leaf P concentration was determined
by measuring the intensity of the yellow color developed by vanado–molybdate reagent
with a spectrophotometer [75]. The S concentration of the leaf samples was estimated
by measuring turbidity developed by barium chloride using a spectrophotometer [77].
Total leaf K, Ca, Mg, Fe, Mn, Zn, and Cu concentrations were measured with Atomic
Absorption Spectrophotometer (nova400P, Analytik Jena, Germany). The B concentration
was estimated by measuring a pink color intensity developed in the digest by Azomethine-
H indicator with a spectrophotometer. The contents of the nutrients were expressed as
percentage and parts per million on a dry weight basis.

Outliers in the 400 nutrient data points were identified and removed resulting in a total
of N = 376 sample data for further statistical analysis. The data set was divided into 70% for
model calibration (N = 263) and 30% for independent validation (N = 113). The equality of
mean, variance, distribution, and CV of calibration and validation datasets were analyzed
using t-test, F-test, Kolmogorov–Smirnov test, and Flinger–Kileen test, respectively.
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2.4. Development of Parametric Regression Models

The best combination of the wavelengths for the development of the VIs was identified
using contour plots. The normalized difference spectral index (NDSI) and ratio spectral
index (RSI) were calculated as

NDSI =
(Rλ1 − Rλ2)
(Rλ1 − Rλ2)

(1)

RSI =
Rλ1
Rλ2

(2)

Based on all the possible two-pair combination of the wavelengths, the spectral indices
were calculated using the software MATLAB. A combination of wavelengths having the
highest correlation coefficient with the respective leaf nutrient content was identified for
the spectral index.

2.5. Development of Nonparametric Regression Models

Multivariate models were built using the hyperspectral reflectance data and corre-
sponding leaf nutrient content. Initially, three different models, i.e., PLSR, PCR, and SVR
were tested to retrieve the leaf nutrient contents from the spectral data. The best perform-
ing nutrient specific model was identified. The latent variables (LVs) generated from the
PLSR model were used as input variables for developing different linear and non-linear
models. Machine learning regression algorithms evaluated in the current study were
elastic net (ELNET), support vector machine regression (SVR), Gaussian process regression
(GPR), multivariate adaptive regression splines (MARS) [78], random forest (RF), k-nearest
neighbors (KNN), extreme gradient boosting (XGB) [79], neural network (NNET), and
Cubist [80]. The hyper-parameters of each model were calibrated using tenfold cross-
validation with five repetitions in “caret” [81] package of R statistical software version
3.5.2 [82]. The hyperparameters which were optimized for each machine learning model
were as ELNET-alpha, lambda; SVR-sigma, C; GPR-sigma; MARS-nprune, degree; RF-mtry;
splitrule, min.node.size; KNN-Number of neighbors (k); XGB-nrounds, max_depth, eta,
gamma, colsample_bytree, min_child_weight, subsample; NNET- size, decay and Cubist
-committees, neighbors. Every machine learning model was calibrated using a training
dataset using 10-fold cross-validation with five repetitions and thus each model was run
50 times. The performance of a particular model to predict the leaf nutrient content was
assessed based on the values of model evaluation parameters such as R2, d-index, mean
bias error (MBE), root mean square error (RMSE), residual prediction deviation (RPD),
and the ratio of performance to inter-quartile distance (RPIQ). The prediction accuracy of
different models was categorized based on RPD as excellent (>2), acceptable (≥1.4–2.0)
and non-reliable (<1.40) [83] and RPIQ as very poor (<1.5), poor (1.5–2.0), good (>2.0–2.5)
and very good (>2.5) [84]. The values of these parameters are indicated with a superscript
letter c and v for calibration and validation, respectively. It is difficult to decide the best-
performing model evaluation parameters such as R2, RMSE, RPD, RPIQ, etc. individually.
So, a composite summed rank based on these parameters was developed considering the
performance of each model parameter wise for the calibration and validation. Ranking
of each model evaluation parameter for a particular nutrient in calibration or validation
was done using the RANK.AVG function of Microsoft Excel. The ranks of calibration and
validation were summed separately and all together and it was referred as a summed
rank for a particular model. The model with the least rank predicted the nutrient with the
greatest accuracy and the one with the highest rank had the poorest prediction accuracy.

3. Results
3.1. Descriptive Statistics

The descriptive statistics of the mango leaf nutrients in the full, calibration and
validation dataset are presented in Table 1. The coefficient of variation (CV) for the
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nutrients analyzed for the calibration and validation dataset varied from 10.30–93.30% and
10.90–88.40%, respectively. For both these datasets, the greatest and least coefficient of
variation (CV) was observed for Cu and N, respectively. Similarly, for the full dataset, the
greatest (91.90) and least (10.50%) CV was observed for the Cu and N, respectively. All the
parameters were positively skewed except for N in full and calibration and N, P, K, and
Mg in the validation dataset.

Table 1. Summary statistics of the mango leaf nutrient content for full (n = 376), calibration (n = 263) and validation (n =
113) dataset.

Parameters N (%) P (%) K (%) Ca (%) Mg (ppm) S (%) Fe (ppm) Mn (ppm) Zn (ppm) Cu (ppm) B (ppm)

Full dataset (n = 376)
Minimum 0.93 0.03 0.28 0.50 1477.00 0.03 57.17 8.96 11.51 0.01 12.82
Maximum 1.47 0.18 1.72 8.13 5749.00 0.28 205.10 1959.00 26.26 1.71 102.75

Mean 1.17 0.09 0.93 3.22 3439.63 0.15 122.88 297.67 18.14 0.51 42.18
Standard error 0.01 0.00 0.02 0.08 50.05 0.00 1.59 13.04 0.19 0.03 0.99

Standard deviation 0.12 0.03 0.27 1.45 921.58 0.05 28.12 229.60 2.99 0.47 16.85
Skewness 0.04 −0.27 0.02 0.87 0.04 0.29 0.11 2.50 0.41 0.92 0.86
Kurtosis −1.00 −0.24 0.02 0.72 −0.49 −0.29 −0.38 11.57 −0.26 −0.38 0.76

Coefficient of variation (%) 10.50 32.29 29.42 45.05 26.79 30.91 22.89 77.13 16.49 91.90 39.95
Calibration dataset (n = 263)

Minimum 0.93 0.03 0.29 0.52 1559.00 0.04 57.17 8.99 12.20 0.01 14.12
Maximum 1.47 0.18 1.72 7.93 5749.00 0.28 188.70 1959.00 26.26 1.71 102.75

Mean 1.17 0.09 0.93 3.23 3499.93 0.15 120.68 295.93 18.40 0.52 41.33
Standard error 0.01 0.00 0.02 0.10 61.44 0.00 1.87 16.08 0.23 0.04 1.19

Standard deviation 0.12 0.03 0.28 1.45 945.89 0.05 27.61 236.86 3.03 0.49 16.98
Skewness 0.07 −0.24 0.05 0.97 0.05 0.34 0.02 2.97 0.46 0.92 1.01
Kurtosis −0.94 −0.36 0.05 0.83 −0.59 −0.35 −0.55 14.66 −0.31 −0.43 1.14

Coefficient of variation (%) 10.35 32.16 29.85 44.87 27.03 31.03 22.88 80.04 16.48 93.30 41.07
Validation dataset (n = 113)

Minimum 0.93 0.03 0.28 0.50 1477.00 0.03 60.60 8.96 11.51 0.01 12.82
Maximum 1.39 0.17 1.59 8.13 5470.00 0.27 205.10 968.60 25.15 1.55 96.25

Mean 1.17 0.09 0.94 3.19 3299.52 0.15 127.99 301.71 17.55 0.49 44.12
Standard error 0.01 0.00 0.03 0.15 84.21 0.00 2.97 22.08 0.32 0.05 1.76

Standard deviation 0.13 0.03 0.27 1.46 850.46 0.05 28.78 212.89 2.83 0.43 16.49
Skewness −0.01 −0.33 −0.06 0.65 −0.12 0.15 0.25 0.97 0.25 0.85 0.53
Kurtosis −1.11 0.11 0.04 0.55 −0.36 −0.12 −0.21 0.52 −0.40 −0.36 0.16

Coefficient of variation (%) 10.90 32.67 28.57 45.70 25.78 30.77 22.49 70.56 16.10 88.46 37.37
p-value

t-test 0.81 0.49 0.81 0.81 0.07 0.71 0.06 0.84 0.06 0.63 0.20
F-test 0.54 0.92 0.73 0.93 0.22 0.82 0.62 0.24 0.49 0.27 0.77

Kolmogorov-Smirnov test 0.89 0.03 0.89 0.85 0.15 0.90 0.42 0.76 0.14 0.76 0.15
Flinger-Kileen test 0.22 0.47 0.40 0.16 0.34 0.48 0.30 0.09 0.49 0.32 0.48

N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc; Cu, copper; B, boron.

The results revealed that the difference between calibration and validation dataset for
mean, variance, and CV was insignificant. Kolmogorov–Smirnov test showed an equal
distribution of leaf nutrient content across the calibration and validation dataset (p > 0.05)
except for P (p = 0.03). These results confirm that the calibration and validation dataset are
statistically similar and the random selection employed is appropriate. The calibration and
validation dataset represented the variability present in the full dataset. The Jarque–Bera
test of normality indicated that all the parameters were normally distributed except N,
Ca, Mn, Zn, Cu, and B (Table 1). The values of these nutrients were Box–Cox transformed
to make them normally distributed before the data were employed for further statistical
analysis (Table 2).

Table 2. Jarque–Bera test of normality for raw and transformed data.

Variables
Raw Data

Box-Cox Lambda
Transformed Data

Jarque-Bera p-Value Jarque-Bera p-Value

N 11.36 0.003 0.59 11.45 0.01
P 5.03 0.081
K 0.01 0.993
Ca 44.66 2.00 × 10−10 0.38 0.54 0.75
Mg 3.65 0.161
S 5.30 0.071

Fe 2.57 0.277
Mn 1988.00 0.000 0.27 4.31 0.09
Zn 8.09 0.018 −0.09 2.18 0.28
Cu 36.57 1.15 × 10−8 −1.37 18.34 0.00
B 41.71 8.75 × 10−10 0.14 1.49 0.44

N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc; Cu, copper; B, boron.
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3.2. Indices Development and Prediction Performance

The best combinations of the wavelengths for the development of the VIs were iden-
tified through contour plots were generated and are presented in Figures 4 and 5. The
NDSI and RSI identified for each nutrient have been listed in Table 3, with the results of
the prediction performance. In the case of NDSI, for calibration, the prediction accuracy
as indicated by R2

c ranged from 0.002 (N) to 0.466 (Mg) with RMSEc of 0.09 (S) to 2672.08
(Mg), respectively, while for validation, the R2

v varied from 0.05 (N) to 0.41 (K) with RMSEv
of 0.11 (P) to 2739.48 (Mg). In general, for calibration and validation, the RPD and RPIQ
values were ≤0.94 and ≤1.25. It indicated that the predictions were very poor for all the
nutrients using the NDSIs. In the case of RSIs, the R2 and RMSE varied from 0.04 (N)
to 0.50 (Mg) and 0.11(P) to 871.58 (Mg), respectively, during calibration and from 0.06
(Cu)–0.38 (Ca) and 0.08 (S)−1081.80 (Mg), respectively, for validation. For the calibration
and validation prediction using the RSIs, the RPD and RPIQ were ≤1.03 and ≤1.35. Similar
to the NDSIs, the predictions using the RSIs were also very poor. In the current study, none
of the spectral indices developed could yield successful predictions for any of the nutrients.

3.3. Performance of Nonparametric Regression Analysis

Multivariate analysis techniques such as PLSR, PCR, and SVR were employed to
predict the mango leaf nutrient contents using the calibration and validation dataset,
respectively (Table 4). Model evaluation parameters such as R2, d-index, MBE, RMSE,
RPD, and RPIQ were used to evaluate the prediction accuracy of the model. To avoid
the complexity of deciding the performance of the model using the model evaluation
parameters individually, a composite rank based on these parameters was developed
considering the performance during calibration and validation. Overall sum ranking
showed that the PLSR model was the best to predict most of the nutrients except N, S (best
obtained by SVR), and Mn (best obtained by PCR) in which predictions were unreliable.
The accuracy of the PLSR to predict P, K, Ca, Mg, Fe, Mn, Zn, and B with respect to R2

c,
RPDc, and RPIQc for calibration varied from 0.34–0.59, 1.23–1.56, and 1.47–2.13. During
validation, these indices ranged from 0.26–0.53, 1.11–1.42, and 1.34–1.79, respectively. The
greatest prediction accuracy was achieved for the leaf Ca (R2

v = 0.53, RPDv = 1.42 and
RPIQv = 1.79 for the independent validation). Based on the RPIQ values for both calibration
and validation, predictions for all the nutrients were categorized as poor except for Mg
during calibration (RPIQ = 2.13, very good). However, as per the criteria of RPD, the P,
K, Ca, and Mg, predictions for calibration and Ca and Mg for validation were acceptable.
Among all the nutrients, the performance of these three multivariate models to predict N
and Cu was the poorest with R2 ≤ 0.19, RPD ≤ 1.10, and RPIQ ≤ 1.90, indicating very poor
prediction for both calibration and validation.
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Table 3. Performance of the best-identified normalized difference and ratio vegetation indices to predict the leaf nutrient
content.

Calibration Validation

Nutrients Vegetation Index Index Formula R2
c Dindexc MBEc RMSEc RPDc RPIQc R2

v Dindexv MBEv RMSEv RPDv RPIQv

Normalized difference spectral indices
N ND_685_941 R941−R685

R941+R685 0.002 0.06 0.00 2.60 0.05 0.08 0.05 0.05 0.99 3.72 0.03 0.05
P ND_957_988 R988−R957

R988+R957 0.073 0.36 0.00 0.11 0.28 0.37 0.13 0.35 -0.01 0.11 0.24 0.27
K ND_522_914 R914−R522

R914+R522 0.356 0.72 0.00 0.37 0.75 0.93 0.41 0.77 0.01 0.30 0.94 1.25
Ca ND_883_956 R956−R883

R956+R883 0.412 0.76 0.03 1.82 0.83 0.99 0.38 0.74 0.33 1.62 0.80 0.97
Mg ND_388_806 R806−R388

R806+R388 0.466 0.45 2214.95 2672.08 0.34 0.44 0.40 0.47 2167.71 2739.48 0.36 0.49
S ND_578_697 R697−R578

R697+R578 0.209 0.57 0.00 0.09 0.51 0.68 0.30 0.65 0.00 0.08 0.59 0.89
Fe ND_531_863 R863−R531

R863+R531 0.218 0.56 10.09 58.68 0.48 0.69 0.28 0.57 5.03 59.01 0.47 0.57
Mn ND_524_848 R848−R524

R848+R524 0.218 0.58 −12.36 444.20 0.55 0.60 0.08 0.45 −47.78 434.64 0.44 0.53
Zn ND_611_760 R760−R611

R760+R611 0.162 0.50 0.11 6.53 0.44 0.55 0.31 0.63 0.23 5.96 0.55 0.88
Cu ND_842_853 R853−R842

R853+R842 0.065 0.35 0.02 1.72 0.27 0.43 0.06 0.36 0.34 1.77 0.27 0.37
B ND_512_615 R615−R512

R615+R512 0.078 0.26 17.56 87.05 0.20 0.25 0.15 0.26 6.01 99.04 0.16 0.24
Ratio spectral indices

N R_927_932 R932
R927 0.04 0.31 0.01 0.60 0.21 0.37 0.10 0.29 0.18 0.68 0.18 0.25

P R_615_849 R849
R615 0.07 0.36 0.00 0.11 0.28 0.37 0.17 0.39 0.01 0.10 0.27 0.30

K R_522_925 R925
R522 0.38 0.74 0.00 0.35 0.78 0.98 0.37 0.75 0.02 0.30 0.93 1.24

Ca R_883_956 R9563
R883 0.41 0.76 0.00 1.80 0.84 1.00 0.38 0.74 0.29 1.60 0.81 0.98

Mg R_525_1026 R1026
R525 0.50 0.81 −102.48 871.58 1.03 1.35 0.34 0.74 −127.20 1081.80 0.91 1.24

S R_578_697 R697
R578 0.21 0.57 0.00 0.09 0.51 0.68 0.30 0.65 0.00 0.08 0.59 0.89

Fe R_531_842 R842
R531 0.23 0.60 −1.22 50.64 0.56 0.80 0.29 0.60 -6.63 53.09 0.52 0.64

Mn R_522_848 R848
R522 0.22 0.55 35.71 506.37 0.48 0.52 0.07 0.41 16.10 481.53 0.40 0.48

Zn R_608_780 R780
R608 0.23 0.60 −0.62 5.01 0.57 0.72 0.37 0.73 0.06 4.05 0.81 1.29

Cu R_842_853 R853
R842 0.07 0.34 0.00 1.79 0.26 0.41 0.06 0.35 0.34 1.83 0.26 0.36

B R_515_615 R615
R515 0.31 0.63 0.23 5.96 0.55 0.88 0.19 0.37 −1.60 65.18 0.24 0.37

N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc; Cu, copper; B, boron;
R2, regression coefficient; MBE, mean bias error; RMSE, root means square error; RPD, ratio of performance to deviation; RPIQ, ratio of
performance to inter-quartile distance.

3.4. Performance of the PLSR-Combined Machine Learning Models

The results pertaining to the prediction performance of the PLSR-combined machine
learning models are presented in Table A1 and the best performing models in Figure 6.
The optimum number of latent variables (LVs) were generated and selected using PLSR
and 10-fold cross-validation and used as predictor variables for machine learning model
development. The LVs are linear combinations of all the input variables but orthogonal to
each other which helps to reduce collinearity. The number of the LVs for N, P, K, Ca, Mg, S,
Fe, Mn, Zn, Cu, and B selected were 1, 6, 5, 5, 7, 10, 5, 5, 5, 1, and 6, respectively. Overall, the
prediction performance improved significantly with the PLSR-combined machine learning
models over the single PLSR model. For all the nutrients, the performance of the best
performing PLSR-combined machine learning models with respect to R2, RPD, and RPIQ
for calibration ranged from 0.95 to 0.99, 4.42 to 11.06, and 6.55–13.80, and for validation,
these were 0.88–0.99, 2.73 to 5.76, and 3.31 to 7.65, respectively. Based on the RPD and
RPIQ values, it was evident that all the machine learning models combined with PLSR
were effective to predict all the macro- and micro-nutrients with very good to excellent
prediction accuracy. Based on the independent validation performance and the summed
ranks, the best performing model for different nutrients were Cubist for N (R2

v = 0.94,
RPDv = 4.27, and RPIQv = 6.03), P (R2

v = 0.91, RPDv = 3.3, and RPIQv = 3.71), K (R2
v = 0.97,

RPDv = 5.76, and RPIQv = 7.65,), and Zn (R2
v = 0.95, RPDv = 4.71, and RPIQv = 7.49), SVR

for Ca (R2
v = 0.88, RPDv = 2.73, and RPIQv = 3.31), Fe (R2

v = 0.91, RPDv = 3.26, and RPIQv
= 3.96), Cu (R2

v = 0.90, RPDv = 3.01, and RPIQv = 3.82), and B (R2
v = 0.92, RPDv = 3.44, and

RPIQv = 5.33), and ELNET for Mg (R2
v = 0.95, RPDv = 4.47, and RPIQv = 6.11) and S (R2

v =
0.95, RPDv = 4.48, and RPIQv = 6.8). Although the prediction accuracies for all the models
were very good to excellent, the most robust PLSR-combined models were Cubist, SVR,
and ELNET. Table 5 gives an overview of the independent validation performance and
identifies the best machine learning models combined with PLSR to predict mango leaf
nutrients based on the RPD and RPIQ. Among the nine machine learning models tested,
the performance of the MARS, RF, and KNN was the poorest and yielded non-reliable
predictions for most of the nutrients except MARS for K and Zn and KNN for Mg and B.
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Table 4. Performance of the multivariate analysis models for calibration and validation to predict the mango leaf nutrient
content.

Model Calibration Validation Summed Rank

R2
c dindex c MBEc RMSEc RPDc RPIQc R2

v dindexv MBEv RMSEv RPDv RPIQv

N
PLSR 0.031 0.231 4.76 × 10−8 0.12 1.02 1.77 0.001 0.184 0.00297 0.13 0.98 1.61 24
PCR 0.028 0.222 4.76 × 10−8 0.12 1.02 1.76 0.001 0.176 0.0026 0.13 0.98 1.62 25
SVR 0.171 0.481 0.003614 0.11 1.10 1.90 0.006 0.327 0.01311 0.13 0.98 1.61 22

P
PLSR 0.337 0.695 −1.45 × 10−8 0.02 1.23 1.47 0.404 0.747 0.0003 0.02 1.30 1.34 14
PCR 0.250 0.616 1.13 × 10−9 0.03 1.16 1.38 0.386 0.697 −0.001 0.02 1.27 1.31 25
SVR 0.265 0.533 0.00213 0.03 1.14 1.36 0.458 0.609 0.0026 0.02 1.24 1.28 33

K
PLSR 0.543 0.836 6.86 × 10−8 0.19 1.48 1.91 0.431 0.794 −0.0051 0.20 1.32 1.77 14
PCR 0.222 0.589 1.24 × 10−8 0.24 1.14 1.46 0.289 0.616 0.00131 0.23 1.19 1.59 32
SVR 0.480 0.707 −0.00827 0.21 1.33 1.71 0.349 0.654 −0.013 0.22 1.23 1.66 26
Ca

PLSR 0.518 0.824 −4.86 × 10−7 1.00 1.44 1.67 0.485 0.804 −0.0768 1.04 1.40 1.79 19
PCR 0.483 0.806 −1.61 × 10−7 1.04 1.39 1.62 0.487 0.795 −0.0635 1.04 1.40 1.79 22
SVR 0.538 0.801 −0.13348 1.01 1.44 1.67 0.434 0.717 −0.2413 1.13 1.29 1.65 31
Mg

PLSR 0.588 0.855 −0.00073 605.77 1.56 2.13 0.527 0.838 72.5333 597.27 1.42 1.76 17
PCR 0.412 0.753 −9.70 × 10−5 724.09 1.31 1.78 0.423 0.759 180.961 668.44 1.27 1.57 34
SVR 0.504 0.794 −2.10901 668.49 1.41 1.93 0.550 0.824 152.705 588.85 1.44 1.79 21

S
PLSR 0.256 0.626 −5.71 × 10−9 0.04 1.16 1.48 0.177 0.561 −0.0002 0.04 1.11 1.44 30
PCR 0.312 0.672 −6.05 × 10−9 0.04 1.21 1.54 0.195 0.593 −0.0003 0.04 1.12 1.46 22
SVR 0.371 0.604 −0.003 0.04 1.21 1.54 0.215 0.506 −0.0025 0.04 1.12 1.46 20
Fe

PLSR 0.483 0.803 4.57 × 10−6 19.81 1.39 1.94 0.324 0.691 −4.6565 24.00 1.20 1.69 13
PCR 0.278 0.649 2.15 × 10−6 23.42 1.18 1.64 0.220 0.567 −8.8722 26.80 1.07 1.52 33
SVR 0.405 0.737 −1.18679 21.33 1.29 1.80 0.323 0.601 −8.9331 25.59 1.12 1.59 26
Mn

PLSR 0.306 0.680 −2.44 × 10−5 196.80 1.20 1.22 0.166 0.596 −18.421 198.96 1.07 1.47 27
PCR 0.307 0.678 1.06 × 10−5 196.76 1.20 1.22 0.181 0.612 −23.217 197.48 1.08 1.48 19
SVR 0.340 0.526 −29.8089 204.04 1.16 1.18 0.211 0.519 −48.979 195.44 1.09 1.49 26
Zn

PLSR 0.417 0.758 −1.68 × 10−7 2.31 1.31 1.85 0.284 0.677 0.45319 2.43 1.16 1.56 14
PCR 0.365 0.721 2.23 × 10−7 2.41 1.26 1.78 0.234 0.636 0.40979 2.50 1.13 1.52 25
SVR 0.387 0.666 −0.24371 2.43 1.25 1.76 0.114 0.462 0.28452 2.66 1.06 1.43 33
Cu

PLSR 0.011 0.142 1.81 × 10−8 0.48 1.01 1.62 0.020 0.160 0.02837 0.43 1.01 1.51 20
PCR 0.010 0.004 1.47 × 10−8 0.48 1.00 1.61 0.001 0.106 0.03061 0.43 1.00 1.50 30
SVR 0.199 0.442 −0.15908 0.48 1.02 1.64 0.098 0.402 −0.135 0.43 1.00 1.50 22

B
PLSR 0.375 0.725 −2.91 × 10−6 13.39 1.27 1.61 0.258 0.681 −3.1827 14.88 1.11 1.54 18
PCR 0.319 0.686 −3.79 × 10−6 13.97 1.22 1.54 0.294 0.694 −3.1775 14.28 1.15 1.60 19
SVR 0.359 0.511 −2.27752 14.67 1.16 1.47 0.210 0.492 −5.242 15.67 1.05 1.46 35

N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc; Cu, copper; B, boron;
R2, regression coefficient; MBE, mean bias error; RMSE, root means square error; RPD, ratio of performance to deviation; RPIQ, ratio of
performance to inter-quartile distance; PLSR, partial least square regression; PCR, principal component regression; SVR, support vector
regression.
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Figure 6. Performance of the best performing PLSR-combined models for predicting nutrients as (a) N using PLSR-Cubist,
(b) P using PLSR-Cubist, (c) K using PLSR-Cubist, (d) Ca using PLSR-SVR, (e) Mg using PLSR-SVR, (f) S using PLSR elastic
net (ELNET), (g) Fe using PLSR-SVR, (h) Mn using PLSR-SVR, (i) Zn using PLSR-Cubist, (j) Cu using PLSR-SVR, and (k) B
using PLSR-SVR.
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Table 5. Summarized independent validation performance of the machine learning models in combination with PLSR for
predicting mango leaf nutrients based on RPD and RPIQ.

Model Based on RPD (>2): Excellent Prediction Accuracy Based on RPIQ (>2.5): Very Good Prediction Accuracy

N P K Ca Mg S Fe Mn Zn Cu B N P K Ca Mg S Fe Mn Zn Cu B

ELNET × × × × × × × × × × × × × × × × × × × × × ×
SVR × × × × × × × × × × × × × × × × × × × × ×
GPR × × × × × × × × × × × × × × × × × × ×

MARS × × ×
RF

KNN × ×
XGB × × × × × × × × × × × × × × × ×

NNET × × × × × × × × × × × × × × × ×
Cubist × × × × × × × × × × × × × × × × × × × × × ×

×, indicates excellent and very good predictions using ratio to performance (RPD) and ratio of performance to interquartile distance
(RPIQ), respectively. N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc;
Cu, copper; B, boron; ELNET, elastic net; SVR, support vector regression; GPR, Gaussian process regression; MARS, multivariate adaptive
regression splines; RF, random forest; KNN, k-nearest neighbors; XGB, extreme gradient boosting; NNET, neural network.

4. Discussion
4.1. Variations in Leaf Nutrient Concentrations and Spectral Data

Before employing the nutrient and spectral data for the statistical analysis, it is very
important to appropriately split the data into calibration and validation datasets. The
insignificant results of the t-test, F-test, Kolmogorov–Smirnov test, and Flinger–Kileen test
indicated that the random division of the data into calibration and validation datasets was
accurate, rendering it suitable for further statistical analysis. The variations in the spectral
data were more prominent in the NIR region than in the visible. Similar findings were
noted by [85] and [20] while predicting the leaf ion content using remote sensing in cotton
and rice, respectively. The spectral pattern and variations recorded made the spectral data
suitable for further analysis. Prominent leaf spectral variations in visible-NIR regions were
reported by [21] for predicting macro- and micro-nutrient content in orange. [49] showed
the hyperspectral features in the spectral region of 470–800 nm are useful for detecting
concentrations of leaf nutritional elements. In [86], variations in the spectral signature of oil
palm for different nutrient such as N, P, K, Mg, Ca, and B were observed. Higher reflectance
in the infrared region (650–900 nm) was also observed by [87] in groundnut plants while
predicting the N, P, and K content and yield. Wide variation in the nutrient status of the
plant is an important pre-requisite to developing prediction models from remote sensing
data. In the current study, a wide variation in the nutrient data was observed for all
except for N and Zn. Such observations are supported by the results obtained by [49] with
the highest variations for Ca and least for Mg in tallgrass prairie vegetation. The degree
of variation may also affect the prediction of nutrients using spectral data and different
statistical analysis methods.

4.2. Vegetation Indices

In the current study, none of the spectral indices developed could predict any of
the leaf nutrients successfully. The inability of model development by spectral indices
could be the outcome of an unsuccessful match of selected indices and wavelengths as
individual wavelengths and/or regions might not have strongly correlated with nutrient
concentrations. Another probable explanation could be the inability to better deal with
confounding factors such as reflectance saturation, leaf area, roughness, and moisture
in the leaf, which reduces the performance of raw spectral bands [88]. Earlier studies
used different vegetation indices for predicting foliar nutrient in different crops and most
of these were used to detect foliar or canopy N, P, and K content as they are powerful
indicators of plant nutrition status [89,90]. Normalized difference spectral indices were
effectively used by [91] and [92] to estimate leaf N, P, or K content in different plant species.
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In [11], a poor prediction of already published 43 empirical spectral indices for the N, P,
and K content of the shrub and grass vegetation in China was recorded. Furthermore, to
overcome this, the linear regression analysis to optimize the band-band combination was
performed and effectively retrieved the leaf N, P, and K content (R2 > 0.5, p < 0.05). This
confirms that hyperspectral data could be potentially used for fine-scale monitoring of
degraded vegetation.

The use of few wavelengths to develop a spectral index and for the prediction of
nutrients offers a simple way to model any parameter, but at the same time, does not
consider the information hidden in the other parts of the spectrum or wavelengths. A
poor prediction accuracy was found by [93] exploiting the Inverted red-edge chlorophyll
index (R2 = 0.66), relative normalized difference index (R2 = 0.48), red-edge chlorophyll
index (R2 = 0.28), and normalized difference infrared index ranged R2 = 0.28−0.67 for
the coffee canopy N using satellite data. Thus, our results on the poor performance of
spectral or vegetation indices are consistent with those reported by [11,93], among others.
Prediction accuracy of R2 = 0.16−0.48 was obtained by [94] to predict the N:P ratio of
the grass vegetation using previously published vegetation indices computed from the
satellite data however the performance was improved to R2 = 0.59−0.72 with optimized
vegetation indices.

4.3. Chemometrics and Machine Learning Regression Modeling

Among the three multivariate models tested, the PLSR was the best to predict most of
the nutrients except SVR for N, S, and PCR for Mn. However, the prediction performance
was poor with R2 ≤ 0.53 and low values of RPD and RPIQ (Table 4). [95] and [96] predicted
the leaf nutritional elements with PLSR modeling of the spectral data. Our results are also
consistent with that of [49], who used the PLSR model to predict the tallgrass prairie leaf
pigment and nutritional status with the lowest RMSE of prediction. A reasonable selection
of modeling and validation datasets is important to improve the prediction accuracy of
the PLSR models. The spectral modeling of leaf nutrients is complex and depends on
spectral features [49]. The PSLR has the capability of building linkages between the high
dimensional spectral features and the vegetation properties. Reliability of PLSR is due
to its ability to address the property of collinearity and over-fitting in the hyperspectral
data than other multivariate models [97,98], and hence the PLSR is widely preferred in the
hyperspectral analysis [99–101]. The outcome could be due to the low nutrient ranges and
weak relationships between nutrients and reflectance that hinder the model development.
The results of better prediction of N% with the SVR are consistent with those reported
by [38] in the pear (R2 = 0.66) and apple (R2 = 0.77). In [51], satisfactory results for all
macronutrients (R2 = 0.69–0.92, RPD = 1.62–3.62) were also observed, with N predicted best
followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2

from 0.19 to 0.86, RPD from 1.09 to 2.69), however, indicated Cu and Zn were best predicted,
followed by Fe and Mn. In the current study, we employed PLSR, but other multivariate
modeling techniques such as random forest [102], and artificial neural networks [103] can
also be used. The constraint of using advanced modeling tools could be that these are pure
data-driven approaches, and it might be difficult to interpret the biological processes and
significance. Owing to the poor performance of the single PLSR and other multivariate
models, a new approach of combining the PLSR with machine learning [20] was attempted
to retrieve the leaf nutrient content to improve the accuracy. In general, prediction accuracy
improved significantly with the PLSR-combined machine learning models over the single
PLSR model. The ELNET, SVR, GPR, MARS, RF, KNN, XGB, NNET, and Cubist combined
with the PLSR retrieved N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, and B with very good to
excellent prediction accuracy with few exceptions such as poor prediction of MARS for K
and Zn and KNN for Mg and B, which yielded non-reliable predictions.

The current study explored an approach of using the PLSR in combination with
machine learning models of the spectral data as an attempt to retrieve leaf nutrient content,
and very few studies have been conducted in this context so far. The use of such an
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approach of latent variable modeling reduces the redundancy and dimensionality in
the data and speed of computation with a meager loss of information from the original
data [104]. Furthermore, the use of visible-NIR (350–1050 nm) spectral data in the study
also provides a greater opportunity to upscale it to the field level [20].

An approach identified in the current study would help in offering the guidelines for
precision nutrient management in mango crops, which might further help to improve the
fruit yield and quality. The present approach is suitable for rapid and reliable estimation
of the leaf nutrients at the laboratory level, however, field investigations are needed to
upscale this research at the canopy level using the ground-based or airborne hyperspectral
remote sensing. A major limitation or constraint to upscale the research at field or canopy
level is cloud cover, which coincides with sampling time, i.e., the post-fruiting season in
the study region.

5. Conclusions

In the current study, spectroscopy-based novel spectral indices, chemometric modeling
methods—solo PLSR, PCR, and SVR—and PLSR-based machine learning models were
evaluated to predict the mango leaf macro- and micronutrient contents. The approach
of spectral indices and chemometrics modeling methods both were inefficient and could
not retrieve any of the nutrients satisfactorily. In the study, a combination of linear and
non-linear machine learning methods yielded the best predictions. The PLSR-combined
machine learning models of the Cubist, SVR, and ELNET were found to be the most robust
in predicting most of the nutrients and provided very good to excellent prediction accuracy.
The results of the study revealed that the hyperspectral sensing data could be employed to
retrieve the foliar nutritional status of the mango. The presented approach is suitable for
rapid and reliable estimation of the leaf nutrients at the laboratory level, however, field
investigations are needed to upscale this research at the canopy level using ground-based
or airborne hyperspectral remote sensing.
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Appendix A

Table A1. Performance of the PLSR-combined machine learning models for calibration and validation to predict the
nutrients content mango leaf.

Calibration Validation

R2
c dindex c MBEc RMSEc RPDc RPIQc R2

v dindexv MBEv RMSEv RPDv RPIQv Summed rank

N
ELNET 0.95 0.99 −0.0002 0.028 4.50 7.96 0.94 0.99 −0.0019 0.029 4.19 5.92 38
SVR 0.98 0.99 −0.0007 0.019 6.48 11.46 0.85 0.95 −0.0042 0.048 2.48 3.51 37
GPR 0.96 0.97 −0.0017 0.035 3.53 6.25 0.84 0.92 −0.0042 0.057 2.12 3.00 67

MARS 0.80 0.94 −0.0005 0.056 2.22 3.92 0.58 0.86 0.0068 0.097 1.24 1.75 93
RF 0.98 0.97 −0.0011 0.035 3.51 6.21 0.72 0.75 0.0006 0.082 1.47 2.07 77

KNN 0.78 0.89 0.0007 0.066 1.89 3.35 0.55 0.81 −0.0103 0.082 1.47 2.08 96
XGB 0.97 0.99 0.0012 0.023 5.36 9.48 0.77 0.93 0.0001 0.057 2.11 2.98 48

NNET 0.95 0.99 0.0085 0.028 4.38 7.75 0.95 0.99 0.0066 0.029 4.22 5.96 48
Cubist 0.95 0.99 0.0003 0.028 4.42 7.83 0.94 0.99 −0.0010 0.028 4.27 6.03 36

P
ELNET 0.94 0.99 0.0001 0.007 4.25 5.59 0.92 0.98 −0.0003 0.008 3.47 3.90 28
SVR 0.97 0.99 −0.0002 0.006 5.39 7.10 0.89 0.97 −0.0001 0.009 3.04 3.42 35
GPR 0.95 0.97 0.0000 0.009 3.53 4.64 0.89 0.96 −0.0001 0.009 2.81 3.16 54

MARS 0.76 0.93 0.0003 0.015 2.06 2.71 0.58 0.87 −0.0008 0.018 1.51 1.70 89
RF 0.98 0.97 0.0003 0.009 3.34 4.40 0.79 0.79 0.0009 0.017 1.57 1.77 73

KNN 0.79 0.90 −0.0010 0.016 1.95 2.57 0.65 0.85 0.0012 0.016 1.63 1.84 91
XGB 0.94 0.99 0.0001 0.007 4.18 5.50 0.77 0.93 0.0003 0.013 2.10 2.37 56

NNET 0.94 0.98 0.0007 0.007 4.14 5.45 0.91 0.98 0.0004 0.008 3.34 3.77 44
Cubist 0.98 0.99 −0.0002 0.004 6.92 9.10 0.91 0.98 −0.0006 0.008 3.30 3.71 24

K
ELNET 0.98 0.99 −0.0001 0.043 6.38 7.96 0.97 0.99 0.0071 0.046 6.04 8.03 25
SVR 0.99 1.00 −0.0023 0.035 7.69 9.60 0.92 0.97 0.0120 0.087 3.21 4.27 44
GPR 0.98 0.98 −0.0029 0.068 3.98 4.97 0.93 0.95 0.0107 0.105 2.68 3.56 65

MARS 0.83 0.95 −0.0004 0.112 2.43 3.04 0.76 0.92 0.0057 0.138 2.03 2.70 79
RF 0.98 0.98 −0.0022 0.074 3.70 4.61 0.78 0.80 0.0183 0.179 1.57 2.08 85

KNN 0.83 0.92 −0.0087 0.126 2.16 2.69 0.62 0.82 0.0170 0.180 1.56 2.07 105
XGB 0.98 0.99 0.0012 0.043 6.34 7.91 0.82 0.95 0.0103 0.118 2.38 3.16 62

NNET 0.98 0.99 −0.0105 0.045 6.01 7.50 0.97 0.99 −0.0071 0.052 5.38 7.14 54
Cubist 0.99 1.00 −0.0007 0.025 11.06 13.80 0.97 0.99 0.0071 0.049 5.76 7.65 21

Ca
ELNET 0.96 0.99 −0.0107 0.322 4.70 5.58 0.94 0.98 −0.0535 0.318 4.08 4.94 34
SVR 0.98 0.99 −0.0214 0.238 6.36 7.54 0.88 0.96 0.0001 0.475 2.73 3.31 30
GPR 0.97 0.98 −0.0683 0.422 3.59 4.25 0.88 0.93 −0.0285 0.552 2.35 2.85 70

MARS 0.84 0.95 −0.0337 0.609 2.49 2.95 0.66 0.90 0.0129 0.759 1.71 2.07 84
RF 0.98 0.98 −0.0721 0.393 3.85 4.57 0.63 0.80 −0.0814 0.852 1.52 1.84 83

KNN 0.83 0.87 −0.1389 0.833 1.82 2.15 0.65 0.79 −0.1060 0.867 1.50 1.81 107
XGB 0.97 0.99 −0.0158 0.252 6.02 7.13 0.77 0.93 −0.0712 0.624 2.08 2.52 49

NNET 0.97 0.99 −0.0195 0.266 5.70 6.76 0.91 0.98 -0.0125 0.382 3.39 4.11 36
Cubist 0.96 0.99 −0.0273 0.324 4.68 5.55 0.94 0.98 −0.0701 0.320 4.05 4.90 47

Mg
ELNET 0.95 0.99 0.0000 190.287 4.70 6.20 0.95 0.99 28.6533 219.943 4.47 6.11 28
SVR 0.98 0.99 −2.5794 133.784 6.69 8.82 0.90 0.96 −19.6623 352.997 2.79 3.81 27
GPR 0.97 0.98 6.0932 226.551 3.95 5.21 0.91 0.94 −2.3241 393.767 2.50 3.41 54

MARS 0.78 0.94 0.0000 414.932 2.16 2.84 0.67 0.90 −39.8115 565.089 1.74 2.38 78
RF 0.98 0.98 2.9559 227.748 3.93 5.18 0.71 0.82 −50.5409 618.348 1.59 2.17 77

KNN 0.80 0.90 82.2845 455.592 1.96 2.59 0.80 0.88 44.4215 528.350 1.86 2.54 84
XGB 0.97 0.99 -3.8362 144.384 6.20 8.17 0.86 0.95 11.3587 381.799 2.58 3.52 39

NNET 0.04 0.45 −1163.8440 1640.410 0.55 0.72 0.07 0.47 -
1340.4810 1727.948 0.57 0.78 108

Cubist 0.95 0.99 19.8129 191.229 4.68 6.17 0.95 0.99 49.4772 222.529 4.42 6.04 45
S

ELNET 0.96 0.99 −0.0001 0.009 4.95 6.55 0.95 0.99 −0.0015 0.011 4.48 6.80 26
SVR 0.98 0.99 −0.0002 0.007 6.18 8.18 0.87 0.96 −0.0016 0.018 2.69 4.09 40
GPR 0.97 0.98 −0.0006 0.013 3.62 4.79 0.89 0.93 −0.0025 0.021 2.36 3.57 68

MARS 0.78 0.93 −0.0006 0.021 2.13 2.82 0.62 0.88 −0.0015 0.031 1.61 2.44 85
RF 0.98 0.97 −0.0012 0.013 3.46 4.57 0.78 0.76 −0.0069 0.033 1.48 2.25 84

KNN 0.76 0.85 −0.0026 0.027 1.70 2.26 0.70 0.77 −0.0083 0.034 1.46 2.22 105
XGB 0.98 0.99 −0.0001 0.007 6.97 9.22 0.84 0.94 −0.0015 0.020 2.42 3.68 37

NNET 0.96 0.98 0.0072 0.012 3.87 5.12 0.95 0.98 0.0057 0.012 3.99 6.05 56
Cubist 0.96 0.99 0.0003 0.009 4.86 6.43 0.95 0.99 −0.0008 0.011 4.38 6.64 39

Fe
ELNET 0.96 0.99 0.0000 5.714 4.95 7.13 0.94 0.98 0.4834 6.649 4.19 5.10 33
SVR 0.98 0.99 −0.2295 4.427 6.38 9.20 0.91 0.97 −0.2120 8.560 3.26 3.96 31
GPR 0.96 0.98 0.0700 7.743 3.65 5.26 0.91 0.95 −0.1209 10.470 2.66 3.24 54

MARS 0.77 0.93 0.0000 13.670 2.07 2.98 0.68 0.90 −0.5475 15.952 1.75 2.13 71
RF 0.98 0.98 −0.1374 7.347 3.85 5.55 0.68 0.82 −1.5566 17.722 1.57 1.91 70

KNN 0.76 0.89 −0.1584 15.173 1.86 2.69 0.60 0.81 −1.2094 18.478 1.51 1.83 93
XGB 0.97 0.99 0.1141 4.796 5.89 8.50 0.85 0.96 −1.2427 10.731 2.60 3.16 47

NNET 0.22 0.68 −4.9762 34.855 0.81 1.17 0.24 0.68 −7.4574 33.930 0.82 1.00 108
Cubist 0.96 0.99 −0.0352 5.720 4.94 7.12 0.94 0.99 0.4824 6.580 4.23 5.15 33
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Table A1. Cont.

Calibration Validation

R2
c dindex c MBEc RMSEc RPDc RPIQc R2

v dindexv MBEv RMSEv RPDv RPIQv Summed rank

Mn
ELNET 0.75 0.88 -0.5831 205.813 1.19 1.29 0.88 0.96 −23.2350 70.000 2.74 3.31 50
SVR 0.94 0.97 −10.7918 71.627 3.41 3.70 0.80 0.93 −14.1564 89.239 2.15 2.59 30
GPR 0.93 0.94 −28.2337 98.969 2.46 2.68 0.79 0.89 −28.6016 103.478 1.86 2.24 58

MARS 0.77 0.93 −17.9819 118.470 2.06 2.24 0.46 0.78 −18.7017 141.898 1.35 1.63 70
RF 0.97 0.95 −28.0254 94.096 2.59 2.81 0.45 0.67 −30.0085 151.782 1.27 1.53 67

KNN 0.78 0.80 −50.8969 159.806 1.53 1.66 0.39 0.66 −44.4179 158.226 1.21 1.46 98
XGB 0.94 0.98 −3.8812 68.932 3.54 3.84 0.72 0.92 −14.6053 102.248 1.88 2.26 33

NNET 0.61 0.87 40.2527 158.673 1.54 1.67 0.62 0.88 26.0067 133.700 1.44 1.73 78
Cubist 0.75 0.85 17.9304 259.424 0.94 1.02 0.87 0.97 −13.9173 71.479 2.69 3.24 56

Zn
ELNET 0.94 0.98 −0.1776 4.547 3.82 4.78 0.95 0.99 −0.0372 0.701 4.71 7.48 39
SVR 0.98 0.99 −0.1855 2.407 7.22 9.02 0.93 0.97 0.0334 1.034 3.19 5.07 30
GPR 0.97 0.98 −1.1132 4.654 3.73 4.67 0.93 0.94 −0.0425 1.329 2.48 3.95 67

MARS 0.77 0.93 −0.5952 8.370 2.08 2.59 0.64 0.89 0.1141 1.970 1.67 2.66 90
RF 0.98 0.97 −1.1889 4.972 3.49 4.37 0.75 0.67 −0.0365 2.436 1.35 2.15 84

KNN 0.82 0.88 −2.0310 9.361 1.86 2.32 0.69 0.79 −0.2792 2.157 1.53 2.43 101
XGB 0.96 0.99 −0.2439 3.266 5.32 6.65 0.82 0.95 0.1252 1.396 2.36 3.76 59

NNET 0.97 0.98 2.9880 4.590 3.78 4.73 0.95 0.99 −0.0083 0.728 4.53 7.20 48
Cubist 0.98 0.99 0.1900 2.887 6.02 7.52 0.95 0.99 −0.0161 0.700 4.71 7.49 22

Cu
ELNET 0.88 0.96 −0.0065 0.204 2.26 3.63 0.90 0.96 0.0101 0.204 2.41 3.06 50
SVR 0.98 0.99 −0.0162 0.070 6.58 10.57 0.90 0.97 −0.0220 0.163 3.01 3.82 17
GPR 0.95 0.97 −0.0713 0.147 3.13 5.02 0.90 0.93 −0.0769 0.211 2.33 2.96 52

MARS 0.69 0.91 −0.0371 0.276 1.67 2.69 0.74 0.92 −0.0647 0.259 1.90 2.42 81
RF 0.97 0.96 −0.0772 0.164 2.80 4.50 0.64 0.73 -0.1163 0.361 1.36 1.73 84

KNN 0.74 0.83 −0.1726 0.311 1.48 2.38 0.73 0.82 −0.1652 0.333 1.48 1.88 101
XGB 0.96 0.99 −0.0055 0.100 4.63 7.43 0.71 0.92 −0.0281 0.274 1.79 2.28 57

NNET 0.92 0.95 −0.0777 0.173 2.66 4.27 0.87 0.93 −0.0861 0.222 2.22 2.82 71
Cubist 0.98 0.99 −0.0103 0.079 5.85 9.38 0.88 0.97 −0.0156 0.191 2.57 3.27 27

B
ELNET 0.94 0.98 −0.1776 4.547 3.82 4.78 0.93 0.98 −0.8644 4.294 3.64 5.64 35
SVR 0.98 0.99 −0.1855 2.407 7.22 9.02 0.92 0.98 0.5814 4.542 3.44 5.33 22
GPR 0.97 0.98 −1.1132 4.654 3.73 4.67 0.91 0.96 −0.1763 5.301 2.94 4.57 58

MARS 0.77 0.93 −0.5952 8.370 2.08 2.59 0.51 0.83 −1.9934 11.137 1.40 2.18 97
RF 0.98 0.97 −1.1889 4.972 3.49 4.37 0.56 0.77 −1.0856 10.938 1.43 2.22 83

KNN 0.82 0.88 −2.0310 9.361 1.86 2.32 0.71 0.88 −1.5863 8.885 1.76 2.73 93
XGB 0.96 0.99 −0.2439 3.266 5.32 6.65 0.77 0.92 −2.1715 7.787 2.00 3.11 60

NNET 0.97 0.98 2.9880 4.590 3.78 4.73 0.94 0.97 2.9940 6.095 2.56 3.98 61
Cubist 0.98 0.99 0.1900 2.887 6.02 7.52 0.92 0.98 −0.5982 4.577 3.41 5.29 31

N, nitrogen; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; S, sulfur; Fe, iron; Mn, manganese; Zn, zinc; Cu, copper; B, boron;
R2, regression coefficient; MBE, mean bias error; RMSE, root means square error; RPD, ratio of performance to deviation; RPIQ, ratio of
performance to inter-quartile distance; ELNET, elastic net; SVR, support vector regression; GPR, Gaussian process regression; MARS,
multivariate adaptive regression splines; RF, random forest; KNN, k-nearest neighbors; XGB, extreme gradient boosting; NNET, neural
network.
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