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Abstract: Campus violence is a common social phenomenon all over the world, and is the most
harmful type of school bullying events. As artificial intelligence and remote sensing techniques
develop, there are several possible methods to detect campus violence, e.g., movement sensor-based
methods and video sequence-based methods. Sensors and surveillance cameras are used to detect
campus violence. In this paper, the authors use image features and acoustic features for campus
violence detection. Campus violence data are gathered by role-playing, and 4096-dimension feature
vectors are extracted from every 16 frames of video images. The C3D (Convolutional 3D) neural
network is used for feature extraction and classification, and an average recognition accuracy of
92.00% is achieved. Mel-frequency cepstral coefficients (MFCCs) are extracted as acoustic features,
and three speech emotion databases are involved. The C3D neural network is used for classification,
and the average recognition accuracies are 88.33%, 95.00%, and 91.67%, respectively. To solve the
problem of evidence conflict, the authors propose an improved Dempster–Shafer (D–S) algorithm.
Compared with existing D–S theory, the improved algorithm increases the recognition accuracy by
10.79%, and the recognition accuracy can ultimately reach 97.00%.

Keywords: video recognition; fusion theory; campus violence detection; artificial intelligence;
remote sensing

1. Introduction

School bullying is a common social phenomenon all over the world. School bullying
means aggressive behaviors or words which hurt another person intentionally. It is often
applied by the stronger upon the weaker, or by the elder upon the younger. Victims of
school bullying suffer from both mental and physical violence. School bullying is consid-
ered as one of the main reasons for depression, dropping out of school, and adolescent
suicide. According to the report “Campus Violence and Bullying” released by UNESCO
(United Nations Educational, Scientific and Cultural Organization), in 2017, 243 million
students all over the world suffered from campus bullying. Therefore, school bullying
prevention is an important and timeless issue.

School bullying has been studied since the 1960s in Sweden, Finland, and Norway.
However, traditional school bullying prevention methods are mostly human-driven, i.e.,
school bullying events are reported by victims or bystanders, which is usually inconvenient
and untimely. As smartphones became popular, anti-bullying applications such as ICE
BlackBox and TipOff appeared. These applications work in a similar way. When school
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bullying happens, the victim or a bystander needs to take out his/her smartphone and
operate it to send an alarm to his/her parents or teacher, which is hardly possible in a school
bullying event. Therefore, an automatic method to detect school bullying is necessary.

As artificial intelligence (AI) techniques and remote sensing (RS) techniques develop,
information-driven school bullying detection methods become possible. This paper will
introduce one such method. School bullying can happen in various forms, e.g., physical
violence, verbal bullying, destroying personal property, and social media bullying. Accord-
ing to an early survey by the authors’ research group, physical violence was considered to
be the most harmful to teenagers. Therefore, this paper focuses on the detection of campus
violence.

There are two main kinds of method to detect campus violence, i.e., movement
sensor-based methods and video sequence-based methods [1]. In the authors’ previous
work, they used movement sensor-based methods to detect campus violence. However,
movement sensors can be removed by the bullies before they bully the victims. Therefore,
in this paper, the authors propose a video sequence-based method to detect campus
violence as a complement. We gathered campus violence video sequences and daily-life
activity video sequences by role-playing such actions with surveillance cameras. In the
pre-processing procedure, 16 frames were processed as one unit. The C3D (Convolutional
3D) neural network was used for feature extraction and classification. In campus violence
events, there are often offensive emotions from the bullies and negative emotions from the
bullied, so speech emotion recognition can assist campus violence detection. Mel-frequency
cepstral coefficient (MFCC) features were extracted from speech, and three speech emotion
databases were involved. The C3D neural network was used as the classifier. To solve the
problem of evidence conflict when combining the recognition results of activity recognition
and speech emotion recognition, the authors proposed an improved Dempster–Shafer
(D–S) fusion algorithm. The simulation results show that the proposed campus violence
detection method was able to detect violence events at average accuracies of 94.00%, 97.00%,
and 92.00% based on three different databases, respectively.

The remainder of this paper is organized as follows: Section 2 introduces some related
work on violence detection with video sequences; Section 3 describes the proposed campus
violence detection algorithm; Section 4 shows the simulation results; and finally, Section 5
draws conclusions.

2. Related Work

As sensor techniques develop, activity recognition with artificial intelligence has
become a hot topic in areas of remote sensing [2], smart homes, and smart cities [3,4].
Violence recognition with AI techniques [5,6] has also gained more and more attention.

Chen et al. [7] used a 3D convolution neural network and a support vector machine to
detect violence in video sequences. The proposed method could effectively detect combat,
aggressive action, and violence scenes in real-time video stream, and demonstrated good
performance in a hockey fight, crowd violence, and movie violence. They obtained an
average accuracy of 89.1% based on the UCF101 database.

Shakil et al. [8] used pre-training modules with different deep learning methods to
detect large-scale violence such as riots in the streets. They combined ResNet50 net and
long short-term memory (LSTM) net together for violence detection. They achieved an
average accuracy of 97.06% based on their collected database.

Eknarin et al. [9] proposed a deep learning method based on time series images. By
running a deep convolution neural network on the video database, the violence level of
the video database can be classified. They obtained an average accuracy of 88.74% based
on the movie database.

Simone et al. [10] proposed a method for overall visual-audio emotion recognition
based on multi-task fusion learning and multiple features. This method applied multi-task
learning to deep functions in a convolutional neural network model. The function was
able to use fewer parameters and predict multiple tasks at the same time. It could improve
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the sensitivity of single recognition model to user emotion by sharing information among
different tasks. The accuracy of emotion recognition for video and audio could reach
81.36%.

Nawaz et al. [11] used a pleasure-displeasure, arousal-nonarousal, dominance-submiss
iveness (PAD) three-dimensional emotion model to identify the emotion caused by a music
video in an individual, and compared the performance of two feature selection methods
based on feature and principal component analysis (PCA). They used support vector
machine (SVM), K-nearest neighbor (KNN) and decision tree (DT) to test the performance,
and the final recognition accuracy reached 78.96%.

Sugan et al. [12] used cepstrum features extracted from equivalent rectangular band-
width (ERB) triangular filter banks for speech emotion recognition. Two new triangular
filter banks were proposed and used together with the traditional filter banks to extract four
different cepstrum features. The experimental results show that the maximum recognition
accuracies of this method based on speaker-dependent (SD) and speaker-independent (SI)
scenes were 77.08% and 55.83%, respectively.

Han et al. [13] proposed a consecutive elimination process (CEP) algorithm to detect
campus bullying events by recognizing children’s emotions. They tested the proposed
algorithm with both the Berlin database and a violence experiment database, and obtained
average accuracies of 79.05% and 66.13%, respectively.

Kushwah et al. [14] applied information fusion to the context awareness system, and
proposed a multi-sensor fusion method based on time evidence theory for indoor activity
recognition. This fusion method developed an incremental conflict resolution method
within the framework of the classical Dempster–Shafer (D–S) evidence theory. Time
information was introduced into the multi-sensor environment to improve the recognition
accuracy. They obtained an average accuracy of 72.7% based on indoor activities.

A lot of work has been done to detect violent behaviors all over the world, but
most of these studies were about social violence such as street fights, and few covered
campus violence. Campus violence differs from social violence in the following aspects:
(1) the victims in campus violence events usually do not dare to resist, (2) no weapons
are used, and (3) campus violence is generally not as strong as social violence, so campus
violence sometimes can be confused with playing or sports with physical confrontation.
Therefore, in this paper, the authors build their campus violence databases and design
a campus violence detecting method. As mentioned above, campus violence can be
confused with playing or sports with physical confrontation, so the authors use speech
emotion recognition to assist physical violence recognition to finally identify a campus
violence event.

The authors firstly detect physical violence with video sequences and detect bullying
emotions with audio signals. Then they propose an improved fusion algorithm to combine
the detection results together. They finally get average recognition accuracies of 94.00%,
97.00%, and 92.00% based on three different databases, respectively.

3. Materials and Methods
3.1. Video-Based Physical Violence Detection
3.1.1. Data Gathering and Pre-Processing

Since there is no public campus violence database, the authors designed campus
violence experiments and took video recordings. Several volunteers participated in the
experiment. Experimental data were gathered by role-playing of campus violence and
daily-life activities. Campus violence activities included hitting, kicking, etc., whereas
daily-life activities included walking, running, etc. Figure 1 shows two examples of the
collected video frames.
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Figure 1. Two examples of the collected video frames: (a) a violent scene; (b) a non-violent scene.

The authors collected 12,448 frames of campus violence and 12,448 frames of daily-life
activities. Firstly, pre-processing was performed. We normalized the size of the images into
112 pixels × 112 pixels. The size of 112 × 112 is a trade-off result between the recognition
accuracy and the real-time performance. If the size was too small, the images would lose
too much information and thus the recognition accuracy would decline. If the size was too
large, the dimension of the input vector would be highly increased, and the computational
cost would increase a lot, but the recognition accuracy would not increase significantly.
Therefore, experimentally, the authors chose the size of 112 × 112.

Every 16 frames formed one processing unit (one tensor). Thus, the dimensions of
one tensor are 3 × 16 × 112 × 112 (3 stands for three color channels, i.e., red, green, and
blue). Figure 2 shows the structure of one tensor. Thus, there are 778 campus violence
tensors and 778 daily-life activity tensors. The video was recorded without audio, so the
authors later used three independent audio databases to combine with the video to form
different scenes.
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Figure 2. Structure of one tensor (3 color channels × 16 frames × 112 pixels × 112 pixels).

3.1.2. Feature Extraction

The authors built a C3D neural network based on the TensorFlow framework to
extract features from video images. The input of the network is the tensor introduced
in Section 3.1.1. The C3D neural network is based on eight 3D convolution operations
and four 3D maximum pooling operations. The sizes of the convolution kernels in the
convolution operations are 3 × 3 × 3, and the step sizes are 1 × 1 × 1. In the first pooling
operation, the size of the pooling core is 1 × 2 × 2, and the step size is 1 × 2 × 2. In the
remaining three pooling operations, the sizes of the pooling cores are 2 × 2 × 2, and the
step sizes are 2 × 2 × 2.

Two fully connected layers follow the convolution and pooling operations. The
number of neurons in the first fully connected layer is 4096, and that in the second fully
connected layer is 487. The authors selected the 4096-dimensional features output by the
first fully connected layer as the input of the classification model. The structure of the C3D
neural network is given in Figure 3.
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3.1.3. Classifier Design

The authors built a 4-layer neural network for classification. Figure 4 shows the
structure of the network model.
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Figure 4. Neural network classification model.

The input of this model is the 4096-dimensional feature vector extracted in Section 3.1.2.
The target of this work was to detect violent events, which is a 2-class classification, so the
number of neurons in the output layer is 2. The authors used two hidden layers in this
model, in which the numbers of neurons are set to be 512 and 32, respectively.

In order to prevent over-fitting, dropout was introduced into the hidden layers. The
activation functions of the hidden layers use the ReLU function, which is a piecewise linear
function and fits deep neural networks. The authors chose the Adagrad optimizer to train
the model because the learning rate can be changed automatically. The global learning rate
ε = 0.02, and the actual rate is given as,

εn =
ε

δ +
√

∑n−1
i=1 gi ⊗ gi

(1)

where δ = 10−7. The specific iterative process of the optimizer is given as follows:

(1) Randomly select m samples {x1, . . . , xm} and their corresponding labels {y1, . . . , ym}
from the training set.

(2) Calculate the gradient value and error, and update the gradient accumulation r.
(3) Update the parameters according to r and the gradient values.

The TensorFlow framework provides 4 cross-entropy functions, and the softmax_cross_
entropy_with_logits function optimizes the calculation of the cross-entropy to avoid over-
flow of the recognition results. Therefore, this paper chose the softmax_cross_entropy_with_
logits as the cross-entropy function.

When the authors used this classifier to test the video-based physical violence detec-
tion performance, over-fitting occurred and the loss function did not converge. Therefore,
the authors improved the loss function by regularizing the weight parameters on the basis
of the cross-entropy function.
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Firstly, convert the predicted results into probability vectors. Mark the predicted labels
as Logits_y = [y1, y2, . . . , yn], and the real labels as Logits_Y = [Y1, Y2, . . . , Yn], where n is
the number of classes. Convert Logits_y to probability vectors as,

Logits_so f tmax =

[
y1

∑n
i=1 eyi

,
y2

∑n
i=1 eyi

, . . . ,
yn

∑n
i=1 eyi

]
(2)

where yi
∑n

i=1 eyi > 0, i = 1, 2, . . . , n. Calculate the cross-entropy loss between Logits_softmax
and Logits_Y as,

loss_cross = −
n ∑

∑
i=1

(Logits_Yi × log(Logits_so f tmaxi()) (3)

Mark the weight parameters as
→

W1 = [w11, w12, . . . , w1n],
→

W2 = [w21, w22, . . . , w2n],

. . .,
→

Wk = [wk1, wk2, . . . , wkn], and regularize the weight parameters as,

loss_regular =
k

∑
i=1
‖
→

Wk ‖ (4)

‖
→

Wk ‖ =
√

n

∑
i=1

(Wki)
2 =

√
(Wk1)

2 + (Wk2)
2 + . . . + (Wkn)

2 (5)

The improved loss function is given as,

loss = loss_cross + loss_regular (6)

After 50 epochs, the new loss function converged, so this improvement solved the
problem of overfitting.

3.2. Audio-Based Bullying Emotion Detection
3.2.1. Audio Databases and Acoustic Features

The authors tested three speech databases in this work, i.e., the CASIA (Institute
of Automation of Chinese Academy of Sciences) public database, the Finnish emotional
private database, and the Chinese emotional private database. The two private databases
were recorded by the authors’ research group, including bullying emotions and daily-
life emotions with either single pure emotion or mixed emotions. CASIA is a public
database which contains single pure basic emotion, such as happy, sad, and angry. The
authors cataloged the basic emotions into bullying emotions, such as angry and frightened,
and daily-life emotions, such as happy and neutral. The Finnish emotional database has
132 samples, the Chinese emotional database has 370 samples, and the CASIA database
has 960 samples. The ratio of positive and negative samples in the three databases is 1:1.

For speech emotion recognition, MFCC features are commonly used [15] and have
proven to be effective [16]. Firstly, we performed voice activity detection (VAD) on the
speech signals, and pre-emphasized the active speech signals to weaken the effect of
oronasal radiation with a high-pass filter. We then framed the signals into short frames so
that each frame can be seen as a stationary stochastic process. To inhibit spectrum leakage,
we applied a Hamming window on the frames, and then performed fast Fourier transform
(FFT) on the time domain signals to get their corresponding frequency domain signals. We
let the frequency domain signals pass a set of Mel filters and get Mel frequency signals. We
calculated the logarithm and performed discrete cosine transform (DCT), and finally we
obtained the MFCCs. The entire speech emotion recognition procedure is given in Figure 5.
The next section will describe the classifier part in detail.
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3.2.2. Classifier Design

For bullying emotion recognition, the authors chose the Keras deep learning frame-
work. The constructed neural network model structure is given in Figure 6.
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Figure 6. Neural network for bullying emotion recognition.

The input of the network is the extracted MFCC features, and the output is a proba-
bility indicating bullying or non-bullying. Empirically, the authors applied 6 convolution
layers and 2 max_pooling layers. The parameters were set experimentally and aregiven in
Figure 6. In the convolution layers, the authors used the ReLU function as the activation
function to avoid gradient vanishing. Moreover, the ReLU function does not contain expo-
nential operations, which reduces the computational cost. The dropout layer is involved to
avoid over-fitting. The authors selected padding as the convolution method to keep the
size of the input vector unchanged to retain original information. The output layer is a
flattened layer which outputs a probability indicating violence or non-violence.
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3.3. Improved D–S Fusion Algorithm
3.3.1. Classic D–S Fusion Algorithm

Since the video-based physical violence detection procedure and the audio-based
bullying emotion detection procedure were executed separately, a combination of the two
results was necessary. There were two possible results of physical violence detection and
bullying emotion detection, i.e., true and false, so there were four possible combinations,

(1) physical violence = true and bullying emotion = true: this is a typical campus violence
scene, and is exactly what the authors want to detect;

(2) physical violence = true and bullying emotion = false: this can be a playing or sport
scene with physical confrontation. According to the authors’ observations, campus
violence events are usually accompanied by bullying emotions, so this case is classified
as non-violence in this paper;

(3) physical violence = false and bullying emotion = true: this can be an argument or a
criticism scene. In this paper, the authors focus on physical violence, so they catalog
this case into non-violence, too;

(4) physical violence = false and bullying emotion = false: this is a typical non-violent
scene.

The fusion result is based on this classification criteria. Moreover, note that the actual
outputs of the physical violence recognition and the bullying emotion recognition are not
definite results such as true (1) or false (0), but two probabilities. If the output probabilities
are simply mapped into 1 or 0 and a simple AND operation combines the two outputs, lots
of information provided by the classifiers would be lost. Therefore, a fusion algorithm was
necessary.

Dempster–Shafer (D–S) is a kind of uncertain evidential reasoning theory. Even if
the prior probability is unknown, the D–S theory can perform fuzzy reasoning on things.
Assume that A is a proposition and Θ is the recognition frame of A, i.e., Θ contains all
the possible hypotheses of A, and 2Θ contains all the subsets of Θ. In a subset of Θ, if
all the elements are mutually exclusive and finite, then there is only one element is the
correct hypothesis of A. The hypothesis is supported by several pieces of evidence, and
this evidence has certain credibilities as well as uncertainties and insufficiencies. Therefore,
D–S defines basic probability assignment (BPA) functions marked as m. The BPA maps the
set 2Θ into the period [0,1], i.e., m : 2Θ → [0, 1] . The BPA function m meets,

m(Φ) = 0
∑

a⊆Θ
m(a) = 1 (7)

where a is a possible hypothesis of A.
Once the recognition frame Θ is determined, mark the BPA function as mi. When

making a decision, multiple pieces of evidence are usually taken into consideration. In the
classic D–S theory, the fusion function is given as,

m(A) = (m1 ⊕m2 ⊕ · · · ⊕mn)(A) =
1

1− κ ∑
∩Ai=A

∏
1≤i≤n

mi(Ai) (8)

where
κ = ∑

∩Ai=∅
∏

1≤i≤n
mi(Ai) (9)

represents the conflict level between evidence. κ ∈ [0, 1] is the conflict factor. When κ = 0,
it means that there is no conflict between the evidence; when κ > 0, it means that there is
conflict between the evidence, and the conflict level between the evidence is proportional
to the value of κ; when κ = 1, it means that there is significant conflict between the evidence,
and the classic D–S theory is no longer applicable.

The classic D–S theory has some limitations.
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1. If there is serious conflict between the evidence, then the fusion result is unsatisfactory;
2. It is difficult to identify the degree of fuzziness;
3. The fusion result is greatly influenced by the value of probability distribution function.

In this work, there are four possible combinations of video samples and audio samples,
i.e., violent video and bullying audio, violent video and non-bullying audio, non-violent
video and bullying audio, and non-violent video and non-bullying audio. Among these
four combinations, the combination of violent video and bullying audio is considered to
be a violent scene, the combination of violent video and non-bullying audio is considered
to be a scene of playing or competitive games, the combination of non-violent video and
bullying audio is considered to be a criticism scene, and the combination of non-violent
video and non-bullying audio is considered to be a daily-life scene. The first scene is
considered as violence and marked as positive, and the remaining three are considered as
non-violence and marked as negative. In this situation, there exist strong conflicts between
video evidence and audio evidence, so the classic D–S theory needs to be improved.

Quite a few researchers are researching the improvement of the classic D–S fusion
theory [17]. The improvement of the D–S fusion theory can be divided into two types,

1. Improve the BPA functions of certain evidence on certain hypotheses;
2. Take the confidence levels and conflict levels of evidence into consideration.

This paper improves the classic D–S fusion algorithm from the two abovementioned
aspects, and compares the fusion results to decide the better one.

3.3.2. Improvement on BPA Functions

Firstly, the authors improved the BPA functions. Classic D–S fusion theory has the
problem of veto power when a BPA function becomes 0. To solve this problem, BPA
functions cannot be 0. Therefore, the authors redefined BPA functions in the form of
exponential functions,

Ni = er·ni (10)

where ni is the level of support of evidence i to the hypothesis, and r is a regulatory factor
which depends on the level of support. We normalized Ni as,

n(i) =
Ni

∑n
i=1 Ni

(11)

According to (10), Ni > 0, so the BPA functions cannot be 0. Therefore, the problem
of veto power is solved. When fusing the recognition results, not all of the evidence is
credible, so this paper introduces a correlation coefficient to represent the confidence level
of the evidence. We marked the recognition frame as Θ =

{
µh1 , µh2 , · · · , µhn

}
, and then

the correlation coefficient between two pieces of evidence can be expressed as,

A
(
µhk

)
=

2× ni
(
µhk

)
× nj

(
µhk

)
ni
(
µhk

)2
+ nj

(
µhk

)2 (12)

where ni represents the support level of evidence i, and µhk
represents a recognition result

in the recognition frame. According to (12), if the support level of either of the two pieces
of evidence is 0, then the correlation coefficient is 0, and this means that the correlation
between the two pieces of evidence is weak. If the support levels of two pieces of evidence
upon one recognition result are the same, then their correlation coefficient is 1, and this
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means that the correlation between the two pieces of evidence is strong. Given n pieces of
evidence, their correlation coefficient matrix is,

A =



A11 A12 . . . A1j . . . A1n
A21 A22 . . . A2j . . . A2n
. . . . . . . . . . . . . . . . . .
Ai1 Ai2 . . . Aij . . . Ain
. . . . . . . . . . . . . . . . . .
An1 An2 . . . Anj . . . Ann

 (13)

Aij∈[0,1] is the correlation coefficient of evidence i and j, Aij = Aji, and Aij = 1 when
i = j. Define the absolute correlation degree as,

Di
(
µhk

)
=

n

∑
j=1,i 6=j

Aij
(
µhk

)
(14)

We used the absolute correlation degree as the weight of the support level of a piece
of evidence on a recognition result, and recalculated the support level as,

Ni
(
µhk

)
= ni

(
µhk

)
× Di

(
µhk

)
(15)

Finally, we fused the recognition results with the new evidence.

3.3.3. Improvement on Fusion Rules

Although the above-mentioned improvement can solve the problem of veto power,
the computational cost is increased. Therefore, the authors considered improving the
fusion rules.

The Yager fusion rule is an improvement of the classic D–S fusion theory. The Yager
fusion rule introduces an unknown proposition m(X) to solve the problem of evidence
conflict. The improvement is given as,

m(ϕ) = 0
m(A) = ∑

B∩C=A
m1(B).m2(C), A 6= ϕ, X

m(X) = ∑
B∩C=X

m1(B).m2(C) + k
(16)

where A, B, and C are recognition results and m(A) means the probability of result A, X is
an unknown proposition, and k is a conflict factor which is defined as,

k = ∑
B∩C=ϕ

m1(B) ·m2(C) (17)

Although the Yager algorithm can decrease the credibility of evidence with significant
conflicts, it brings in more uncertainty. Therefore, some researchers [18] improved the
Yager fusion algorithm. Mark evidence as m1, m2, . . . , mn, and recognition result sets as F1,
F2, . . . , Fn. The conflict factor k is defined as,

k = ∑
Ai ∈ Fi

∩n
i=1 Ai = ϕ

m1(A1).m2(A2) . . . mn(An) = 1− ∑
Ai ∈ Fi
Aj ∈ Fj

Ai ∩ Aj 6= ϕ

m1(A1).m2(A2) . . . mn(An) (18)

The improved Yager fusion rule introduces a new concept named evidence credibility,
which is calculated as,

ε = e−k̂, k̂ =
1

n(n− 1)/2 ∑
i<j≤n

kij (19)
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where n is the number of pieces of evidence. Calculate the average support level of evidence
on recognition result A as,

q(A) =
1
n

n

∑
i=1

mi(A) (20)

The improved Yager fusion algorithm introduces the concepts of evidence credibility
and average support level, based on which a new fusion rule is proposed as,

m(ϕ) = 0
m(A) = p(A) + k× ε× q(A), A 6= ϕ
m(X) = p(X) + k× ε× q(X) + k× (1− ε)
p(A) = ∑

Ai ∈ Fi
∩n

i=1 Ai = A

m1(A1).m2(A2) . . . mn(An)
(21)

This paper further improves this fusion rule by assigning evidence conflict levels
according to the average support levels on the recognition results. The proposed fusion
rule is given as,

m(A) = ∑
B∩C=A

m1(B)m2(C) + k.q(A)

m(ϕ) = 0
(22)

where k represents the conflict between evidence. This fusion rule can be rewritten as,

m(A) = ∑
B∩C=A

m1(B)m2(C) + y(A) ∑
A∩Q=ϕ

(m1(A)m2(Q) + m1(Q)m2(A))

m(ϕ) = 0
(23)

where y(A) is the average trust level on A. The calculation of the average trust level is given
as below.

Firstly, define the energy function of a recognition result as,

E(A) =
m(A)

|A| (24)

where |A| represents the number of possible recognition results.
Assume that m1 and m2 are two independent pieces of evidence on the recognition

frame Θ, and Ai and Bj (i, j = 1, 2, . . . , n) are the focal elements (masses) of them. Mark
their non-empty intersection as Ck (k = 1, 2, . . . , n), the union of the recognition frames of
two completely conflicting pieces of evidence as F, and Fi represents a certain recognition
result in F. Then, the energy function of conflicting focal elements is,

Er(Ck) = ∑
Ck⊆Fl

E(Fl) (25)

The average trust level is calculated as follows:
Step 1. Perform basic evidence fusion as,

m12(C) = ∑
A ∩ B = C
A ∩ B 6= ϕ

m1(A)m2(B) (26)
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If there is significant conflict between two pieces of evidence, it is difficult to judge
which evidence is correct without a third piece of evidence. Therefore, the authors assigned
this conflict in the intersection of the two evidence, given as,

m12(D) = ∑
A ∪ B = D
A ∩ B 6= ϕ

m1(A)m2(B) (27)

Step 2. Two pieces of evidence are related if the intersection of their recognition frames
is not empty. Then, calculate the related conflict sum of the two evidences as,

Mr = ∑
Dl∩(∪Ck) 6=ϕ

m12(Di) (28)

Step 3. Assign the conflict according to the conflict energy of the related focal ele-
ments as,

YCk =
Er(Ck)

∑n
k=1 Er(Ck)

(29)

Step 4. Calculate the average trust level as,

y(A) =
YCA

∑n
i=1 YCAi

(30)

Section 4 will give a comparison of the existing algorithm and the improved algo-
rithms.

4. Results
4.1. Video-Based Physical Violence Classification Results

Firstly, the authors tested the classification performance of the video-based physical
violence detecting algorithm. Five-fold cross validation was used for the collected video
dataset, i.e., the dataset was divided into five equal parts, four of which were used as the
training set and one as the testing set, and the classification procedure was repeated five
times to get an average recognition result. Table 1 shows the recognition result.

Table 1. Physical violence recognition results on the video database (%).

Database Accuracy Precision Recall F1-Score

Video database 92.00 95.65 88.00 91.67

According to Table 1, the average recognition accuracy of the video-based physical
violence detecting algorithm is 92.00%. The precision is 95.65%, and the recall is 88.00%.
Precision is a parameter which reflects the false alarm ratio, whereas recall reflects the
missing alarm ratio. The false alarm ratio is equal to 1-precision, and the missing alarm
ratio is equal to 1-recall. Normally, precision and recall are two contradictory indicators,
so the F1-score is introduced to give an overall evaluation of the classification model. In
this section, the physical violence detecting algorithm gives an F1-score of 91.67%, which
shows that the overall classification performance of this algorithm is good.

4.2. Audio-Based Bullying Emotion Classification Results

The purpose of this paper is to recognize school bullying events, so the recognition
results are cataloged into two classes, i.e., school bullying emotion and non-bullying
emotion. The Finnish emotional private database and the Chinese emotional private
database were gathered by the authors’ research group by role playing school bullying, so
they are already ready for bullying emotion recognition. The CASIA public database is
composed of single basic emotions such as happy and sad, so the authors first catalog them
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into bullying or non-bullying emotions, and then perform classification. The authors used
five-fold cross validation to test the performance of the designed classifier on the three
emotion databases, and Table 2 shows the recognition results.

Table 2. Emotion recognition results based on the three databases (%).

Database Accuracy Precision Recall F1-Score

CASIA database 91.67 94.12 88.89 91.43
Finnish database 95.00 95.00 95.00 95.00
Chinese database 88.33 89.66 86.67 88.14

According to Table 2, the Finnish database achieved the best performance. This is
because that the Finnish database was gathered by role playing of school bullying by
Finnish pupils, and they acted out the bullying scenarios very well. The CASIA database
was recorded by professional actors and actresses, and they also did well, but the emotional
speeches were not particular for school bullying scenarios, and the authors cataloged them
manually into bullying emotions and non-bullying emotions, so the results were not as
good as the Finnish database. The Chinese database was gathered by the authors’ group
members who were not professional, and they thus felt embarrassed to express bullying
emotions, so the emotional samples were not very good, and the recognition results were
not good either. In any case, the recognition accuracies based on the three databases are all
larger than 88%, so the emotion recognition model is proven to be effective.

4.3. Improved D–S Fusion Classification Results

The authors first tested the classic D–S fusion algorithm with a playing sample in
which people have frequent physical contact, and Table 3 shows the recognition result.

Table 3. D–S fusion result on a playing sample (probabilities).

Result Video Audio D–S Fusion

Violence 0.98 0.10 0.84
Non-violence 0.02 0.90 0.16

According to Table 3, there is a strong conflict between the video-based evidence and
the audio-based evidence, and the classic D–S fusion algorithm gave an incorrect result.
Then the authors tested another example of a violent scene, and Table 4 shows the fusion
result.

Table 4. D–S fusion result on a violent sample (probabilities).

Result Video Audio D–S Fusion

Violence 0.98 0.01 0.33
Non-violence 0.02 0.99 0.67

Comparing Table 3 with Table 4, one can see that the support level of the audio
evidence changed very little, but the D–S fusion result changed a lot, and again the
hypothesis was incorrect, so the classic D–S fusion algorithm is unable to give a reliable
prediction when the pieces of evidence have significant conflict between each other.

Then, the authors improved the BPA functions of the classic D–S fusion algorithm
(Section 3.3.2), and Table 5 shows the improved result.
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Table 5. Recognition result of the improved BPA functions.

Result Video Audio

Violence e0.98r

e0.98r+e0.02r
e0.01r

e0.01r+e0.99r

Non-violence e0.02r

e0.98r+e0.02r
e0.99r

e0.01r+e0.99r

The values of the focal element functions vary with the adjusting factor r, as shown in
Figure 7.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 17 
 

 

Then, the authors improved the BPA functions of the classic D–S fusion algorithm 

(Section 3.3.2), and Table 5 shows the improved result. 

Table 5. Recognition result of the improved BPA functions. 

Result Video Audio 

Violence 
𝑒0.98𝑟

𝑒0.98𝑟 + 𝑒0.02𝑟
 

𝑒0.01𝑟

𝑒0.01𝑟 + 𝑒0.99𝑟
 

Non-violence 
𝑒0.02𝑟

𝑒0.98𝑟 + 𝑒0.02𝑟
 

𝑒0.99𝑟

𝑒0.01𝑟 + 𝑒0.99𝑟
 

The values of the focal element functions vary with the adjusting factor r, as shown 

in Figure 7. 

 

Figure 7. Focal element functions vary with the adjusting factor. 

In Figure 7, focal element A (mass A) represents the violent event, whereas focal ele-

ment B (mass B) represents the non-violent event. In the period [0.6, 0.8], the variations of 

focal element A and focal element B are gentle. In this situation, r=0.7 is the best choice. 

For this sample, the support level for violence is 0.76, whereas that for non-violence is 0.22, 

so the recognition result of this sample is violence, which is the true label. 

Although this improvement solved the problem of veto power in the classic D–S the-

ory, it also brought in much more computational cost. Moreover, the adjusting factor r 

needs to be fixed experimentally, which is not convenient in practical use. Therefore, the 

authors then tested their method, which improves the fusion rule as described in Section 

3.3.3. The authors tested the fusion results of the video database combined with all the 

three audio databases, and Table 6 shows the recognition results of different fusion algo-

rithms on different combined audio databases with five-fold cross validation. 

Table 6. Recognition results of different fusion algorithms based on different databases (%). (a) 

Video database combined with Chinese emotional private database; (b) video database combined 

with Finnish emotional private database; (c) video database combined with Institute of Automa-

tion of Chinese Academy of Sciences (CASIA) public database.  

(a) 

Algorithm Accuracy Precision Recall F1-Score 

Yager 86.21 91.30 91.30 91.30 

Section 3.3.2 95.38 97.30 94.74 96.00 

Section 3.3.3 94.00 97.83 90.00 93.75 

(b) 

Algorithm Accuracy Precision Recall F1-Score 

Figure 7. Focal element functions vary with the adjusting factor.

In Figure 7, focal element A (mass A) represents the violent event, whereas focal
element B (mass B) represents the non-violent event. In the period [0.6, 0.8], the variations
of focal element A and focal element B are gentle. In this situation, r = 0.7 is the best choice.
For this sample, the support level for violence is 0.76, whereas that for non-violence is 0.22,
so the recognition result of this sample is violence, which is the true label.

Although this improvement solved the problem of veto power in the classic D–S
theory, it also brought in much more computational cost. Moreover, the adjusting factor
r needs to be fixed experimentally, which is not convenient in practical use. Therefore,
the authors then tested their method, which improves the fusion rule as described in
Section 3.3.3. The authors tested the fusion results of the video database combined with
all the three audio databases, and Table 6 shows the recognition results of different fusion
algorithms on different combined audio databases with five-fold cross validation.

In these tables, the authors compared three fusion algorithms, i.e., the Yager fusion
algorithm, the improved fusion algorithm proposed in Section 3.3.2, and the improved
fusion algorithm proposed in Section 3.3.3. Since the classic D–S fusion has the problem
of veto power, the authors did not involve it in this comparison. As shown in Table 6, the
improved fusion algorithm proposed in Section 3.3.3 on average achieved the best recogni-
tion performance. Note that, as mentioned above, the Finnish emotional private database
was collected by role playing school bullying, so this database best represents bullying
and non-bullying emotions, and the bullying emotion recognition algorithm performed
best based on this database. Based on this emotional database and the video database, the
proposed fusion algorithm showed the best performance, so the proposed campus violence
detecting algorithm is able to detect possible violent events in practical usage.
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Table 6. Recognition results of different fusion algorithms based on different databases (%). (a) Video
database combined with Chinese emotional private database; (b) video database combined with
Finnish emotional private database; (c) video database combined with Institute of Automation of
Chinese Academy of Sciences (CASIA) public database.

(a)

Algorithm Accuracy Precision Recall F1-Score

Yager 86.21 91.30 91.30 91.30
Section 3.3.2 95.38 97.30 94.74 96.00
Section 3.3.3 94.00 97.83 90.00 93.75

(b)

Algorithm Accuracy Precision Recall F1-Score

Yager 86.21 91.30 91.30 91.30
Section 3.3.2 95.31 97.22 94.59 95.89
Section 3.3.3 97.00 97.96 96.00 96.97

(c)

Algorithm Accuracy Precision Recall F1-Score

Yager 80.00 90.91 80.00 85.11
Section 3.3.2 84.75 95.45 72.41 82.35
Section 3.3.3 92.00 97.73 86.00 91.49

5. Discussion and Conclusions

Campus violence is a serious social problem among teenagers all over the world.
As artificial intelligence techniques and remote sensing techniques develop, there are
now new methods to detect violent events automatically. This paper proposed a campus
violence detecting method based on video sequences and speech emotion. The authors
collected video image samples by role-playing campus violence and non-violence scenes
with surveillance cameras. As for emotional speech samples, we involved three different
databases. We first performed activity recognition and emotion recognition separately,
and then fused the recognition results together. To overcome the problem of vote power,
the authors proposed an improved fusion algorithm. The proposed campus violence
detecting method can achieve an average recognition accuracy of 97.00% on the video
database combined with the Finnish emotional database. Although the databases used
are different, a simple comparison between the proposed method and the existing work
is still possible. The proposed method exceeds most of the existing work in the aspect of
recognition accuracy, and is similar to Reference [8]. Moreover, as the main contribution of
this work, the improved fusion algorithm can improve the recognition accuracy by 10.79%
compared with the existing fusion rule.

Activity recognition can not only be performed on original images, but also on ex-
tracted skeleton graphs [19]. In future work, the authors will perform skeleton-based
activity recognition methods for campus violence detection, and make a comparison with
body-based ones. Interestingly, in this manuscript, the authors use emotion recognition
to assist activity recognition, but conversely, activity recognition can also be used to as-
sist emotion recognition [20]. In future, the authors will also try this method to detect
quarrelling.
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