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Abstract: The potential of vegetation recovery through resprouting of plant tissue from buds after
the removal of aboveground biomass is a key resilience strategy for populations under abrupt en-
vironmental change. Resprouting leads to fast regeneration, particularly after the implementation
of mechanical mowing as part of active management for promoting open habitats. We investigated
whether recovery dynamics of resprouting and the threat of habitat conversion can be predicted
by optical and structural stand traits derived from drone imagery in a protected heathland area.
We conducted multivariate regression for variable selection and random forest regression for pre-
dictive modeling using 50 spectral predictors, textural features and height parameters to quantify
Calluna resprouting and grass invasion in before-mowing images that were related to vegetation
recovery in after-mowing imagery. The study reveals that Calluna resprouting can be explained by
significant optical predictors of mainly green reflectance in parental individuals. In contrast, grass
encroachment is identified by structural canopy properties that indicate before-mowing grass inter-
penetration as starting points for after-mowing dispersal. We prove the concept of trait propagation
through time providing significant derivates for a low-cost drone system. It can be utilized to build
drone-based decision support systems for evaluating consequences and requirements of habitat
management practice.

Keywords: resprouting; habitat management; heathland; trait mapping; UAV

1. Introduction

Resprouting, the process of regenerating plant tissue from meristematic cells after
substantial loss of aboveground biomass, is a key functional trait for fostering population
persistence against abrupt environmental changes [1–3]. Besides seedling recruitment,
it plays a major role for the longevity of individuals under the influence of recurrent
disturbance regimes. Vegetative regeneration is thus well described as regrowth in natural
ecosystem dynamics such as in various fire regimes [4,5], after drought events [6] or under
herbivory influence [7]. Although there is evidence that resprouting depends on the type
of disturbance and its affecting plant species [8,9], little is known about population-level
growth responses in managed ecosystems. For example, the removal of vegetation layers
by measures of controlled fires, grazing or mechanical mowing are crucial for maintaining
open landscape mosaics. In fact, mowing, as a process of active clipping, is particularly
one of the most important technical tools for an area-wide management of plant growth
in open habitats. In this regard, habitat management is seen to be essential for preserving
biodiversity in semi-natural landscapes [10–12].
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Heathlands are representing one type of traditional European semi-natural land-
scapes bearing high biodiversity values and promoting the provision of ecosystem services
with particular high importance such as carbon storage, aesthetic value and recreation
value [13–15]. They are dominated by the dwarf-shrub species Calluna vulgaris (L.) Hull
(hereinafter referred to as Calluna) that form a unique ecosystem as part of the European
network of managed conservation areas. Habitat management is crucial for the main-
tenance of Calluna heathlands since traditional forms of land use are neglected and a
strong decline in habitat extent and degradation of habitat quality can be observed over
the last decades [14,16]. In various years of fire and mowing management of European
continental dry heaths, particularly on former military training areas, it has been found
out that population-level recovery is dominated by resprouting from the stem base of
Calluna individuals [17–19]. The dominance of resprouting can potentially contribute to
the management goals regarding Calluna density, stand vitality and reproductive capacity
if there is a relatively young population age structure (<15 years) affected [20,21]. It can
even be beneficial to facilitate resprouting in mature life-cycles phases since resprouting
is fast, also under unfavorable growth conditions [22]. As a consequence, it suppresses
tree colonization, provides vigorous young shoots [20,23] and increases the generation of
flowers as pollination habitats [19].

However, a permanent facilitation of resprouting can induce negative effect on habitat
conservation since it does not affect the age structure of a population. In this regard, the
regenerative potential of Calluna is known to be decreased significantly with age [20,22,24].
Resprouting without regeneration over seedling recruitment leads to a gradual loss of
vitality and density in Calluna stands which opens up the populations for ecosystem
conversion such as grass invasion. As a consequence, it was suggested to occasionally
remove the upper vegetation layer by sod-cutting in order to effectively promote ger-
mination which triggers the generation of diverse life-cycle phase patterns in Calluna
heathlands [11,17,25]. Keeping this in mind, conservation managers need to carefully
evaluate beforehand whether a potential management success can be ensured by the imple-
mentation of selected management measures. To actively control population persistence
through extension of vitality and reproduction, it is of utmost importance to gain an early
understanding of the potentials and dynamics of Calluna regrowth after management.

Since resprouting is realized from buds at the stem base of parental plants [20] there is
a hypothetical link between optical and structural traits of parental growth and the shoot
density of the following generation. Furthermore, we hypothesize that closed Calluna
stands are often interpenetrated by more or less dense grass patches which form starting
points for grass species expansion that becomes dominant after management. On that
account, we state that there are distinctive traits on the plant unit as well as on the stand
level that can be defined as indicators before management to predict resprouting and grass
encroachment after management. Although management dynamics need to be evaluated
for an area-wide monitoring, rejuvenating shoots as well as grass invasion are potentially
observable on a small scale that reveals plant traits on the leaf level. Such scale-appropriate
monitoring tasks can be realized by easily accessible and affordable RGB-drone cameras
mounted on unmanned aerial vehicles (UAVs) [26].

Recently, UAVs are implemented to spatially map optical and structural vegetation
characteristic using machine learning techniques for, e.g., plant species mapping [27–29]
or plant phenology evaluation [30]. Beyond conventional mapping approaches there is
surprisingly no predictive modeling presented that utilizes multitemporal growth dy-
namics as product for the evaluation of management impacts [31]. In this regard, Calluna
management by mowing on typically 10 ha sized areas allows to track regrowth dynamics
at a feasible scale for drone-based monitoring applications. We therefore ask:

Are there optical and structural traits that can be mapped in RGB-drone imagery
before mowing to predict:

A. The potential resprouting of Calluna heath,
B. The potential threat of grass invasion in heathland sites?
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2. Materials and Methods
2.1. Study Area and Field Survey

The study was conducted on the former military training area, Kyritz-Ruppiner Heide,
located in the north-west of the federal state Brandenburg, Germany (center coordinates:
53◦05’42.62”N; 12◦39’28.79”E) (Figure 1). The area is considered to be one of the largest
unfragmented heathland areas in Europe, comprising an area of 120 km2 that is designated
as a Site of Community Importance (DE2941302). Due to its protection status within the Eu-
ropean Natura 2000 network [32], open heathlands are maintained by active management
such as controlled burning, tree removal and mechanical mowing.

Figure 1. Location of Calluna Heathland test site before and after mowing management; images are generated as red-green-
blue true-color composites from drone flights in consecutive seasons; Calluna resprouting and associated plant species are
mapped on reference plot samples in the field.

As a result, on sandy acidic nutrient-poor soils a diverse habitat mosaic arose con-
sisting of heather (Calluna vulgaris), pioneer dry grasslands (e.g., Corynephorus canescens,
Carex arenaria, Agrostis capillaris), fruticose lichens (e.g., Cladonia mitis, Cladonia coccifera,
Cetraria aculeata), apocarpic mosses (e.g., Polytrichum piliferum), and pleurocarpic mosses as
degeneration phase (e.g., Pleurozium schreberi, Hypnum jutlandicum). Habitat conversion
is mainly caused by natural succession and related species turnover of invading shrubs
(Sarothamnus scoparius, Rubus spec.), trees (Betula pendula, Pinus sylvestris, Populus tremula) or
grasses (Calamagrostis epigejos, Deschampsia flexuosa). Calluna regeneration is limited by low
precipitation (annual rainfall average of 560 mm), winter frosts and a strong continental
climate seasonality of the temperate zone. The test site that covers an area of 6.6 ha was
mowed by machine during winter time on 13th February 2019 (Figure 1). Vegetation traits
were measured on terrestrial field plots n = 178 between 3rd and 8th September 2020 in the
consecutive year after 2 growing seasons.
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2.2. UAV Image Processing

Images were recorded regularly before and after mowing using a DJI Phantom 4 Pro
quadcopter that carries a RGB filtered 1-inch complementary metal-oxide semiconductor
sensor (CMOS) with a resolution of 20 megapixel. For each flight 300–400 scenes were
recorded and saved as digital numbers (DN) in 8-bit jpeg imagery for an average area
of 10 ha. We used autonomous flight planning with an overlap of 80% along and across
track and a flight altitude of 80 m above ground which resulted in flight times of about
25 min. In order to maximize DN spread in the 8-bit grey-value image representation, the
flights were conducted under diffuse irradiance conditions of complete cloud coverage.
The single images were combined to an image mosaic on the basis of 3D point cloud
generation in a structure from motion (SfM) approach provided by Pix4D cloud [33,34].
Finally, three image mosaics were processed in the after-mowing period (24/07/2020,
08/09/2020, 02/10/2020) and two images before mowing (06/04/2018, 13/02/2019). The
images were co-registrated using manually selected ground control points and bilinearly
resampled to a pixel size of 2.1 cm. The final image extent was clipped to an actual mowing
area mask (6.6 ha) that excludes large trees and unmown patches.

Predictor variables were extracted from the image mosaics and included as additional
layers depending on before and after mowing analysis (Table 1). The nine RGB channels
for the three image mosaics after mowing were replaced by brightness corrected layers
applying an RGB to hue, saturation, value (HSV) color space transformation. Textural
features were calculated on the basis of the 08/09/2020 green channel using a grey level
co-occurrence matrix [35] in a 5 × 5 pixel moving window. Only the six least-correlated
textures (mean, variance, homogeneity, dissimilarity, entropy, angular second moment) [36]
were supplemented which results in a final layer stack of n = 15 images that was used as in-
put for after-mowing vegetation classification. To test the before-mowing hypotheses, RGB
grey-values, RGB-HSV transformed values, RGB chromaticity values [19], uncorrelated
textures from the green channel of the respective scene and an additional number of n = 8
spectral indices were calculated for each image (Table 2).

Table 1. Matrix of predictor variables derived as image layers to calibrate after-mowing classification and perform regression
analysis in before-mowing images; predictors can be grouped into representing plant traits and relief-based indices.

After-Mowing
(n-Layers = 15)

Before-Mowing
(n-Layers = 48)

DEM
(n-Layers = 2)

image dates 24/07/2020 08/09/2020 02/10/2020 06/04/2018 13/02/2019
optical traits

RGB grey-values - - - 3 3 -
RGB-HSV transformed 3 3 3 3 3 -

RGB chromaticity - - - 3 3 -
spectral indices - - - 8 8 -

structural traits -

green texture - 6 - 6 6 -
canopy height - - - 1 1 -

micro-relief -

topographic wetness index - - - - - 1
slope-length factor - - - - - 1
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Table 2. Spectral indices calculated as additional layers from the before-mowing images; RGB = red-green-blue channels for
8-bit image digital numbers (grey-values).

Index Name Equation Citation

VARI Visible Atmospheric Resistant Index (G - R) / (G + R -B) [37]
TGI Triangular Greeness Index G - 0.39 · R - 0.61 · B [38]

NGRDI Normalized Green Red Difference Index (G - R) / (G + R) [37]
MGRVI Modified Green Red Vegetation Index (G2 - R2) / (G2 + R2) [39]
RGBVI Red Green Blue Vegetation Index G2 - (R · B) / G2 + (R · B) [39]

GLI Green Leaf Index (2 · G – R – B) / (2 · G + R + B) [40]
EXG Excess Green Index 2 · G - B - R [41]
DAVI Daylight Adapted Vegetation Index G/((R0.667) · (B(1 - 0.667))) [42,43]

Furthermore, a normalized digital surface model (nDSM) was extracted from the
two before-mowing images in order to represent vegetation canopy heights [19]. We
used a laser scan elevation model (DEM) with 1 m pixel size for reference ground-level
heights provided by Landesvermessung und Geobasisinformation Brandenburg (LGB).
The DEM was further used to calculate two additional topographic indices, the topographic
wetness index (TWI) [44] and the slope length factor (LS) [45], for estimating the influence
of abiotic site conditions that control, e.g., water availability for plant growth. In total
50 variables were extracted from the before-mowing images, 24 for each image acquisition
date, supplemented by 2 DEM-based topographic indices (Table 1). The variables represent
potential predictors from the groups of optical traits (RGB values and indices), structural
stand properties (texture and canopy height) and the abiotic background of microrelief
(topographic indices).

2.3. Spatial Detection of After-Mowing Dynamics

After-mowing regrowth dynamics are mainly characterized by two processes of (A)
vegetative regeneration of Calluna, predominantly resprouting from the stem base of
parental plants and (B) the invasion of grass species (Figure 2).

Figure 2. (A) resprouting of Calluna vulgaris from buds located at the stem base of parental individuals;
(B) typical grass invasion of Calamagrostis epigejos that interpenetrates Calluna regrowth.

In order to fully cover the optical and structural diversity in UAV imagery, terrestrial
field samples were surveyed for all grass, herb, dwarf-shrub and tree species that are likely
to occur on the test site. Additionally, lichens, mosses, woody plant parts and the soil
background were sampled in the field. Decision on sample ident was based on expert
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knowledge to cover all plant species and structural parameters in n = 23 classes that were
digitized as polygons on an UAV image directly in the field. The polygon area thus fully
covers the visible area of the respective plant species or background parameter that was
recognized in the field and subsequently delineated on the UAV image. There is no species
mixture mapped. Sample idents are repeated to distribute sample locations over the entire
test site. For model building, the sample idents were grouped together into n = 7 classes
for which all pixels of totally n = 178 polygons were extracted from the input image stack
of n = 15 layers (Table 3).

Table 3. Aggregated classes used for after-mowing classification; related individual composition of field sample idents and
number of extracted pixels using n = 178 polygons for each layer in UAV drone imagery.

Class Individuals n-Pixels per Layer

Calluna Calluna vulgaris 5292

Grass Calamagrostis epigejos, Agrostis capillaris, Carex arenaria; Carex pilulifera, Nardus
stricta, Deschampsia flexuosa, Corynephorus canescens 3360

Herb Rumex acetosella, Hypericum perforatum, Hieracium pilosella 1753
Litter Calluna vulgaris (dead, senescent branches) 2090

Cryptogams Cladonia mitis, Cladonia coccifera, Cladonia furcata, Pleurozium schreberi,
Hypnum jutlandicum, Polytrichum piliferum 2271

Shrub Rubus spec., Populus tremula, Betula pendula, Pinus sylvestris 3030
Background open soil substrate 1368

We applied a random forest classification [46,47] using grid search for parameter
tuning which results in 500 trees and 5 layers per splitting node for the final model. The
trees are grown until the maximum number of terminal nodes and majority votes are used
for final class assignment. Validation and parameter tuning were done by generating a
confusion matrix based on independent out-of-bag error estimates, i.e., overall accuracy
(OA), user accuracy (UA) and producer accuracy (PA) [48,49]. The final model was applied
for spatially explicit predictions on the image stack. Due to the high resolution of input
imagery, single pixels of plant branches, leaves or inflorescences can be misclassified. This
classification noise was re-assigned to broader clusters of pixel classes by selecting the most
common class for the focal pixel applying a 5 × 5 pixel moving window (modal filter). To
reconstruct true class boundaries a 5 × 5 pixel, erode filter was subsequently added.

Finally, the pixels of the classification results for the heath and grass class were
extracted as binary grids. The two final classes were translated into density values by
counting the number of class pixels for the focal pixel in a 51 × 51 pixels moving window
spanned over the grids. This results in a data range of 0 (no class pixel)–2601 (all class
pixels) for both binary class grids. Subsequently the number of class pixels was min-max
transformed into a density range of 0–100% that was mapped in two new grids of the
test site with 1 m2 pixel size. Each grid represents the continuous distribution of the
response variables a) Calluna resprouting and b) grass encroachment that were finally
extracted as response vectors using a stratified random sampling on the density classes
for the statistical modeling. For this purpose, we reclassified the two density grids into
12 uniform classes. In each class a spatially random sample of size = 100 pixel locations
were selected. The extracted density values in a) and b) are defined as response range that
is equally distributed over the entire density range comprising in total n = 1200 samples
for regression analysis.

2.4. Statistical Modeling of Before-Mowing Predictors

The same pixel locations that were defined as response variables (a, b) were used to
extract the predictor variables from the before-mowing image stack. There are two statis-
tical techniques (A, B) that were applied in order to detect significant spectral predictors
and model the potential of Calluna resprouting and grass encroachment on the before-
mowing images. In technique A we performed multiple linear regression analysis with
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multicollinearity considerations for variable selection and model stability testing. In the
first step the initial variable set was condensed by the number of only significant predictors
(p-value < 0.01) based on univariate regression modeling. The new variable set was used
as input into a multiple linear regression model with backward variable selection. For this
purpose, the Akaike Information Criterion (AIC) [50] was calculated until an optimal set of
predictors that minimize AIC was found. Due to the limited spectral information content in
only three RGB values and derived products, the remaining predictor variables are highly
correlated. The underlying effect of multicollinearity between spectral predictors was
estimated using the variance inflation factor (VIF) [51]. It was calculated while successively
reducing variables with highest VIF until a final set of predictors can be assigned that fulfil
the condition of VIF < 5. The resulting set of uncorrelated predictors was used to calibrate
a final multivariate regression model using the adjusted R2, the root mean squared error
(RMSE) as percentage of the response range and significance levels of the predictor’s model
coefficients to compare model qualities between techniques and response variables. The
RMSE compares the after-mowing response variable distributions (a, b) with the model
predictions based on the before-mowing predictors.

In technique B, a purely predictive modeling is conducted applying a random forest
machine learning approach [46,47]. Here, we used all variables as model input with
a randomly sampled variable size of n = 10 per split. In total 500 decision trees were
grown up to the maximum possible number of terminal nodes. Since random forest
predictions are based on internal-averaging, there is a strong tendency of overfitting in
model training [52,53]. In order to estimate the generalization error, an external cross-
validation was performed. Individual models were built on a stratified sample of a 75/25%
training/test data split while model quality measures (R2, RMSE) were averaged over
100× test data predictions. The final model that incorporates all samples was used to
predict the potential of resprouting and grass encroachment on the basis of before-mowing
images. For the final model, a variable importance measure (VI) based on decreasing node
impurities [47] was calculated to identify optimal predictor variables.

3. Results
3.1. Spatial Patterns of Heathland Regeneration after Mowing

The overall classification accuracy of after-mowing classes is high with OA = 97.9%
based on out-of-bag predictions using approximately one third of the 19.217 input pixels for
cross-validation after bootstrapping of calibration samples [49]. The resprouting of Calluna
is modeled almost perfectly (PA = 99.09%) with slight decreases of pixel representations
(UA = 97.53%). In general, all classes can be delineated in drone imagery with high
accuracies (OA, UA and PA > 96%) while the background class is optimally discriminated
against vegetation after mowing (UA, PA > 98%) (Table 4).

Table 4. After mowing classification result from random forest out-of-bag predictions.

Classification

Calluna Grass Herb Litter Crypto Shrub Backgr. Producer’s
Accuracy (%)

Reference

Calluna 5244 11 2 8 18 9 0 99.09
Grass 26 3309 10 6 9 45 0 97.18
Herb 10 10 1713 2 18 0 0 97.72
Litter 16 20 0 2029 15 0 10 97.08

Crypto 29 30 2 7 2201 0 2 96.92
Shrub 52 12 2 0 0 2964 0 97.82

Backgr. 0 8 0 12 2 0 1354 98.40

User’s accuracy (%) 97.53 97.32 99.07 98.3 97.26 98.21 99.12

The spatial distribution of vegetation regrowth characteristics can be distinctively
delineated in drone imagery (Figure 3). There are grass species such as Calamagrostis epigejos
or Carex arenaria that form large coherent patches. In contrast, Corynephorus canescens and
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Carex pilulifera occur as single spots in isolated growth patterns. Grass generally coexists
with Calluna individuals in close range while high degrees of spatial interpenetration exists
for Deschampsia flexuosa. Distinct patches of Calluna resprouting are separable from the
background and from litter as well as from herb species such as Rumex acetosella that
generates dense patches after mowing. Calluna resprouting mainly occurs in spatially
adjacent shoot clusters, however, when the cluster density is high, small-scale variability
(<10.5 cm) is spatially aggregated into coherent resprouting patches due to interpolation
effects in the texture and after-classification filters.

Figure 3. Classified patterns of after-mowing vegetation regrowth aggregated for different grass species; the image extent
used is the red bounding box from Figure 1 using an unmanned aerial vehicle (UAV) image recorded at 27 July 2020.

Based on the classification of Calluna resprouting and grass species aggregation, the
density values of both classes are mapped for the entire test site (Figure 4). Clear patterns
of spatial heterogeneity are visible. There are areas where Calluna resprouting is completely
suppressed while high density patches occur in distinct spatial locations. The density
values are well defined over the complete range (0 . . . 100%) for both response variables.
Grass encroachment can occur as closed patches or in association with Calluna resprouting.
Besides, there are completely grass free areas.

Figure 4. Density maps of two response variables, (left) resprouting Calluna heath and (right) aggregated grass species
encroachment on the basis of 1 m2 sum filtered classification results.
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3.2. The Predictive Potential of Calluna Resprouting and Grass Encroachment

Regression analysis reveals highly significant spectral features for the prediction of
Calluna resprouting indicating more than half of the predictor variables with p-value < 0.01
in univariate regression. Variable selection results in a final multivariate linear regression
model with uncorrelated features VIF < 3 including the 5 × 5 mean filtered green channel,
the green hsv-transformed channel and the index Daylight Adapted Vegetation Index
(DAVI) belonging to the before mowing image of 06/04/2018 (Table 5). The three highest
ranked predictors from random forest variable importance metric are mean filtered green,
the green channels and the variance of a 5 × 5 focal filter on the green channel from the
same drone acquisition. Thus, all selected predictors represent optical and structural traits
of the green channel. Although random forest regression performance is high (R2 = 0.95)
using all input predictors, the predictive accuracy in independent validation is decreased
(R2 = 0.17). Multivariate regression of Calluna resprouting results in generally weaker accu-
racy (R2 = 0.15). Model performances are higher for the multivariate prediction of grass
encroachment (R2 = 0.31) while predictor variables are mainly selected from structural
features of texture dissimilarity and variance and from vegetation canopy heights (nDSM).
Grass encroachment is further determined by DEM-based Topographic Wetness Index
(TWI). Overfitting in random forest prediction is again high as indicated by high R2 differ-
ence between the final model (R2 = 0.94) and model validation (R2 = 0.38). Additionally,
the red channel was highly ranked in predictive modeling. Unlike the models for Calluna
resprouting, predictors for grass encroachment are equally selected from two acquisition
dates.

Table 5. Model validation after predictor variable selection for the two response variables: a) Calluna resprouting and b)
grass encroachment using two modeling techniques based on n = 1200 samples and n = 100 validation splits.

R2 RMSE (%) Selected Predictors

(a) Calluna resprouting

Multivariate 0.15 21.6
mean.green06/04/2018, hsv.green06/04/2018,

DAVI06/04/2018

Random Forest 0.17 20.1
mean.green06/04/2018, green06/04/2018,

variance.green06/04/2018

(b) Grass encroachment

Multivariate 0.31 18.64
dissimilarity13/02/2019, nDSM13/02/2019,
hsv.red06/04/2018, dissimilarity06/04/2018,
second.moment06/04/2018, TWI06/04/2018

Random Forest 0.38 17.00 red13/02/2019, red06/04/2018, RGBVI06/04/2018,
variance06/04/2018, nDSM13/02/2019, variance13/02/2019

The final random forest models were applied on the before-mowing images to generate
a spatially explicit evaluation of the potentials of Calluna resprouting and grass encroach-
ment after mowing (Figure 5). There are clear structural patterns visible. Resprouting
and grass encroachment is not necessarily negatively correlated on the spatial scale since
patches with low resprouting densities can also be occupied by herbs (e.g., Rumex acetosella),
shrubs (e.g., Rubus spec.) or small trees (e.g., Populus tremula juven.). Besides, grass can
coexist with Calluna individuals due to interpenetration (mostly with Deschampsia flexuosa)
or small-scale patch alternation. In consequence, an overlap of mean filtered resprouting
potentials with high potentials of grass encroachment identifies patterns of coexistence and
small-scale patch dynamics.
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Figure 5. Drone based spatially explicit predictions of Calluna resprouting and grass encroachment after mowing using
before-mowing plant optical traits and structural predictors.

4. Discussion
4.1. The Predictive Values of Before-Mowing Stand Properties in UAV Imagery

In our study, we identified plant optical and structural traits to indicate resprouting
and grass encroachment prior to a destructive mowing event in a Calluna heathland.
We derived diagnostic features of mature Calluna stands under the assumption that the
intensity of resprouting is determined by genetic and physiological changes in a plant
life-history context [5]. We found out that the density of Calluna vulgaris resprouting from
buds at the stem base is significantly correlated to parental plant optical traits (mainly
variations in green reflection). This is a strong indicator of distinct optical properties
representing plant age at different growth phases in Calluna life-history. In particular,
the growth phase of mature stands is characterized by a reduced photosynthetic activity
due to long-shoot vigour reduction and lignification [23,54]. It is well known, that the
production of young shoots of Calluna declines with age, starting in the mature life-cycle
phase [20,22,24,55]. As a consequence, a change in plant vigour provides highly diagnostic
signals to detect the regenerative potential of Calluna after plant biomass loss. However,
the predictive performance of models from low-cost drones that are based on three visible
RGB channels is still low. Recent advances in drone-based sensor technologies such as
hyperspectral cameras [56] are potentially suitable to identify further optical predictors in
narrow-band records of the full solar irradiance spectrum. In this regard, it can be expected
to spectrally identify more biochemical and leaf structural variables over multitemporal
intra- and inter-annual time series records [57].

Grass encroachment is known to be a major threat for heath ecosystems, particularly
in continental dry heaths where the rate of generative rejuvenation is low [11]. Nitro-
gen deposition is recognized as the main controlling factor for such grass invasion [58],
however, dispersal dynamics and the potential risk of habitat conversion under changing
environmental conditions are poorly understood. Our study provides strong evidence
that the expansion of the functional group of grasses into Calluna stands after mowing
is not stimulated as seedling growth from the soil seedbank. In fact, our results show
that grass has already established within the before-mowing Calluna population as either
small-patchy growth or interpenetration. Thus, the spread of grass actually starts from
existing spots that can be identified through structural traits such as canopy gaps for patchy
growth or spectral dissimilarity for interpenetration.

Starting points for grass invasion are further coupled with significant correlations
to the before-mowing red channel which can be an indicator for drought stress affecting
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chlorophyll-b content and thus reduces vital growth of parental Calluna individuals [57,59].
Such loss in vitality under rainfall deficits degrades resprouting rates which opens up niches
for competing species. Climatic factors such as low rainfall during summer are known
to significantly influence species composition following Calluna regeneration [60,61]. In
this regard, the study reveals, that the competitive ability of grass species in comparison to
Calluna for water usage can additionally be regulated by microrelief sinks. Such information
is available in DEM based indices, however, further research is required to delineate
single competitive factors. In particular, grass species discrimination in UAV imagery will
provide a valid method to delineate varying species responses, e.g., Molinia arundinacea [62],
Carex arenaria [63] or Deschampsia flexuosa [64], under changing environmental conditions
in species rich heathlands. Additionally, our study indicates that structural predictors
from different time periods between years increase the predictive power of models for
grass invasion which has to be investigated in more detail using UAV records over full
phenological cycles.

4.2. Consequences for Nature Conservation Monitoring

Although, accurate quantification of vegetation regeneration is considered to be the
essential factor for prioritizing, planning and monitoring ecological restoration, the use of
high-resolution UAV imagery in ecological recovery monitoring is still lagging behind [65].
Up to now, UAVs are solely used to record existing vegetation traits for mapping, e.g.,
post-fire dynamics such as damage (severity) and regeneration [66,67], post-mining rehabil-
itation of seedling establishment [68] or Calluna resprouting after controlled burning [19].
We show that even low-cost RGB drone cameras can be utilized to provide a more processes-
based view on plant recovery and dispersal dynamics by linking Calluna stand properties
and post-management patterns. It enables the implementation of a knowledge-driven
decision support system for the selection of adequate habitat management measures. For
example, since the development of Calluna life-cycle phases is not uniquely classifiable
after plant age [18,69], site specific environmental conditions and preceding management
activities must be incorporated as population status indicator to evaluate the actual regen-
erative potential. This is particularly of utmost importance in continental dry heaths where
seedling recruitment is low after mowing and burning [11,17,19] and thus the potential
resprouting capacity needs to be evaluated beforehand for maintaining a vital habitat status
of Calluna heathland.

Small-scale UAV monitoring provides additional information on multitemporal pat-
terns and arising dispersal dynamics that can be used to detect early change dynamics for
supporting legally consolidated assessment schemes such as the European Natura 2000
network [70]. Conservationists are therein required to document development trends and
to adopt suitable action against habitat conversion. In order to suppress grass encroach-
ment in heathland ecosystems, it is for example required to effectively control the intensity
and frequency of management measures, particularly under water stress and atmospheric
nitrogen deposition that favors heathland conversion [61,64,71]. In this context, spatiotem-
poral patterns and dynamics will allow to define novel assessment criteria for a more
process-based understanding of trends in managed ecosystems.

5. Conclusions

There are optical and structural traits that can be recorded using low-cost UAV RGB
cameras to predict the potential of Calluna vulgaris resprouting and grass encroachment
in managed heathlands. We found significant optical predictors for characterizing vital
parental growth that can be linked to a higher resprouting density of Calluna after mowing.
Furthermore, we identified structural anomalies by means of UAV based Calluna canopy
modeling and texture filters in before-mowing scenes that can be related to grass patchy
growth and interpenetration as starting points for grass species invasion after mowing.
Although, predictive modeling still lacking additional spectral and temporal features from
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more advanced UAV sensor systems, first maps of the regenerative potential after mowing
management of a heathland were derived in this study.

The results demonstrate that fine-scale UAV records can be utilized to design early-
detection schemes for habitat conversion and finally quantify vegetation change in space
and time. In this regard, our study introduces the concept of trait propagation through
time as a novel drone-based monitoring tool. It is based on preceding optical and structural
stand characteristics that were related to future recovery potentials. For the first time,
post-disturbance dynamics are mapped from UAV images that are recorded before the
actual process of vegetation destruction. It enables an early quantification of Calluna
resprouting and grass encroachment and thus provides a mean for the pre-evaluation
of habitat conversion, that is of particular interest for an effective planning of active
habitat management.
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