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Abstract: Deep convolutional neural networks (DCNNs) have shown significant improvements in
remote sensing image scene classification for powerful feature representations. However, because of
the high variance and volume limitations of the available remote sensing datasets, DCNNs are
prone to overfit the data used for their training. To address this problem, this paper proposes a
novel scene classification framework based on a deep Siamese convolutional network with rotation
invariance regularization. Specifically, we design a data augmentation strategy for the Siamese
model to learn a rotation invariance DCNN model that is achieved by directly enforcing the labels
of the training samples before and after rotating to be mapped close to each other. In addition to
the cross-entropy cost function for the traditional CNN models, we impose a rotation invariance
regularization constraint on the objective function of our proposed model. The experimental results
obtained using three publicly-available scene classification datasets show that the proposed method
can generally improve the classification performance by 2~3% and achieves satisfactory classification
performance compared with some state-of-the-art methods.

Keywords: convolutional neural network; scene classification; rotation invariance

1. Introduction

Remote sensing image scene classification [1] has been widely used in many prac-
tical applications such as urban planning, environment monitoring, and natural hazard
detection [2–6]. The goal of scene classification is to assign a unique label (e.g., airport or
playground) to a query remote sensing image. However, scene classification is a challeng-
ing problem due to the complex spatial structure and land cover categories diversity in
remote sensing scene images. Thus, many scene classification methods have been proposed
over the past years [7–12].

Recently, many deep convolutional neural network (DCNN)-based models have been
proposed [13–16], replacing scene classification based on handcrafted-features such as color
histograms [17], scale-invariant feature transform (SIFT) [18], histogram of oriented gradi-
ents (HOG) [19], and global image descriptor (GIST) [20]. These models can achieve better
classification performance due to the powerful feature representation and generalization
ability of pre-trained DCNN models (e.g., AlexNet [21], VGG-VD16 [22], GoogLeNet [23],
and ResNet [24]) on the ImageNet [25]. However, although these methods have signifi-
cantly improved the classification performance, two challenging problems still remain in
remote sensing scene classification: the small scale of labeled training data has limited the
potential of DCNN-based methods for scene classification due to the overfitting problem;
the orientations of geospatial objects are diverse because remote sensing images are taken
from the upper airspace, but objects in the nature scene images generally show small
orientation variations due to the gravity of Earth [26].
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To address this problem, we propose an effective and robust approach to learn a
rotation-invariant DCNN model for remote sensing scene classification that is achieved by
adopting a Siamese DCNN [27,28] architecture and introducing a new rotation invariance
regularization (RIR) on the basis of the existing successful DCNN architectures (e.g., VGG-
VD16 [22]). Our architecture has two identical DCNN layers that combine the identification
and contrastive modules. The identification module is the traditional DCNN model that
accepts an input image and predicts its label by optimizing the cross-entropy objective.
The contrastive module compares the outputs of the final softmax layer of original and
rotated images and minimizes the Jensen–Shannon divergence [29] in the probability
distribution space. As shown in Figure 1, the scene images with different rotation angles
contain the same information, and thus it should produce the same outputs including the
similarity of the other categories. However, because the probability distributions has the
correct class at a very high probability, with all other class probabilities very close to 0,
the Kullback–Leibler (KL) divergence of images with the same category will be very small.
Therefore, we take the soft labels obtained by the “softmax temperature” [30] to provide
more information as to which classes of the original image are more similar to the rotated
image. Comprehensive evaluations on three scene datasets and comparisons with state-of-
the-art methods, including traditional DCNN architectures without RIR, demonstrate the
effectiveness of the proposed method.

Figure 1. Examples of remote sensing imagery with different rotation.

The remainder of this paper is organized as follows. We briefly review related
works on DCNN-based scene classification and rotation invariance features in Section 2.
In Section 3, we describe the proposed method in detail. The experimental datasets and
setup are shown in Section 4. Section 5 reports comprehensive results with exhaustive
comparison and discussions. Finally, conclusions are drawn in Section 6.

2. Related Work

Remote sensing scene classification has been investigated by a wide variety of meth-
ods in recent years. In this section, we briefly review the existing DCNN-based scene
classification algorithms and rotation invariance in DCNN.

2.1. DCNN-Based Scene Classification

The goal of remote sensing classification is to categorize scene images into a discrete
set of meaningful land use classes according to the image contents. In recent years, var-
ious deep learning methods, particularly DCNNs [21,22,31–34], have shown powerful
feature representation and attracted increasing research attention. However, the small scale
of remote sensing scene datasets makes training a DCNN model from scratch unrealistic.
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Fortunately, DCNNs pre-trained on large natural image datasets (e.g., ImageNet [25]) show
a powerful generalization ability in different domains [6–9,11,12].

Despite their effectiveness, it is problematic to directly use DCNN features for re-
mote sensing scene classification because the method is sensitive to the object orientation.
This can can lead to misclassification of scene images that are of the same category with
different orientations and therefore influences the classification performance.

2.2. Rotation Invariance Features

During recent decades, most of the works for scene classification were based on
handcrafted features such as color histograms [17,35], gray level co-occurrence matrix
(GLCM) [36], Gabor feature [37], local binary patterns (LBPs) [38], SIFT [18], GIST [20],
and HOG [19]. The global features (e.g., color histogram, GLCM, Gabor feature, LBPs,
and GIST) that describe the overall image as a whole to generalize the entire object or scene
are generally rotation-invariant. Thus, they can be directly used for scene classification.
By contrast, the local features (e.g., SIFT and HOG) that describe the image patches (key
points in the image) are usually applied to construct global representation such as the bag-
of-visual-words (BoVW) models [2,39–41]. These middle-level BoVW methods represent
each image as a frequency histogram features, so that these features are rotation-invariant
for scene classification.

These human-engineered features that require domain expertise greatly limit the
representation capability for the complex scene images. Inspired by the recent success
achieved by DCNNs in the computer vision community, many CNN models have been
extended for various applications including remote sensing scene classification and have
shown impressive feature representation capability [11,15,42–44]. However, these DCNNs
are not actually invariant to large rotations of the input data [45] and this inevitably
influences the performance of DCNN features for scene classification.

To overcome this limitation, many investigations of invariant features have been
carried out based on DCNNs [14,26,46–51]. For examples, TI-Pooling [47] utilizes the
tiny rotation invariance of max-pooling that considers a set of rotation angles to find
the optimal canonical instance. The concentric circle pooling method [14] introduces the
concentric circle-based partition strategy [50,52] in the context of DCNN-based models for
scene classification. The spatial transformer network (STN) [53] includes an additional
network module that can rotate or scale an input image or feature map to remove rotation
variance, but the problem of the complex transformation of parameters using a CNN
has not been solved well to date [54]. In addition to these architecture design methods,
data augmentation-based methods can more directly learn rotation invariance information
by rotating the image at random orientation [49,51,55,56]. Furthermore, this approach
can alleviate the overfitting problem that arises from the inadequate available samples.
Zhou et al. [51] propose a novel data augmentation strategy based on siamese DCNN to
learn rotation-invariant features. The rotation-invariant convolutional neural networks
(RICNN) [49] present a rotation-invariant layer on the basis of the existing CNN architecture
to address this problem. These two methods introduce additional middle layers and impose
regularization constraints to enforce the input and its rotated images with similar features.

Different from the previous methods, we propose a novel rotation invariance regular-
ization network that we call RIR-net by using Siamese DCNNs [27] and soft label [30] for
DCNN-based remote sensing scene classification methods. Specifically, we utilize Siamese
DCNNs to combine identification and constrastive models that can learn in parallel to
recognize the same images with different rotation orientations. The soft label is proposed
in knowledge distillation to decrease the gap between the probabilities of different classes
that can measure the similarity among the classes for the input and its rotated images.
Soft labels contain more information than binary hard labels. We can further reduce the
amount of overfitting by forcing the model to contain co-label effects during training.
Unlike the previous DCNN-based scene classification methods, our proposed methods
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can be directly applied to existing DCNNs and effectively handle the problems of rotation
variations in remote sensing scene classification.

3. Proposed Method

We utilize Siamese CNNs to learn rotation invariance for remote sensing scene classifi-
cation. Figure 2 presents the overall architecture. The network consists of two identical
pre-trained CNN models that share weights and predict the categories of the input image
pair simultaneously. The CNN models can either be the popular CNN architectures such as
AlexNet [21], VGG-VD16 [22], GoogLeNet [23], and ResNet [24], or other network architec-
tures. The loss of the whole network includes two parts: identification and regularization
losses. For the identification loss, we use the cross-entropy loss to measure the distance
between the probability outputs and labels for the input and its rotated images. For the
regularization loss, we propose the RIR method to alleviate the rotation variation problem
on the basis of data augmentation. The overall framework of our proposed method con-
sists of two modules: data augmentation and rotation invariance regularization. We next
describe these two modules in detail.

Figure 2. Architecture of the proposed network model. This network is composed of two identical convolutional neural
network (CNN) models. The input image is randomly rotated by 0, 90, 180, or 270 degrees. These two CNN models takes a
pair of rotated images with different rotation angles as input. The rotation invariance regularization term is imposed on the
features learned through these two CNN models.

3.1. Data Augmentation

For the limited size of the available samples for remote sensing scene classification,
data augmentation is an effective approach to increase the number of training sets and
assist DCNNs to avoid overfitting. Rather than using a range of transform operations
such as shifts, flips, and zooms, we only adapt rotation and color jitter augmentations
to verify the effectiveness of our proposed methods. For simplicity and consistency,
we randomly rotate the input images to generate input image pairs. The color channels of
the input images are randomly jittered to avoid shortcuts due to chromatic aberration [57].
The horizontal and vertical flipping augmentations certainly can be used with rotation and
color jitter augmentations.

Specifically, we denote a rotation transformed image xr = g(x|θr), where g(x|θr) is
the operator that applies the rotation transformation with angle θr to a scene image x.
The images at the two rotated angles of each image pair should be different. The CNN
models are pre-trained on large natural image datasets, ImageNet [25], to avoid overfitting
given the small scale of the remote sensing data sets.

3.2. Rotation Invariance Regularization

Based on the pre-trained DCNN models, we apply Siamese CNNs to realize our RIR
method. For these DCNN models, we replace the final 1000-way softmax classification
layer with an C-way softmax classification layer, where C denotes the number of categories.
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The whole architecture takes a pair of images as the input that are the same image with
different rotation angles. Different from these baseline DCNNs, the whole network is
trained by optimizing a new objective function that consists of two cross-entropy losses
and one RIR term. The proposed regularization constraint term is imposed to enforce the
training samples rotated at different angles to produce identical probability distribution
over classes.

However, in these baseline DCNNs, the correct answers with very high confidence
are always generated during the training phase. While we seek to directly minimize the
distance of the probability distribution of the image pair, it will be very small since the
probabilities are so close to one or zero. In addition, much of the information that resides in
the ratios of very small probabilities fails to be used for the learned function. For example,
a category of forest may be given a probability of 10−3 of being an agricultural category
and of 10−4 being a golf course category. This indicates that the characteristic of the forest
category, at least for some images in this category, are similar to those of the agricultural
and golf course categories. This is valuable information but it does not influence the
cross-entropy loss function because the target labels are hardly 0 or 1. Inspired by the
“distillation” in [30], we produce soft labels by raising the temperature of the final softmax
in the RIR term.

In the proposed RIR methods, the parameters of all of the layers except for the final
softmax layer are transferred from the baseline DCNNs to avoid overfitting in scene
classification. Then, we fine-tune the pre-trained layers with a smaller learning rate and
a higher learning rate for the last randomly initialized softmax layer. For a pair of input
images (xi, xr

i ), let zi and zr
i denote the outputs of the final layer for each class. Thus,

the probabilities for each class, pi[c] and pr
i [c], can be computed by

pi[c] = ϕ(zi[c]; T) =
e(zi [c]/T)

∑C
j=1 e(zi [j]/T)

pr
i [c] = ϕ(zr

i [c]; T) =
e(z

r
i [c]/T)

∑C
j=1 e(z

r
i [j]/T)

,

(1)

where T is the temperature, and C is the number of categories. ϕ(x) will be the normal
“softmax” with the temperature T of 1 and will produce a softer probability distribution
over classes with a high value for T. This is often used in knowledge distillation to transfer
knowledge to the distilled model. We introduce it to mine the rotation invariance of
DCNNs for scene classification.

We define the training samples X = {xi}N
i=1, their corresponding rotation transformed

samples Xr = {xr
i }N

i=1, and labels Y = {yi}N
i=1, where yi denotes the target possibilities of

sample xi with one-hot encoding and N denotes the number of training samples. To achieve
rotation invariance for any set of the training sample pairs (xi, xr

i ), we propose a new
objective function with RIR by the following formula:

L(X, Y) = λLid(X, Y) + (1− λ)R(X, Xr), (2)

where Lid and R are the losses of the identification and contrastive terms, and λ denotes
the tradeoff parameter that tunes the weighted average between the two components of
the loss. The first component Lid forces the optimization toward approximating the ground
truth labels for the training samples, whereas the second component R(X, Xr) forces the
optimization toward a similarly softened softmax distribution between the pair of the
training samples before and after the rotation. This model will degenerate to the traditional
DCNN with rotation augmentation operation while λ = 1.
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We use the cross-entropy loss for the identification term and RIR for the contrastive
term. The identification term Lid adopts softmax as the predicted classification probabilities.
For C categories, we can compute Lid by

Lid(X, Y) =− 1
N

N

∑
i=1

(〈yi, log(ϕ(zi, 1))〉+ 〈yi, log(ϕ(zr
i , 1))〉)

=− 1
N

N

∑
i=1

C

∑
c=1

(yi[c] · log(ϕ(zi, 1))[c] + yi[c] · log(ϕ(zr
i , 1))[c]),

(3)

where 〈y, log(ϕ( f (x), 1))〉 is the cross-entropy loss for the sample (x, y), and ϕ( f (x), 1) is
the normal softmax score that can be viewed as a special case of the temperature T = 1.

The contrastive term R(X, Xr) is a RIR constraint. We enforce the output classification
probabilities of the original and rotated training samples (X and Xr) to be as identical as
possible. We use the Jensen–Shannon divergence [29] to measure the similarity between the
predicted probability distribution of the input image pairs. The regularization constraint
term is defined as

R(X, Xr) =
1
N

N

∑
i=1

JS(pi||pr
i )

=
1

2N

N

∑
i=1

(KL(pi||mi) + KL(pr
i ||mi)),

(4)

where KL(·) denotes the Kullback–Leibler divergence [58] that is a measure the differences
between the probability distributions, JS(·) denotes the Jensen–Shannon divergence, mi
are the average probabilities of pi and pr

i , and are computed by

mi =
pi + pr

i
2

=
ϕ(zi, T) + ϕ(zr

i , T)
2

. (5)

Due to the cross-entropy loss in identification term, the regularization constraint term
requires a large T to become effective. However, noise may be introduced by a large T and
this will enlarge the probabilities of too many categories in the output classification vector.
Thus, we multiple R(X, Xr) by 2 · T2, to obtain

R(X, Xr) =
1
N

N

∑
i=1

JS(pi||pr
i ) · (2 · T2)

=
T2

N

N

∑
i=1

(KL(pi||mi) + KL(pr
i ||mi))

=
T2

N

N

∑
i=1

C

∑
c=1

(pi[c] · log
pi[c]
mi[c]

+ pr
i [c] · log

pr
i [c]

mi[c]
).

(6)

To prevent division by 0 in KL(·), we add a small constant ε, e.g., 1−10, to the proba-
bilities pi and pr

i . By incorporating Equations (3) and (6), the loss function is given by

L(X, Y; λ, T) =
−λ

N

N

∑
i=1

C

∑
c=1

(yi[c] · log(ϕ(zi, 1))[c] + yi[c] · log(ϕ(zr
i , 1))[c])+

(1− λ)T2

N

N

∑
i=1

C

∑
c=1

((pi[c] + ε) · log
pi[c] + ε

mi[c] + ε
+

(pr
i [c] + ε) · log

pr
i [c] + ε

mi[c] + ε
).

(7)
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The loss function L(X, Y; λ, T) defined in Equation (7) imposes a regularization con-
straint to achieve rotation invariance on basis of the existing DCNN architectures. The gra-
dient for each output unit of the input image xi, ∂L/∂zi[c], can be computed by

∂L(X, Y; λ, T)
∂zi[c]

=
λ

N

N

∑
i=1

(ϕ(zi, 1)[c]− yi[c])+

(1− λ)T2

N

N

∑
i=1

C

∑
j=1

(
1

T2 pi[j] ·mi[c]−
1

T2 pi[c])

=
λ

N

N

∑
i=1

(ϕ(zi, 1)[c]− yi[c])+

1− λ

N

N

∑
i=1

C

∑
j=1

(pi[j] ·mi[c]− pi[c]).

(8)

We can minimize this loss function by using the stochastic gradient descent (SGD) [59]
or adaptive moment estimation (Adam) [60] methods.

The RIR model can be expanded from two input images to multiple input images with
different rotation transformations. Then, the regularization constraint term becomes

R(X, Xr) =
1

KN

N

∑
i=1

K

∑
k=1

(KL(prk
i ||mi)), (9)

where K is the total number of rotation transformations for each xi, and prk
i is the soft

probability of the image xrk
i , which is the version of the input image xi rotated by angle θrk .

The average probability mi can be computed by

mi =
1
K

K

∑
k=1

prk
i =

1
K

K

∑
k=1

ϕ(zrk
i , T). (10)

Then, we can compute the loss function L(X, Y; λ, T) by

L(X, Y;λ, T) =
−λ

KN

N

∑
i=1

C

∑
c=1

K

∑
k=1

(yi[c] · log(ϕ(zrk
i , 1))[c])+

(1− λ)T2

KN

N

∑
i=1

C

∑
c=1

K

∑
k=1

((prk
i [c] + ε) · log

prk
i [c] + ε

mi[c] + ε
).

(11)

For the input image xrk
i , the gradient ∂L/∂zrk

i [c] of each output unit is same as
Equation (8) besides the value of average probability mi. Due to the stability of mean
value, a larger value of K gives better performance, but requires greater computational
capability and iterations.

The proper value of T is important for network performance. If T is too high, it disturbs
the identification term to affect classification accuracy. However, if T is too small, we cannot
benefit from the regularization term. Inspired by the deterministic annealing process [61],
we can slowly increase the value of T(s) by the step s to benefit from the RIR without
impacting the classification performance.

T(s) =


1 s ≤ S1

s− S1

S2 − S1
(Tf − 1) + 1 S1 ≤ s ≤ S2

Tf S2 ≤ s,

(12)
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where s is the current step, S1 and S2 are the steps at which the increase in the temperature
is started and stopped, respectively, for the optimizer in this paper. We evaluate Tf together
with the tuning parameter λ.

4. Experiments
4.1. Data Sets

We evaluate the performance of our proposed method on three challenging remote
sensing scene image datasets. These are the UC Merced land use (UC) dataset [39],
the Aerial Image dataset (AID) [62], and the NWPU-RESISC45 (NWPU) dataset [1].

The UC (http://vision.ucmerced.edu/datasets/landuse.html) [39] dataset contains 21
typical remote sensing scene categories. There are 100 images with a size of 256× 256 pixels
for each class in the red–green–blue color space. The pixel resolution of images is approx-
imately one foot. Two examples of ground truth images from each class are shown in
Figure 3. The high interclass similarity among the categories (e.g., medium and dense resi-
dential areas) results in some challenges for the classification of the UC dataset. The AID
(http://www.lmars.whu.edu.cn/xia/AID-project.html) [62] dataset contains 10,000 im-
ages with a size of 600× 600 pixels within 30 scene classes. The number of images for
different categories varies from 220 to 420. The spatial resolution changes from approxi-
mately 8 m to 0.5 m per pixel. Figure 4 shows examples of the AID dataset. The NWPU
(http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html) [1] dataset contains
31,500 images with a size of 256× 256 pixels. There are 45 scene classes, and each class
consists of 700 images. The spatial resolution changes from approximately 30 m to 0.2 m
per pixel for most of the scene categories. The classification of the NWPU dataset is more
challenging because of the rich image variations, large within-class diversity, and high
between-class similarity.

Figure 3. Two examples of ground truth images of each scene category in the UC data set.

http://vision.ucmerced.edu/datasets/landuse.html
http://www.lmars.whu.edu.cn/xia/AID-project.html
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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Figure 4. Examples of ground truth images of each scene category in the AID data set.

4.2. Experimental Setup

We consider three kinds of widely used DCNNs, including AlexNet [21], VGG-VD16 [22],
and ResNet50 [24] as baselines to evaluate the performance improvement for the RIR. We uti-
lize these models pre-trained on ImageNet dataset and then fine-tune them to adopt them
to the remote sensing scene images. We replace the flatten layer in the AlexNet [21] and
VGG-VD16 [22] with an adaptive average pooling layer for arbitrary input image size. Thus,
the original image sizes are used for these data sets.

We randomly select proportional samples of each class for training, and the remaining
samples are used for testing 10 times. These 10-time random splits are prepared prior to the
experiments. For the UC dataset [39], we randomly select 10%, 20%, 50%, 80% of samples
for training, and the remaining samples are used for testing. For the AID dataset [62],
the training ratios are set to 20% and 50%, and the remaining 80% and 50%, respectively,
are used for testing. For the NWPU dataset [1], we set the training ratios to 10% and 20%,
and the remaining 90% and 80%, respectively, are used for testing.

To quantitatively evaluate the performance of the proposed method, we adopt the
average accuracy (AA), overall accuracy (OA), and confusion matrix as the evaluation
metrics in this paper. The OA is recorded as the number of correctly classified samples
divided by the total number of samples. The AA is defined as the average classification
accuracy of each class. The confusion matrix is a summary of prediction results that
analyze the errors and confusions between different scene classes. It can be computed by
the number of correct and incorrect predictions for each class and organized into a table.

We implement these networks by means of an open-source neural network library
named Pytorch [63]. Experiments in this work are implemented using VSCode 1.31.1/Ubuntu
18.04 and conducted on a workstation equipped with a single NVIDIA GeForce RTX 2080
8 GB GPU.
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4.3. Implementation

To transfer features from the aforementioned DCNNs to the scene classification,
we fine-tune these DCNNs on each scene dataset individually. The final classification layer
trained on the ImageNet dataset is substituted by a randomly initialized C-way softmax
layer, where C is the number of classes in the scene dataset. We use the original input
image dimension for all data sets.

We set the rotation angles θr as 0, 90, 180, or 270 degrees to decrease the impact of
discrepancy from random rotation. For the proposed network, we set a higher learning
rate for the final layer (randomly initialized) to achieve fast convergence of the model and
a lower learning rate for the other fine-tuning layer in order to avoid too rapid and too
high distortion of the pre-trained weights. Based on the pre-trained DCNN architectures,
we train the models via Adam with a momentum of (0.9, 0.99).

5. Results and Discussion
5.1. Tradeoff of Temperature and Tuning Parameters

In the proposed method, there are two main parameters, the temperature parameter Tf
and tuning parameter λ, that can affect the performance of scene classification. The temper-
ature affects the quality of the RIR and the setting of λ also affects the overall classification
accuracy of the proposed method. These parameters are determined in a heuristic way for
the scene classification. We set temperature Tf from {1.5, 2.0, 3.0, 4.5, 6.0, 8.0, 10.0, 20.0} and
the tuning parameter λ in {0.05, 0.1, 0.5, 0.95, 0.99}, respectively. Using a higher value for Tf
or a lower value for λ strengthens the regularization effect on the scene classification task.

Table 1 summarizes the detailed parameters used for the models with different baseline
DCNNs on the UC dataset. The learning rate is set to 10−3 for the last fully connected
layer and 10−4 for the other layers. These models are trained for 5000 iterations and the
learning rate is dynamically divided by a factor of 0.1 every 4000 iterations. To facilitate
evaluation, the step parameters S1 and S2 are set to 0. We also list the training times of the
no-RIR and RIR DCNNs by hours. Because the gradient of the regularization term has a
low computational complexity, the training times of these two DCNNs are almost equal.

Table 1. Parameters utilized for models with different baseline deep convolutional neural networks (DCNNs) on the UC
data set.

Baseline DCNN #Iterations Batch Size L.R. 1 L.R. #Iterations Decay Factor Training
(Final Layer) (L.R. Decay) Times (h)

AlexNet [21] 2000 64 10−4 10−3 1000 0.1 0.200
VGG-VD16 [22] 6000 16 10−4 10−3 3000 0.1 0.836
ResNet50 [24] 4000 24 10−4 10−3 2000 0.1 0.471

1 L.R. denotes the learning rate.

Figures 5 and 6 summarize the training and testing results with the AlexNet-based
RIR-net on the UC dataset. We evaluate this method with different parameter settings.
The classification is measuring in terms of OA for all categories. It is found that the RIR with
a softer label does indeed help the baseline DCNNs to generalize better, but requires more
iterations for convergence. As shown in Figure 5a, these methods show fast convergence
except for the RIR-nets with excessively high parameter λ of 0.99. This is because underfit-
ting occurs when the model is regularized too much for high λ. In addition, the models
with high λ (e.g., 0.95) show divergence for low temperature T (e.g., 2.0), but convergence
for high T (e.g., 10.0). The curves in Figure 6 indicate that the losses of the RIR-nets are
higher for the regularization term. As shown in Figure 6b, larger T and λ can lead to a
more stable convergence of the loss.
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(a) (b)

Figure 5. Training and testing accuracy curves with pre-trained AlexNet on the UC dataset (training ratio = 50%). The rota-
tion invariance regularization (RIR)-nets in the legend with different parameter settings are denoted as rir-T-λ. (a) Training
accuracy curves; (b) testing accuracy curves.

(a) (b)

Figure 6. Training and testing loss curves with pre-trained AlexNet on the UC dataset (training ratio = 50%). (a) Training
loss curves; (b) testing loss curves.

We evaluate the hyper-parameters of temperature T and tuning parameter λ for the
AlexNet-based RIR-net and baseline in Figure 7. As observed from Figure 7, the optimal
value of the tuning parameter λ is generally 0.5 under most temperatures T. For too large
λ or too small T, the RIR-nets obtain poor results that are even worse than the model that
only uses cross-entropy criteria (84.01% and 89.81%, respectively). The performance of the
RIR-nets with other settings are clearly better than the baseline model. Thus, higher tem-
peratures T are better for scene classification accuracies.

Table 2 summarizes the results for different baseline network architectures under
different training ratios. Our results show considerable improvement over the no-RIR
baseline DCNNs, which have same architecture with RIR-net except for the regularization
term. The larger performance gain of RIR-net over no-RIR are due to the smaller training
samples. For each baseline DCNN, the RIR method can improve the classification accuracies
by almost 2% on the UC dataset with the training ratio of 10%. With respect to the variance,
these baseline DCNNs with RIR are mostly lower than the corresponding baseline DCNNs.
This result indicates that the RIR method can not only reduce the prediction error, but also
boosts the generalization of DCNNs.
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(a) (b)

Figure 7. Evaluation of the temperature T and tuning parameter λ as hyper-parameters for the AlexNet-based RIR-net
on the UC dataset. The testing classification results are measuring in terms of overall accuracy (%). The testing accuracy
of the model only with cross-entropy criteria is 84.01% and 89.81% for the training ratios of 10% and 20%, respectively.
(a) training ratio = 10%; (b) training ratio = 20%.

Table 2. Classification accuracies (%) on the UC data set.

T.R. 1 = 10% T.R. = 20% T.R. = 50% T.R. = 80%

no RIR + AlexNet 83.89(1.62) 89.81(0.80) 95.20(0.70) 96.54(0.66)
no RIR + VGG-VD16 88.08(1.19) 92.46(1.14) 95.96(0.86) 97.38(0.45)
no RIR + ResNet50 91.97(0.77) 95.23(0.47) 97.79(0.34) 98.75(0.35)

RIR + AlexNet 85.76(0.92) 91.03(0.62) 95.91(0.42) 96.96(0.69)
RIR + VGG-VD16 90.09(0.77) 93.96(0.86) 96.96(0.49) 97.92(0.81)
RIR + ResNet50 93.03(0.84) 95.98(0.46) 98.28(0.34) 99.15(0.40)

1 T.R. denotes the training ratio.

For the VGG-VD16-based RIR-net and baseline DCNN, the confusion matrices on
the UCM dataset with a training ratio of 50% are provided in Figure 8. It is observed that
the performances for each class are improved except classes (forest) and (tennis court)
categories that decrease to lower than 1%. The classification accuracies of most scene
categories achieve a satisfactory level, and some categories are close to 100%. The category
(building) that is easily confused with category (dense residential), is the most improved
category. In addition, the performances of classes (dense residential) and (sparse residential)
are boosted, but that of their commonly confused category (medium residential) is un-
changed, possibly due to the limitations of the representation capability of the VGG-VD16
architectures for the remote sensing scene classification.

In Table 3, we compare our method with the previously reported state-of-the-art
methods. Deep-learning-based methods exhibit superior performance compared to the
handcrafted-feature method. The RIR-net obtains higher classification accuracies than the
other pre-trained DCNN-based methods with the AlexNet or VGG-VD16. AN examination
of the data presented in Table 3 shows that RIR-net achieves more desirable classification
accuracies for a smaller number of training samples. Our best network with pre-trained
ResNet50 achieves 98.28% and 99.15% on the testing set with the training ratios of 50%
and 80%, respectively. Compare with the Siamese CNN in [28], the RIR-net achieves
significantly better performance, especially for the training ratio of 50%. In addition,
the RIR-net is generally independent of the architecture, so that we expect that it will
further improve the deeper and larger DCNN architectures, e.g., VGG-VD19 [22] and
ResNet101 [24].
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(a) (b)

Figure 8. Confusion matrices of the VGG-VD16-based baseline DCNN and RIR-net for the UCM dataset
(training ratio = 80%). (a) VGG-VD16-based baseline DCNN; (b) VGG-VD16-based RIR-net.

Table 3. Comparison of overall accuracies (OA) (%) on the UC dataset (training ratio = 80%).

Method Training Ratio
50% 80%

BoVW (SIFT) [64] 73.48(1.39) 75.52(1.77)
AlexNet [62] 93.98(0.67) 95.02(0.81)

VGG-VD16 [62] 94.14(0.69) 95.21(1.20)
Scenario (II) [9] – 96.90(0.77)

AlexNet + SPP [65] 94.77(0.46) 96.67(0.94)
CCP-net [14] – 97.52(0.97)

AlexNet + MSCP [43] – 97.29(0.63)
VGG-VD16 + MSCP [43] – 98.36(0.58)

TEX-Net + VGG-VD16 [66] 94.22(0.50) 95.31(0.69)
VGG-VD16 + Siamese [28] 85.14(0.53) 92.38(0.16)
ResNet50 + Siamese [28] 90.95(0.41) 94.29(0.39)

RADC-Net [67] 94.79(0.42) 97.05(0.48)

AlexNet + RIR(ours) 95.91(0.42) 96.96(0.69)
VGG-VD16 + RIR(ours) 96.96(0.49) 97.92(0.81)
ResNet50 + RIR(ours) 98.28(0.34) 99.15(0.40)

5.2. Effect of Increasing Temperature Strategy

In this section, we compare the results of the proposed RIR-net with fixed and increas-
ing temperature T on the NWPU dataset. The detailed parameters on the NWPU dataset
are shown in Table 4 for different baseline DCNNs. The hyper-parameters of temperature
T and tuning parameter λ for the AlexNet-based RIR-net with the training ratio = 10% are
evaluated in Figure 9. For each tuning parameter λ, the classification accuracies gradually
increase with increasing temperature T. For the NWPU dataset, the gap between RIR-net
with T = 0.5 and T = 0.95 is smaller than that of the UCM dataset. This may be caused
by the use of more training samples and steps. Except for the T = 0.99, all of the RIR-nets
are superior to the baseline DCNN models. Because more training steps are required for
higher temperature, we select the optimal temperature T = 10.0 and tuning parameter
λ = 0.5 for the NWPU data set.
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Table 4. Parameters utilized for models with different baseline DCNNs on the NWPU data set.

Baseline DCNN #Iterations Batch L.R. L.R. #Iterations Decay Training
Size (Final Layer) (L.R. Decay) Factor Times (h)

AlexNet 5000 64 10−4 10−3 3000 0.1 0.499
VGG-VD16 15,000 16 10−4 10−3 7000 0.1 1.948
ResNet50 12,000 24 10−4 10−3 6000 0.1 1.388

Figure 9. Evaluation of the temperature T and tradoff λ as the hyper-parameters for the AlexNet-
based RIR-net on the NWPU dataset (training ratio = 10%). The testing classification results are
measuring in terms of overall accuracy (%). The testing accuracy of the model with the cross-entropy
criteria only is 82.37%.

In addition, we evaluate the strategy of slowly increasing T as described in Equation (12).
To demonstrate the effectiveness of this strategy, we take larger T = 20 and λ = 0.5 on
the NWPU dataset with a training ratio of 10%. The AlexNet architecture is employed
with the parameters S1 = 1000 and S2 = 2000. As shown in Figure 10, the RIR-nets with
increasing or fixed T finally achieve the same testing accuracies and losses. With increasing
T, the accuracy increases sharply from #iteration 1000 at which the temperature starts to rise.
It is interesting that the no-RIR baselines have a growth point at #iteration 2000, that the
learning rate starts to decay. However, the performance of RIR-nets was not improved further
after the learning rate decay. It can be concluded that the temperature increasing strategy
resembles the learning rate decay method. For fair comparison, we still adopt the learning
decay method in the rest of the experiments.

(a) (b)

Figure 10. Training accuracy and loss curves with AlexNet-based architectures on the NWPU dataset (training ratio = 10%).
(a) Training and testing accuracy curves; (b) training and testing loss curves.
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The results in the Table 5 show considerable improvement over the no-RIR baselines
on the NWPU dataset. An examination of the data presented in Table 5 shows that the
performance of AlexNet and VGG-VD16 based architectures is boosted more significantly
than that of the ResNet50 based architecture.

Table 5. Classification accuracies (%) on the NWPU data set.

T.R. = 10% T.R. = 20%

no RIR + AlexNet 82.37(0.19) 86.67(0.25)
no RIR + VGG-VD16 86.07(0.27) 90.10(0.17)
no RIR + ResNet50 90.93(0.23) 93.27(0.19)

RIR + AlexNet 84.46(0.14) 87.68(0.19)
RIR + VGG-VD16 88.42(0.21) 91.34(0.21)
RIR + ResNet50 92.05(0.23) 94.06(0.15)

As described in Equation (9), we evaluate our RIR-net for K = 4 where all rotated
samples are used in the regularization term. With same hyper-parameters T = 10.0
and λ = 0.5, the AlexNet-based RIR-net with K = 4 obtain classification accuracy of
84.82 ± 0.17% when using the training ratio of 10%. The larger K is conducive to the
performance improvement. However, due to the greater GPU memory and iteration
requirements, we use K = 2 in the experiments reported in this paper.

Figure 11 shows the confusion matrices conducted with the VGG-VD16-based RIR-net
and baseline DCNN on the NWPU dataset with training ratio of 20%. It is observed that our
proposed RIR-net can improve the classification accuracies on nearly all classes, particularly
for categories (bridge), (circular farmland), (intersection), (medium residential), (palace),
and (wetland) categories. As shown in Figure 11, RIR-net reduces the confusion between
the classes (circular farmland) and (dense residential), (medium residential) and (mobile
home park), and (wet land) and (lake). These results indicate that our method extracts a
more discriminative description for the remote sensing scene images.

(a)

Figure 11. Cont.
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(b)

Figure 11. Confusion matrices of the VGG-VD16-based baseline DCNN and RIR-net for the NWPU
dataset (training ratio = 20%). (a) VGG-VD16-based baseline DCNN; (b) VGG-VD16-based RIR-net.

We compare our proposed RIR-net with some other pre-trained CNN-based classifica-
tion methods. As shown in Table 6, the RIR-nets achieve higher accuracy than the baseline
DCNNs. It is important to note that the gain in the performance is not only due to the data
augmentation for the comparison in Table 5. The RIR-net performs better than all of the
other methods based on the same DCNN architectures, but shows slightly worse perfor-
mance than the latest D-CNN model [11] under the training ratio of 10%. Compared to
the MSCP [43] and SAFF [44] methods, the AlexNet-based RIR-net obtains comparable
performance to that of other VGG-VD16-based architectures. The highest classification
accuracies are obtained by the ResNet50-based RIR-net that achieves 92.05% and 94.06%
for the training ratios of 10% and 20%, respectively.

Table 6. Comparison of the classification results (%) on the NWPU dataset (training ratio = 10%
and 20%).

Method Training Ratio
10% 20%

AlexNet + BoW [42] 55.22(0.39) 59.22(0.18)
VGG-VD16 + BoW [42] 82.65(0.31) 84.32(0.17)
Fine-tuned AlexNet [1] 81.22(0.19) 85.16(0.18)

Fine-tuned VGG-VD16 [1] 87.15(0.45) 90.36(0.18)
AlexNet + MSCP [43] 81.70(0.23) 85.58(0.16)

VGG-VD16 + MSCP [43] 85.33(0.17) 88.93(0.14)
AlexNet + SPP [65] 82.13(0.30) 84.64(0.23)

AlexNet + D-CNN [11] 85.56(0.20) 87.24(0.12)
VGG-VD16 + D-CNN [11] 89.22(0.50) 91.89(0.22)
VGG-VD16 + Siamese [28] – 90.06(3.23)
ResNet50 + Siamese [28] – 92.28(3.27)

RADC-Net [67] 85.72(0.25) 87.63(0.28)
AlexNet + SAFF [44] 80.05(0.29) 84.00(0.17)

VGG-VD16 + SAFF [44] 84.38(0.19) 87.86(0.14)

AlexNet + RIR(ours) 84.46(0.14) 87.68(0.19)
VGG-VD16 + RIR(ours) 88.42(0.21) 91.34(0.21)
ResNet50 + RIR(ours) 92.05(0.23) 94.06(0.15)
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5.3. Validation on the AID Data Set

With optimal temperature and tuning parameters based on the UC and NWPU
datasets, we evaluate the proposed RIR-net on the AID dataset. As shown in Table 7,
we set the parameters with different input sizes due to the greater GPU memory required
by the larger image size in the AID dataset. We transform the size of input images into
512× 512 and 256× 256 for AlexNet and the other two baseline DCNNs, respectively.
Table 8 shows the results for different baseline DCNNs with temperature T = 10 and
λ = 0.5.

Table 7. Parameters utilized for the models with different baseline DCNNs on the AID data set.

Baseline #Iterations Batch Input Size L.R. L.R. #Iterations Decay Training
DCNN Size (Final Layer) (L.R. Decay) Factor Times (h)

AlexNet 6000 32 512× 512 10−4 10−3 3000 0.1 1.232
VGG-VD16 12,000 16 256× 256 10−4 10−3 6000 0.1 1.494
ResNet50 10,000 24 256× 256 10−4 10−3 5000 0.1 1.130

As shown in Figure 8, our RIR-net can also improve the classification accuracy for
the large size of input images. It is observed that the RIR-nets are better than the no-
RIR DCNNs for the results on the AID datasets with optimal temperature and tuning
parameters based on the UC and NWPU datasets. For the VGG-VD16 and ResNet50
architecture, the performance boost on the input image of large size and is not much
reduced by shrinking the image size.

Table 8. Classification accuracies (%) on the AID data set.

T.R. = 20% T.R. = 50%

no RIR + AlexNet 90.54(0.30) 93.61(0.14)
no RIR + VGG-VD16 91.98(0.30) 94.86(0.27)
no RIR + ResNet50 94.01(0.25) 95.96(0.26)

RIR + AlexNet 91.95(0.20) 94.56(0.11)
RIR + VGG-VD16 93.34(0.18) 95.57(0.23)
RIR + ResNet50 94.95(0.17) 96.48(0.21)

Figure 12 shows the confusion matrix of the VGG-VD16-based RIR-net under the
training ratio of 20%. The classification accuracies of most of the categories are increased.
For the classes (center) and (stadium), the performances are decreased by less than 1%.
The classes (school) and (resort) achieve a greater than 5% enhancement in performance
due to the discrimination improvement between the classes (school) and (church), (resort)
and (church), and (resort) and (sparse residential). These classes usually share building
objects, thereby making these categories similar and their classification challenging.

Table 9 summarizes the comparison of our results with the state-of-the-art methods
on the AID dataset. Our results with the AlexNet are superior to the results obtained using
the previous AlexNet-based methods, and even surpass the previous VGG-VD16-based
methods. The best performances (94.45% and 96.48%) are achieved by the ResNet50-based
RIR-net with the training ratios of 20% and 50%.
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(a)

(b)

Figure 12. Confusion matrices of the VGG-VD16-based baseline DCNN and RIR-net for the AID
dataset (training ratio = 20%). (a) VGG-VD16-based baseline DCNN; (b) VGG-VD16-based RIR-net.

Table 9. Comparison of the OAs (%) on the AID dataset (training ratio = 20% and 50%).

Method Training Ratio
20% 50%

VGG-VD16 [62] 86.59(0.29) 89.64(0.36)
GoogLeNet [62] 83.44(0.40) 86.39(0.55)

AlexNet + MSCP [43] 88.99(0.38) 92.36(0.21)
VGG-VD16 + MSCP [43] 91.52(0.21) 94.42(0.17)

AlexNet + SPP [65] 87.44(0.45) 91.45(0.38)
RADC-Net [67] 88.12(0.43) 92.53(0.19)

AlexNet + SAFF [44] 87.51(0.36) 91.83(0.27)
VGG-VD16 + SAFF [44] 90.25(0.29) 93.83(0.28)

AlexNet + RIR(ours) 91.95(0.20) 94.56(0.11)
VGG-VD16 + RIR(ours) 93.34(0.18) 95.57(0.23)
ResNet50 + RIR(ours) 94.95(0.17) 96.48(0.21)
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5.4. Visualization of the Softmax Outputs

In this section, we visualize the outputs of the last layer of baseline CNN and RIR-net.
Figure 13 shows two test examples of different scene classes (building and golf course)
and their corresponding probabilities of categories for the baseline DCNN and RIR-net.
These test examples are rotated by 0, 90, 180, 270 degrees, respectively. We use softmax
with temperature T = 5.0 to facilitate visualization. The softmax outputs of AlexNet-based
RIR-net and baseline are shown in Figure 13. As shown in Figure 13, the output of CNN
of different test examples of the same category are not rotation-invariant. For the scene
image of #4 (building category), the most similar categories are #6 (dense residential),
#12 (medium residential), and #13 (mobile home park). For the CNN model, the major
differences between the outputs of the images with different orientations are found for the
categories #6 (dense residential), #13, and #19 (storage tank). For the scene image of #9
(golf course), it appears similar to the categories of #3 (beach), #16 (river), and #18 (sparse
residential). Particularly for the #16, some of this scene image is misclassified because
the baseline CNN cannot capture the invariance information between the images with
different orientations. In contrast, the output of RIR-net of these examples of the same
object class are clearly more similar. These results demonstrate the effectiveness of the
proposed RIR method.

(a)

Figure 13. Cont.
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(b)

Figure 13. Softmax outputs with temperature T = 5.0 of examples with different orientations.
The first column shows test examples and their corresponding rotated versions. The second column
shows the softmax output of baseline CNN with T = 5. The last column shows the softmax output
of RIR-net with T = 5. (a) Example #4 (building category), which appears similar to the categories of
#6 (dense residential), #12 (medium residential), and #13 (mobile home park); (b) Example of #9 (golf
course), which appears similar to the categories of #3 (beach), #16 (river), and #18 (sparse residential).

6. Conclusions

In this study, we propose a novel and effective method based on the Siamese convolu-
tional neural networks that aim to increase the robustness and reduce the overfitting for
the remote sensing scene classification. We enforce the output classification probabilities
of the training samples before and after the rotation to be similar by optimizing a new
objective function with the RIR. To compare the probability distributions, we introduce
the soft labels proposed in the “softmax temperature”. By raising the temperature of the
final softmax, we enlarge the diversity of the output distribution to be characteristic of
the similarities between different categories. The quantitative comparison results on the
publicly available remote sensing scene classification datasets demonstrate the performance
gain of the proposed method compares with state-of-the-art approaches. In the future, we
plan to investigate the effectiveness of this regularization for the semi-supervised methods
and the metric learning-based DCNN architectures.
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