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Abstract: The sea ice cover is changing rapidly in polar regions, and sea ice products with high
temporal and spatial resolution are of great importance in studying global climate change and
navigation. In this paper, an ice map generation model based on Moderate-Resolution Imaging
Spectroradiometer (MODIS) reflectance bands is constructed to obtain sea ice data with a high
temporal and spatial resolution. By constructing a training sample library and using a multi-feature
fusion machine learning algorithm for model classification, the high-accuracy recognition of ice and
cloud regions is achieved. The first product provided by this algorithm is a near real-time single-
scene sea ice presence map. Compared with the photo-interpreted ground truth, the verification
shows that the algorithm can obtain a higher recognition accuracy for ice, clouds, and water, and
the accuracy exceeds 98%. The second product is a daily and weekly clear sky map, which provides
synthetic ice presence maps for one day or seven consecutive days. A filtering method based on
cloud motion is used to make the product more accurate. The third product is a weekly fusion of
clear sky optical images. In a comparison with the Advanced Microwave Scanning Radiometer
2 (AMSR2) sea ice concentration products performed in August 2019 and September 2020, these
composite images showed spatial consistency over time, suggesting that they can be used in many
scientific and practical applications in the future.
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1. Introduction

With the onset of global warming in recent years, the melting rate of polar sea ice has
accelerated since the late 1970s [1]. According to a report by the National Snow and Ice
Data Center (NSIDC), the Arctic sea ice extent reached its second lowest value in history
on September 2020, behind only September 2012 [2]. Sea ice plays an important role in the
study of global climate change [3–5] and biodiversity [6]. Sea ice monitoring will help us to
better understand the impact of climate change on species’ habitats. In addition, with the
increasing frequency of maritime economic activities and traffic in the Arctic, the demand
for sea ice information monitoring is also increasing rapidly [7–11]. The increasing rate of
sea ice melting has put the navigation of the Arctic waterway on the agenda, and sea ice
information with a high spatial and temporal resolution will help us to accurately judge
sea routes.

Passive microwave data are not affected by clouds and can form daily global coverage
observations, but their spatial resolution is low and most of them are kilometer-level
products [12–17]. The existing sea ice concentration (SIC) data products mostly rely on
passive microwave radiometer data. The University of Bremen in Germany released an SIC
product with a spatial resolution of 6.25 km based on the AMSR2 sensor using the ARTIST
Sea Ice (ASI) algorithm, and another SIC product with a spatial resolution of 12.5 km using
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the Bootstrap algorithm [15]. The University of Hamburg released an SIC product with a
spatial resolution of 3.125 km based on the AMSR2 sensor using the ASI algorithm [15,18].
The NSIDC released an SIC product with a spatial resolution of 25 km based on the sensors
of Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave
Imager/Sounder (SSMIS) using the Bootstrap algorithm [19] and another SIC product
with a spatial resolution of 25 km based on the SSMIS sensor using the NASA Team (NT)
algorithm [17]. The European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) released a product with a spatial resolution of 10 km based on the SSMIS
sensor using the algorithm combined with Bristol and Bootstrap [20,21].

SAR images have the characteristics of being all-day and all-weather and having a
high spatial resolution, and can provide high-quality sea ice information [22–27]. Currently,
the SAR data used for sea ice monitoring mainly include the Radarsat-2 and Sentinel-1A
satellite data, which can obtain a good spatial resolution [28,29]. Boulze et al. [28] proposed
a sea ice classification using convolutional neural networks for Sentinel-1 data and obtained
good classification results. The phase difference of the Radarsat-2 data can be used to
identify the edge ice area well [29]. SAR data are the main source of information production
on the National Ice Service operational map products, but there is no mature operational
quantitative algorithm for sea ice concentration inversion [30]. Moreover, due to their long
revisit cycle and small coverage, it is difficult to provide large-scale daily sea ice data.

Optical satellite sensors can provide remote sensing data with a high spatial and
temporal resolution and can obtain rich detailed information on ground features, despite
the great influence of cloud cover and daylight conditions. It is possible to more accurately
estimate the presence of sea ice in narrow passages and archipelagos areas in the polar
regions [31]. The spectral and local texture characteristics of ice, snow, and clouds are
very similar, which makes it difficult to distinguish them in polar regions [31,32]. At
present, for the recognition of ice and clouds, the threshold segmentation method is more
mature. Choi et al. [33] improved the accuracy of cloud area recognition by automatically
determining the Normalized Difference Snow Index (NDSI) threshold judgment algorithm
and cloud shadow matching technology. Similarly, the Normalized Difference Snow and
Ice Index-1 (NDSII-1) and the Normalized Difference Snow and Ice Index-2 (NDSII-2)
ice and snow indices, which use the difference in ice and snow reflectance, have been
proposed [34,35]. The traditional cloud recognition method based on a multi-channel
threshold is relatively easy to perform, but it is difficult to determine an appropriate
threshold for them, especially for recognizing the difference between snow and clouds.
Thin clouds and broken ice are often confused for each other. Machine learning methods
have been applied to cloud and ice detection, but there is no mature technology for sea
ice operational map products [36–38]. Zhan et al. [36] proposed a deep learning system
for cloud and snow classification based on pixel-level fully convolutional neural networks.
Varshney et al. [37] used a convolutional neural network to distinguish between clouds
and snow pixels from the shortwave infrared sensor data of the ResourceSat-2 satellite.
Ghasemian et al. [38] proposed two cloud detection methods, Feature Level Fusion Random
Forest and Decision Level Fusion Random Forest, based on machine learning and multi-
feature fusion, respectively.

The MODIS sensors can achieve multiple observations per day in the polar regions,
and the spatial resolution of the data acquired is much higher than that of passive mi-
crowave data, thus they have great potential for retrieving ice maps with a higher spatial
and temporal resolution. The MOD29 products [39] provided on the NASA website are
prone to misjudgment in the detection of new ice in areas where ice and water are mixed,
as well as areas where clouds appear over ice or water. This is mainly because the MOD29
ice products use MOD35 cloud cover products with a poor recognition accuracy in polar
regions, especially in ice areas covered by clouds, thin clouds, or fog. The MOD35 products
have a higher accuracy in the summer and a lower recognition accuracy in the winter, and
are highly dependent on the surface type and solar illumination in the Arctic region. The
MOD35 products tend to underestimate cloud cover over sea ice and overestimate cloud
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cover over open waters [31,40]. Charles et al. [31] proposed a hybrid cloud mask based
on the MOD35 products and visible-band products, using the decision tree classification
method to depict the ice map, but its sea ice detection accuracy is limited by the accuracy
of the cloud mask data used.

In this study, an ice mapping method with a high accuracy and high spatial–temporal
resolution is proposed that can provide three products, including single-scene ice presence
maps, daily or weekly ice presence maps, and the weekly fusion of clear sky optical images.
We first constructed a training sample library based on MODIS reflectance data and then
used a Multi-Feature Level Fusion Random Forest (MFLFRF) algorithm to train the model
and generate cloud and ice recognition results. Finally, we obtained daily and weekly
composite ice maps and fusion images of the Arctic using a filtering method based on
cloud motion and weighted fusion method. This proposed algorithm can provide sea ice
presence maps with an improved accuracy due to its finer spatial resolution. Additionally,
these improvements can achieve a near real-time monitoring of sea ice on a finer scale.

2. Materials and Methods
2.1. Data
2.1.1. MODIS Sensors and Datasets

The Terra satellite was launched into a polar orbit on December 18, 1999, with equato-
rial crossing at 10:30 a.m. local time every day. The Aqua satellite was launched into a polar
orbit on 4 May 2002, with equatorial crossing at 1:30 p.m. local time every day. The techni-
cal performance provided by Terra is similar to that of Aqua. The two satellites observe the
Earth’s surface every one or two days, and the ground repetition period is 16 days. The
Moderate-Resolution Imaging Spectroradiometer (MODIS), which is carried on the Terra
and Aqua satellites, has a 2330 km swath and 36 spectral bands. The spatial resolution of
bands 1–2 is 250 m, bands 3–7 have a spatial resolution of 500 m, and other bands have
a spatial resolution of 1000 m. Table 1 shows the spatial and spectral characteristics of
MODIS reflection bands 1–7.

Table 1. Spatial and spectral characteristics of MODIS reflection bands 1–7.

Band Number Spatial Resolution (m) Bandwidth (µm) Part of Spectrum

1 250 0.620–0.670 VIR (red)
2 250 0.841–0.876 NIR
3 500 0.459–0.479 VIR (blue)
4 500 0.545–0.565 VIR (green)
5 500 1.230–1.250 NIR
6 500 1.628–1.652 SWIR
7 500 2.105–2.155 SWIR

The data obtained by the MODIS sensors in these two satellites can be downloaded
from the NASA website (https://search.earthdata.nasa.gov/search) for free. In this study,
the L1B data of MODIS collection 6 products were selected to generate composite ice
presence maps of the Arctic region. Taking the MODIS-Terra satellite as an example, the
data used are as follows. Similarly, the prefix of the MODIS-Aqua satellite product file
name is MYD, and MOD is the one of MODIS-Terra.

MOD021KM: MODIS-Terra 1 km data;
MOD02HKM: MODIS-Terra 500 m data;
MOD02QKM: MODIS-Terra 250 m data.
This study selected the L1B data of the Aqua and Terra satellites covering the Arctic in

August 2019 and September 2020 to evaluate the algorithm. The comparison data selected
the MOD29 products from the NASA website, and the SIC products from the AMSR2
data from the University of Bremen, Germany (https://seaice.uni-bremen.de/data/). The
MOD29 products have a spatial resolution of 1 km, and the SIC products from AMSR2 have
a spatial resolution of 6.25 km. All the data use the WGS84 polar stereographic projection.

https://search.earthdata.nasa.gov/search
https://seaice.uni-bremen.de/data/
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The MOD29 products are classified images consisting of four surface types: water, ice,
cloud, and land.

2.1.2. Land Mask

In the polar regions, the MODIS sea ice reflectance MOD29 products have more
accurate land area data. This study extracted the land area from the MOD29 data on
3 August 2019, and the nearest distance method was used to resample it to a spatial
resolution of 250 m. As the coastline changes extremely slowly, it can be regarded as stable
for a long time. Therefore, the extracted data of this day is used as the land mask data in
this study.

2.2. Method

This research proposes a machine learning algorithm based on multiple feature-level
fusion to automatically classify single-scene images to generate the first ice presence map
products. On the basis of the above products, a filtering based on cloud motion and
weighted fusion method is proposed that can automatically generate the daily/weekly
composite ice presence maps and weekly fused optical images. The methodological
framework is shown in Figure 1 and described in the following three subsections: pre-
processing (Section 2.2.1), classification by MFLFRF algorithm (Section 2.2.2), and composite
ice presence maps (Section 2.2.3).
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2.2.1. Pre-Processing

After downloading the data of the research area from the NASA website, the required
bands in the image were geometrically corrected and reprojected to the WGS84 polar
stereographic projection. This process can be completed in batches by calling the HDF-
EOS To GeoTIFF Conversion Tool (HEG) (https://wiki.earthdata.nasa.gov/display/DAS/
Downloads), which is special processing tool used for MODIS images. Then, cropping,
resampling of the nearest distance, radiometric calibration, solar zenith angle correction,
and land mask processing on the image of the study area were performed. The radiometric
calibration and solar zenith angle correction formulas are as follows:

• Radiometric calibration:

The formula for apparent reflectance calculation [41–43]:

RB,T,FS = Re f lectance_ScaleB × (SIB,T,FS − Re f lectance_O f f setB). (1)

In this equation, RB,T,FS is the reflectance of each pixel in the corresponding band,
where B is the corresponding band, T is the track, and FS is the frame_and_sample;
SIB,T,FS is the count values of a single pixel in the corresponding band; Re f lectance_ScaleB
is the reflectance scaling ratio; Re f lectance_O f f setB is the reflectance offset. After absolute
radiometric calibration, the unit of radiance is W/(m2·µm·sr), and these parameters can be
read in the attribute domain of the scientific data set of the corresponding band.

• Solar zenith angle correction:

The solar zenith angle data obtained from the MOD021KM of the MODIS data is
interpolated to a 250 m spatial resolution using the shortest distance method. Then,
the resampled data of the solar zenith angle are calculated according to the correction
formula of the solar zenith angle. The correction formula of the solar zenith angle is as
follows [41–43]:

Zs = DN × S_Scale × π ÷ 180, (2)

SRB,T,FS = (RB,T,FS)÷ cos(Zs). (3)

Then, we combine the two formulas into:

SRB,T,FS = (RB,T,FS)÷ cos(DN × S_Scale × π ÷ 180), (4)

where Zs is the solar zenith angle (radians) corresponding to each pixel; DN is the detection
value of the solar zenith angle of each pixel; S_Scale is the scaling ratio between the probe
value and the real value, which is 0.01 by default. SRB,T,FS is the apparent reflectance of a
single pixel in the corresponding band after the solar zenith angle is corrected.

• Feature attribute selection:

Snow and ice have a strong reflectance in visible (VIR), and a strong absorption in
near infrared (NIR) and shortwave infrared (SWIR). This combination of bands makes
the distinction between ice, clouds, and sea water more obvious. The thick ice and snow
present a bright sky blue, while the cloud layer composed of small water droplets has
the same scattering in visible light and short-wave infrared bands and its color appears
white. These clouds usually exist lower, near the ground, and have higher temperatures.
High and cold clouds are mostly composed of small ice crystals, which appear blue, while
water clouds appear white. Therefore, the false color combinations of bands 7, 2, and 1 are
selected to identify ice and clouds in the Arctic region in this study.

The NDSI utilizes the contrast spectral behavior of the visible (green band 4: 0.55 µm)
and shortwave infrared (SWIR band 6: 1.64 µm) part of the spectrum [31,44]. Since the
reflectance of snow in the green band and shortwave infrared band shows a strong contrast,

https://wiki.earthdata.nasa.gov/display/DAS/Downloads
https://wiki.earthdata.nasa.gov/display/DAS/Downloads
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the two bands can be used to extract ice and snow well. Therefore, using the NDSI index is
a classic way to distinguish sea ice from other surface features [31,45].

NDSI = (Green − SWIR)÷ (Green + SWIR). (5)

The NDSII-1 [34] and the NDSII-2 [35] are the same as the NDSI, which is realized
by using the difference in reflectance of ice and snow, but uses different spectral bands to
express the reflectivity of ice and snow. In order to improve the accuracy of the overall
sea ice map, the NDSII-2 index was selected in this study, as it can identify sea ice more
accurately than other indices [31,35].

NDSII − 1 = (Red − SWIR)÷ (Red + SWIR), (6)

NDSII − 2 = (Green − NIR)÷ (Green + NIR). (7)

Sea ice and clouds have similar characteristics in the spectrum, and it is very difficult
to distinguish them only by their spectral features. Texture features can describe the spatial
distribution of spectral information [38,46]. Some scholars have used the difference in
texture features in the visible band for cloud detection [38,45]. The traditional Local Binary
Pattern (LBP) operator describes the local spatial structure of an image [38,47]. It encodes
the difference between the center pixel xc and its neighboring pixels into a binary pattern,
and uses the binary pattern to mark the center pixel. The shape of the adjacent area is
circular, and the radius is r.

LBPr,p(xc) =
p−1

∑
n=0

s
(

xr,p,n − xc
)
2n, s(x) =

{
1 x ≥ 0
0 x < 0,

(8)

where p is the number of neighborhood pixels on the circumference of a circle and s( ) is a
step function.

In order to improve the robustness of the operator to noise, Liu et al. [48] proposed a
Robust Extended Local Binary Pattern (RELBP) texture descriptor. This operator takes into
account the influence of the intensity of the center pixel and the filter response of the image.
RELBP contains three descriptors, which are RELBP_CI, based on the intensity difference
of the center pixel; RELBP_NI, based on the intensity difference of neighboring pixels; and
RELBP_RD, based on the radial pixel intensity difference. The RELBP_CI descriptor is
selected in this study, and the formula is as follows:

RELBP_CI(xc) = s(∅(Xc,ω)− µω), (9)

where Xc,ω is a local patch of size ω × ω and its center is in location xc. ∅( ) is the filter
applied to the patch. The median filter is selected in this paper. µω is the mean of ∅(Xc,ω)
over the whole image [38,48].

2.2.2. Classification Using the MFLFRF Algorithm

Combining the spectral and textural features of ice and clouds in the polar regions,
a Multi-Feature Level Fusion Random Forest (MFLFRF) classification algorithm was con-
structed to classify the ground objects into three types of targets: cloud, ice, and water. The
Random Forest (RF) classification algorithm based on ensemble learning has become one
of the most widely used algorithms in remote sensing and other application fields [49–51].
The RF classification algorithm is based on the decision tree as the basic unit. Through
ensemble learning, multiple decision tree weak classifiers are formed into a strong classifier.
The final decision category is determined by voting on the classification results of all weak
classifiers. RF is a general term for ensemble methods using tree-type classifiers, which
are independent learning and prediction [51]. The base classifier in the RF algorithm is
the classification and regression tree (CART) decision tree. Each decision tree is trained on
the training samples of the original training data, and only a subset of the input variables
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randomly selected by each node can be searched to determine the segmentation, which
makes its training time shorter than that of other ensemble methods [50].

• Construction of training sample library:

In the traditional RF classification method, it is necessary to individually select training
samples for each image for classification. However, this would be very complicated for the
batch production of cloudless sea ice products. The types of surface features are relatively
simple in the Arctic region and include clouds, open water, and sea ice. The regional
features of the ground features are relatively fixed and are less affected by seasons and
other factors, so it is possible to reuse the samples. Therefore, this study developed a
training sample library to classify surface features in the Arctic through model training and
prediction. The training samples were selected from the whole Arctic region by uniform
sampling. The sample categories include sea ice, water, and clouds. The texture of clouds is
random and is determined by the type of cloud. Thick clouds tend to be massive and their
texture is relatively rough. The texture of thin clouds such as cirrus clouds is smoother and
is quite different from the texture of ice and snow. According to different cloud texture
and color characteristics, the cloud region samples were divided into cloud 1, cloud 2,
and cloud 3, until they were finally classified as a cloud sample. Eighty percent of them
were used as training samples, and the remaining twenty percent were used as validation
samples. The details of the training sample library are shown in Table 2.

Table 2. Details of the training sample library. Ice, water, cloud 1, cloud 2, and cloud 3.

Sample Category Ice Water
Cloud

Cloud 1 Cloud 2 Cloud 3

Total Pixels 14,162 13,944 10,057 11,292 10,343

• Classification Method Details:

The three common spectral bands (bands 7, 2, and 1), as well as the four calculated
indices (NDSII-2, the texture features of bands 7, 2, and 1, respectively) were used as input
features for the RF classification process. The pixel-based classification model was trained
using the unified training samples. There are two important parameters that should be
controlled to acquire a better classification result in the RF function: number of trees to
grow (ntree) and number of variables randomly sampled as candidates at each split (mtry).
Since the RF classifier is computationally efficient and does not overfit, the number of trees
can be as large as possible [49]. However, when the number of trees is increased above a
threshold, the classification is no longer improved, as some studies on the sensitivity of RF
classifiers based on the number of trees have proved [51,52]. The default value of ntree for
remote sensing image prediction is 500. A higher mtry will result in stronger individual
decision trees, but with an increase in correlation between trees, the accuracy of the model
is reduced [50]. An mtry usually uses the square root of the total number of variables in
classification tasks [38]. The two parameters ntree and mtry were determined with a test
based on the modified out-of-bag (M-OOB) accuracy in this study, and we found that the
number of 500 for ntree and four for mtry worked well for the classification task.

2.2.3. Composite Ice Presence Maps

By synthesizing the classification results of Aqua and Terra satellite images taken
on the same day in the Arctic, a daily ice presence map was obtained, and a weekly
ice presence map and a weekly fusion optical image were obtained based on this. The
following rules were formulated in the composite ice maps:

1. Calculate the number of times N of non-cloud categories for each pixel among all
image classification results from the Terra or Aqua satellites in a day.

2. (1) Ice extraction: Judge whether N is greater than the threshold T1. T1 is the threshold
of the number of ice occurrences for each pixel per day and was defined as 5 in this
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study. If N is greater than T1, the pixel is judged to be in the category corresponding
to the mode of the non-cloud sequence, and ice extraction is performed on the entire
Arctic region. If N is less than T1, the pixel is judged to be a cloud. (2) Water extraction:
Determine whether N is greater than the threshold T2. T2 is the threshold of the
number of water occurrences for each pixel per day and was defined as 2 in this study.
If N is greater than T2, the pixel is judged to be in the category corresponding to the
mode of the non-cloud sequence, and water extraction is performed on the entire
Arctic region; if N is less than T2, the pixel is judged to be a cloud.

3. Synthesize the results extracted in step 2 to obtain daily synthetic ice maps.
4. Repeat steps 1 to 3 to calculate the ice map for seven consecutive days and synthesize

the final ice map for the week.
5. Use all daily synthetic ice maps for seven consecutive days to correct the classification

results of the MFLFRF algorithm. According to the corrected classification results, the
pre-processed images are fused by assigning weights to obtain weekly fused images.

6. The specific processing flow is shown in Figure 2.
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Figure 2. Representation of the methodological framework used in Section 2.2.3. Here, N represents
the number of occurrences of non-cloud categories for each pixel, T1 is the threshold of the number
of ice occurrences for each pixel, and T2 is the threshold of the number of occurrences of water for
each pixel.
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• Daily and weekly composite ice presence maps:

In the classification results using the MFLFRF algorithm, the extracted sea ice is mixed
with a little cloud and cloud shadow, while the accuracy of the water extraction is higher.
Therefore, when performing ice map synthesis, ice and water are extracted separately.
First, the number of non-cloud categories N that the current pixel appears in all image
classification results obtained from the Terra or Aqua satellites in a day is calculated, and
then the category of the current pixel is determined by comparing N with the threshold to
extract ice and water regions. In this way, it can be ensured that the area of the ice map can
be maximized under the given cloud cover.

• Weekly fused images:

Since the shortwave infrared band has the characteristics of penetrating thin clouds
but cannot penetrate thick clouds, the thin cloud areas can be extracted by threshold
segmentation using band 7. After normalizing the thin cloud areas, the power function
formula y = (1 − x)4 is used to calculate the weight of the thin cloud areas. Here, x rep-
resents the normalized pixel value of the thin cloud, and y is the assigned weight value.
The weight value range is between 0 and 1, and the smaller the thin cloud value, the larger
the weight value assigned. Then, the weighted average value of each pixel is calculated to
obtain the weekly fusion image.

3. Results
3.1. Results of the Ice Map Products
3.1.1. The Single-Scene Ice Presence Maps

In the polar regions, the recognition accuracy of ice, cloud, and water has always been
an urgent problem to be solved, especially in the sea ice areas covered by thin clouds, and
ice–water mixing areas including broken ice areas and submerged ice areas, which are
easily confused. In this study, several groups of representative regions were selected to
show the results of the classification. In order to illustrate the effectiveness of the training
sample library established in this article and the accuracy of the results, the classification
results of images from different locations acquired by the two satellites at different times
using the MFLFRF algorithm are compared in Figures 3 and 4. They were selected from the
Terra and Aqua satellites on 3 July 2018, and 3 August 2019, and contained thin ice, broken
ice, and thin clouds.

It can be seen from that, compared with the MOD29 sea ice products, the results
obtained by the MFLFRF algorithm can more accurately identify cloud areas, ice areas, and
water areas. The recognition accuracy of the boundary regions between thin clouds, thin
ice, and water is more accurate. In the blue cloud regions (displayed as blue in the bands 7,
2, and 1 combination mode) in the yellow frame in Figure 3a, the area in the MOD29 ice
map is misidentified as ice by looking at Figure 3a,e. The ice map obtained by the MFLFRF
algorithm can accurately identify blue clouds in this area, but some small cloud shadow
areas are misidentified. For the identification of complex areas where ice and water are
mixed (as shown in the yellow box in Figure 3b), the MOD29 ice map fails to identify the
water areas, while the MFLFRF algorithm can accurately identify water and ice. In the
water area in the yellow frame area in Figure 4a, some water areas in the MOD29 ice map
were misidentified as cloud areas, while the MFLFRF algorithm accurately identified them
as water areas. The MFLFRF algorithm can accurately identify the detailed information of
the broken ice area in the yellow frame area in Figure 4b.



Remote Sens. 2021, 13, 550 10 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 20 

 

  
(a) (b) 

  
(c) (d) 

  
(e)  (f) 

 
 

Figure 3. Process illustration using Terra satellite imagery as an example. (a) and (b) are both false colors images of the 

combination of bands 7, 2, and 1, and the acquisition times are 3 July 2018, and 3 August 2019, respectively; (c) and (d) are 

the classification results of (a) and (b) images using the MFLFRF algorithm; (e) and (f) are the corresponding MOD29 sea 

ice products of (a) and (b) images, respectively. 

Figure 3. Process illustration using Terra satellite imagery as an example. (a) and (b) are both false
colors images of the combination of bands 7, 2, and 1, and the acquisition times are 3 July 2018,
and 3 August 2019, respectively; (c) and (d) are the classification results of (a) and (b) images using
the MFLFRF algorithm; (e) and (f) are the corresponding MOD29 sea ice products of (a) and (b)
images, respectively.
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Figure 4. Process illustration using Aqua satellite imagery as an example. (a) and (b) are both false
color images of the combination of bands 7, 2, and 1, and the acquisition times are 3 July 2018, and
3 August 2019, respectively; (c) and (d) are the classification results of (a) and (b) images using
the MFLFRF algorithm; (e) and (f) are the corresponding MOD29 sea ice products of (a) and (b)
images, respectively.

3.1.2. The Daily and Weekly Composite Ice Presence Maps

Based on the classification results of the MFLFRF algorithm, the daily and weekly
composite ice presence maps were obtained using a filtering method based on cloud motion
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feature characteristics. Figure 5 shows the daily and weekly comparison ice maps with SIC
products from AMSR2.
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Figure 5. Comparison of daily and weekly composite ice presence maps and SIC maps from AMSR2. (a) is the daily
synthetic ice map from the Terra satellite on 1 August 2019. (b) is the weekly synthetic ice map from the Terra and Aqua
satellites on 1–7 August 2019. (c) is the daily SIC map from AMSR2 on 1 August 2019. (d) is the SIC seven-day average map
from AMSR2 on 1–7 August 2019.

Due to the influence of clouds in the Arctic region, the distribution of daily clear sky
areas is sparse and irregular. As shown in Figure 5a, the daily ice map is covered by clouds
in most areas of the Arctic. Compared with the SIC map from AMSR2 (Figure 5c), it was
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found that the spatial distribution of sea ice in the daily ice map under clear sky conditions
was relatively consistent with that of the SIC map. The weekly composite ice presence
map (Figure 5b) and the weekly average SIC map from AMSR2 (Figure 5d) have a strong
consistency in their distribution of sea ice in clear sky regions, especially in the edge regions
of sea ice. Most areas in the weekly composite ice map are clear sky areas, but there are
still some areas covered by clouds for seven consecutive days that show cloud areas.

3.1.3. The Weekly Fused Optical Images

The cloud areas classified by the MFLFRF algorithm were corrected using the daily ice
presence maps. According to the corrected classification results, the fused optical images
were obtained by the weighted average fusion method. Figure 6 shows the weekly fusion
images for four consecutive weeks from 1 to 28 August 2019.
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Figure 7. Comparison of the weekly fusion image and the SIC seven-day average from AMSR2. (a) is an enlarged image of
the red rectangular area of Figure 6a, and (b) is the SIC from AMSR2 in the red rectangular area of Figure 6a.

From the weekly fusion images of the first four weeks of August 2019 (Figure 6a–d), it
can be seen that the Arctic sea ice was in a melting state as a whole. On the whole, the area
covered by clouds in the fusion map in the first week of August was relatively small, and
the image quality was better. The areas covered by clouds in the next three weeks were
more extensive, and the quality of the fusion images was affected. Comparing the weekly
fused image with the average weekly SIC maps of AMSR2 in the first week of August 2019
(Figures 5d and 6a), it can be clearly seen that the spatial distribution of ice in the fusion
image obtained by the algorithm proposed in this study was consistent with the SIC map
of AMSR2.

3.2. Accuracy of the Ice Map Products
3.2.1. Accuracy of the Single-Scene Ice Presence Maps

In order to verify the classification accuracy of the MFLFRF algorithm using fixed
training samples, we randomly selected 100 images from all the images covering the Arctic
region in August 2019 and September 2020, and 40 verification points were randomly
selected for each image, with a total of 4000 verification points. A 6.25 km regularly spaced
grid was generated by taking the verification points, and the mode of all points in the grid
was taken as the category of the grid. Then, the verification points were selected randomly,
with the grid as the unit. Using the false color image of bands 7, 2, and 1 combination mode
with a 250 m spatial resolution, the artificial photo interpretation was performed on each
verification point to obtain the true category of the feature. The thin ice at the edge of the
ice area is classified as ice category, and the ice area or water area covered by thin clouds is
classified as cloud category, when performing the artificial photo interpretation. The entire
artificial photo interpretation process was carried out with ArcGIS software. According to
the image’s texture, color, shape, and other characteristics, the verification points on the
grid were interpreted one by one as ice, water, or clouds using expert judgment. The final
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results of the artificial photo interpretation were the combination of three independent
people, and the majority voting rule was used to get the final classification results. About
30 grid points can be manually classified in one minute. The results of artificial photo
interpretation were taken as the true values, and the accuracy of the classification results
using the MFLFRF algorithm and the MOD29 products was evaluated, respectively. The
verification results are shown in Tables 3 and 4.

Table 3. Accuracy of the classification results using the MFLFRF algorithm.

Ground Truth

Water Ice Cloud Total Commission Error

MFLFRF Map

Water 489 7 2 498 1.81%
Ice 0 392 6 398 1.51%

Cloud 0 39 3065 3104 1.27%
Total 489 438 3073 4000 N/A

Omission Error 0.00% 10.50% 0.26% N/A
Overall

Accuracy 98.65%

Table 4. Accuracy of the MOD29 products.

Ground Truth

Water Ice Cloud Total Commission Error

MOD29 Map

Water 441 9 16 466 5.36%
Ice 21 378 79 478 20.92%

Cloud 27 51 2978 3056 2.55%
Total 489 438 3073 4000 N/A

Omission Error 10.88% 13.70% 3.09% N/A
Overall

Accuracy 94.93%

On the whole, the accuracy of the MFLFRF algorithm recognition results is much
higher than that of the MOD29 products. The mapping accuracy of the results from the
MFLFRF algorithm is over 96%, the accuracy rate for ice recognition is 98.49%, and the
accuracy rate for cloud recognition is 98.73%. The main error source in the classification
results obtained by the MFLFRF algorithm is the mislabeling of sea ice as a cloud category.
This is mainly because it is easy to classify the ice covering thin clouds into ice categories
during artificial photo interpretation, while the MFLFRF algorithm classifies the area into
cloud categories. However, these regions are easy to be judged as ice categories during
manual discrimination, which affects the accuracy of the verification results. The mapping
accuracy of the MOD29 products is 86.86%, the accuracy rate of ice recognition is 79.08%,
and the accuracy rate of cloud recognition is 97.45%. The main reason for the low accuracy
of ice recognition in MOD29 products is that blue clouds (displayed as blue in the bands 7,
2, and 1 combination mode) are mistakenly classified as ice (as shown in the yellow box in
Figure 3a). Therefore, another reason for the lower evaluation accuracy of MOD29 may
be related to the spatial resolution of the products being coarser than that of the MFLFRF
products. For example, the MOD29 ice map cannot identify the water area in the mixed
area of ice and water in Figure 3f.

3.2.2. Accuracy of Daily and Weekly Composite Ice Presence Maps

In the accuracy verification of the daily composite ice presence maps, the number
of verification points selected for the daily ice maps was not the same, because the clear
sky areas of each daily ice presence maps were not equal. A set of 3000 verification points
was randomly selected from the clear sky area of the daily composite ice presence maps in
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August 2019 and September 2020, and the daily SIC maps of AMSR2 were used as the true
values to verify the synthetic products. The verification results are as shown in Table 5.

Table 5. Accuracy of the daily composite ice presence maps.

AMSR2 Sea Ice Maps

Water Ice Total Commission Error

MFLFRF Map

Water 894 41 935 4.39%
Ice 3 2062 2065 0.15%

Total 897 2103 3000 N/A
Omission Error 0.33% 1.95% N/A

Overall Accuracy 98.53%

The accuracy of the weekly synthetic composite ice presence maps in the clear sky
area in August 2019 and September 2020 was verified using the average weekly SIC maps
of AMSR2 as the true values. There were four weekly composite ice presence maps, each of
which randomly selected 100 points, with a total of 800 verification points. The verification
results are shown in Table 6.

Table 6. Accuracy of the weekly composite ice presence maps.

AMSR2 Sea Ice Maps

Water Ice Total Commission Error

MFLFRF Map

Water 239 9 248 3.63%
Ice 2 550 552 0.36%

Total 241 559 800 N/A
Omission Error 0.83% 1.64% N/A

Overall Accuracy 98.60%

Table 5 shows that the main source of error in the daily composite ice presence maps
is the misclassification of sea ice as water. Factors that may affect the accuracy of the
evaluation results include the edges of deformed ice, melt ponds, and openings in the ice
cover that tend to be narrow features (such as leads), which may not be detected in SIC
products from AMSR2 with a spatial resolution of 6.25 km [31,53,54].

Similarly, the main source of error in the weekly composite ice presence maps shown
in Table 6 is also the misclassification of sea ice as water. In addition to the different spatial
resolutions of the two products, the main factor affecting the accuracy of the products
may be that the edge details of the sea ice are smoothed out when averaging the daily SIC
products from AMSR2. The weekly ice presence maps are the results of synthesis, and the
two products may have errors on some ice edges.

3.2.3. Accuracy of Weekly Fused Optical Images

Since the weekly fused optical images are based on the classification results of the
pre-processed image sets for clear sky fusion, it is difficult to quantitatively verify these
composite images. In this study, the products are compared with the existing enlarged
drawings of SIC products from AMSR2 in Figure 7. The sea ice spatial distribution of the
weekly fused optical images is consistent with that of the SIC products, but they are easily
covered by clouds and cannot map the entire Arctic region. The weekly fusion images can
fully retain the detailed information of sea ice distribution, especially the texture details of
ice in the marginal ice zone.

4. Discussion

Previous work has mostly used passive microwave data with a coarse spatial reso-
lution to monitor polar sea ice [15,17], and radar data with a higher spatial resolution to
monitor sea ice conditions in local areas [28,29]. Because optical data are affected by clouds
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and fog, and because it is difficult to distinguish between them and ice and snow, they are
rarely used in large-scale and long-term sea ice monitoring and analysis of polar regions.
In this study, we used MODIS data to realize polar ice map products and fusion products
with a higher spatial resolution.

The improvement in spatial resolution can help the products to detect smaller features.
However, cloud cover is the most restrictive obstacle to using optical data to map sea
ice [31]. In traditional ice map products, there are some areas where clouds are mislabeled
as ice. In this study, using the method of multi-feature combination, the prevalence of the
phenomenon where clouds are incorrectly marked as ice in ice maps obtained by the RF
machine learning classification method is lower than that of the MOD29 product, and the
overall classification accuracy is higher.

Using the false color combination of MODIS reflectance bands 7, 2, and 1, ice and
cloud types can be distinguished more accurately. The NDSII-2 index can highlight most of
the ice and snow features, so adding the NDSII-2 index feature can greatly improve the
classification accuracy. The blue high clouds and cold clouds composed of small ice crystals
are difficult to distinguish from sea ice, which is also a problem in traditional methods of
monitoring sea ice [31]. In this study, based on the texture difference between blue clouds
and sea ice, RELBP texture features were added when using the MFLFRF classification
algorithm to distinguish blue clouds and sea ice.

Although the MFLFRF classification algorithm has greatly improved the recognition
accuracy of ice and clouds, there are still some areas with cloud shadows and blue clouds
that are misidentified as ice. According to the movement characteristics of clouds, when
compositing ice images the number of occurrences of non-cloud categories in the same pixel
in all classified images in a day can be used to effectively remove this type of classification
error. Combining the classification results of all the images covering the Arctic region for
seven consecutive days, it was possible to obtain a clear sky ice map for most of the areas,
but there were still some areas covered by clouds for seven consecutive days.

5. Conclusions

The fully automatic ice map generation model proposed by this research uses the
highest possible spatial resolution of MODIS-Terra and Aqua satellite reflectance data
and can provide a sea ice presence map with 250-meter spatial resolution. This model
greatly improves the recognition accuracy of ice and clouds, can realize the production of
near real-time ice maps, and can be used in many scientific and practical applications in
the future.

This model uses a machine learning method that integrates multiple features to
identify ice and clouds. Compared with traditional ice map products, the accuracy is
greatly improved, and its accuracy reaches more than 98%. On the basis of high-precision
classification, daily and weekly synthetic ice presence maps and weekly clear sky images
are realized. The polar regions are extremely affected by clouds. Although most areas of
the weekly synthetic ice map are clear, there are still a few areas covered by clouds. In the
future, the composite algorithm will be further improved to replace these cloud-covered
areas with clear sky images so as to achieve daily or weekly cloudless clear sky images.
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