

Terrestrial laser scanning for vegetation analyses with a special focus on savannas

Tasiyiwa Priscilla Muumbe 1, *, Jussi Baade 2, Jenia Singh 3, Christiane Schmullius 1 and Christian Thau 1,4

1 Department for Earth Observation, Friedrich Schiller University Jena, 07743 Jena, Germany; c.schmullius@uni-jena.de (C.S.), christian.thau@uni-jena.de (C.T.)

- 2 Department of Physical Geography, Friedrich Schiller University Jena, 07743 Jena; Germany; jussi.baade@uni-jena.de
- 3 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; jeniasingh@fas.harvard.edu
- 4 Department for Urban Development and Environment, Jena City Administration, 07743 Jena, Germany
- * Correspondence: tasiyiwa.muumbe@uni-jena.de

Supplementary Material

Table S1. Full List of Reviewed Research	Articles.
--	-----------

Αι	tthor (s), Year	Title	Journal
1.	Aijazi et al., 2017	Automatic detection and parameter estimation of trees	Remote Sensing
		for forest inventory applications using 3D terrestrial	
		LiDAR	
2.	Åkerblom et al., 2018	Non-intersecting leaf insertion algorithm for tree	Interface Focus
		structure models	
3.	Anderson et al., 2018	Estimating vegetation biomass and cover across large	Ecological Indicators
		plots in shrub and grass dominated drylands using	
		terrestrial lidar and machine learning	
4.	Bailey and Ochoa, 2018	Semi-direct tree reconstruction using terrestrial LiDAR	Remote Sensing of Environment
		point cloud data	
5.	Bazezew et al., 2018	Integrating Airborne LiDAR and Terrestrial Laser	International Journal of Applied Earth Observation
		Scanner forest parameters for accurate above-ground	and Geoinformation
		biomass/carbon estimation in Ayer Hitam tropical	
		forest, Malaysia	
6.	Béland et al., 2011	Estimating leaf area distribution in savanna trees from	Agricultural and Forest Meteorology
		terrestrial LiDAR measurements.	
7.	Beyer et al., 2017	Validation of a functional-structural tree model using	Ecological Modelling
		terrestrial Lidar data	
8.	Bordin et al., 2013	Analysis of the Influence of Distance on Data	ISPRS - International Archives of the Photogrammetry,
		Acquisition Intensity Forestry Targets By a Lidar	Remote Sensing and Spatial Information Sciences
		Technique With Terrestrial Laser Scanner	
9.	Brede et al., 2019	Non-destructive tree volume estimation through	Remote Sensing of Environment
		quantitative structure modelling: Comparing UAV	
		laser scanning with terrestrial LIDAR	

Author (s), Year	Title	Journal
10. Bremer et al.,2018	Multi-temporal fine-scale modelling of Larix decidua	Remote Sensing of Environment
	forest plots using terrestrial LiDAR and hemispherical	
	photographs	
11. Burt et al., 2013	Rapid characterisation of forest structure from TLS	International Geoscience and Remote Sensing
	and 3D modelling	Symposium (IGARSS)
12. Burt et al., 2019	Extracting individual trees from lidar point clouds	Methods in Ecology and Evolution
	using treeseg	
13. Calders et al., 2014	Implications of sensor configuration and topography	Agricultural and Forest Meteorology
	on vertical plant profiles derived from terrestrial	
	LiDAR	
14. Calders et al., 2015	Nondestructive estimates of above-ground biomass	Methods in Ecology and Evolution
	using terrestrial laser scanning	
15. Calders et al., 2016	Large-area virtual forests from terrestrial laser	International Geoscience and Remote Sensing
	scanning data	Symposium (IGARSS)
16. Calders et al., 2018	Variability and bias in active and passive ground-	Agricultural and Forest Meteorology
	based measurements of effective plant, wood and leaf	
	area index	
17. Calders et al., 2018	Realistic forest stand reconstruction from terrestrial	Remote Sensing
	LiDAR for radiative transfer modelling	
18. Chen et al., 2019	Nondestructive estimation of the above-ground	Forests
	biomass of multiple tree species in boreal forests of	
	china using terrestrial laser scanning	
19. Cooper et al., 2017	Examination of the potential of terrestrial laser	Remote Sensing
	scanning and structure-from-motion photogrammetry	
	for rapid nondestructive field measurement of grass	
	biomass	

Author (s), Year	Title	Journal
20. Côté et al., 2012	A fine-scale architectural model of trees to enhance	Agricultural and Forest Meteorology
	LiDAR-derived measurements of forest canopy	
	structure	
21. Côté et al., 2018	Fine-scale three-dimensional modeling of boreal forest	Remote Sensing of Environment
	plots to improve forest characterization with remote	
	sensing	
22. Cuni-Sanchez et al., 2016	African savanna-forest boundary dynamics: A 20-year	PLoS ONE
	study	
23. Danson et al., 2018	Spectral and spatial information from a novel dual-	Interface Focus
	wavelength full-waveform terrestrial laser scanner for	
	forest ecology	
24. Decuyper et al., 2018	Assessing the structural differences between tropical	Forest Ecology and Management
	forest types using Terrestrial Laser Scanning	
25. Delagrange and Rochon, 2011	Reconstruction and analysis of a deciduous sapling	Annals of Botany
	using digital photographs or terrestrial-LiDAR	
	technology	
26. Errington et al., 2015	Reflectance modelling using terrestrial LiDAR	IST 2015 - 2015 IEEE International Conference on
	intensity data	Imaging Systems and Techniques, Proceedings
27. Estornell et al., 2017	Estimation of structural attributes of walnut trees	Revista de Teledeteccion
	based on terrestrial laser scanning	
28. Fan et al., 2020	A new quantitative approach to tree attributes	Remote Sensing
	estimation based on LiDAR point clouds	
29. Fang & Strimbu, 2019	Comparison of Mature Douglas-Firs' Crown	Remote Sensing
	Structures Developed with Two Quantitative	
	Structural Models Using TLS Point Clouds for	
	Neighboring Trees in a Natural Regime Stand	

Author (s), Year	Title	Journal
30. Ferrara et al., 2018	An automated approach for wood-leaf separation	Agricultural and Forest Meteorology
	from terrestrial LIDAR point clouds using the density	
	based clustering algorithm DBSCAN	
31. Ghimire et al., 2017	Using terrestrial laser scanning to measure forest	PFG - Journal of Photogrammetry, Remote Sensing
	inventory parameters in a Mediterranean coniferous	and Geoinformation Science
	stand of western Greece	
32. Gollob et al., 2019	Influence of scanner position and plot size on the	Remote sensing
	accuracy of tree detection and diameter estimation	
	using terrestrial laser scanning on forest inventory	
	plots	
33. Gonzalez de Tanago et al., 2018	Estimation of above-ground biomass of large tropical	Methods in Ecology and Evolution
	trees with terrestrial LiDAR	
34. Greaves et al., 2015	Estimating aboveground biomass and leaf area of low-	Remote Sensing of Environment
	stature Arctic shrubs with terrestrial LiDAR	
35. Greaves et al., 2017	Applying terrestrial lidar for evaluation and	Remote Sensing Letters
	calibration of airborne lidar-derived shrub biomass	
	estimates in Arctic tundra	
36. Grotti et al., 2020	An intensity, image-based method to estimate gap	Agricultural and Forest Meteorology
	fraction, canopy openness and effective leaf area index	
	from phase-shift terrestrial laser scanning	
37. Guimarães-Steinicke et al., 2019	Terrestrial laser scanning reveals temporal changes in	Advances in Ecological Research
	biodiversity mechanisms driving grassland	
	productivity	
38. Hancock et al., 2017	Measurement of fine-spatial-resolution 3D vegetation	Remote Sensing of Environment
	structure with airborne waveform lidar: Calibration	
	and validation with voxelised terrestrial lidar	

Author (s), Year	Title	Journal
39. Heinzel & Huber, 2016	TLS field data based intensity correction for forest	International Archives of the Photogrammetry,
	environments	Remote Sensing and Spatial Information Sciences
		ISPRS Archives
40. Heinzel & Huber, 2017	Detecting tree stems from volumetric TLS data in	Remote Sensing
	forest environments with rich understory	
11. Heinzel and Huber, 2017	Tree stem diameter estimation from volumetric TLS	Remote Sensing
	image data	
12. Indirabai et al., 2019	Terrestrial laser scanner based 3D reconstruction of	Ecological Informatics
	trees and retrieval of leaf area index in a forest	
	environment	
13. Kaasalainen et al., 2011	Analysis of incidence angle and distance effects on	Remote Sensing
	terrestrial laser scanner intensity: Search for correction	
	methods	
14. Kaasalainen et al., 2014	Change detection of tree biomass with terrestrial laser	Remote Sensing
	scanning and quantitative structure modelling	
15. Kato et al., 2014	Efficient field data collection of tropical forest using	International Geoscience and Remote Sensing
	terrestrial laser scanner	Symposium (IGARSS)
16. Kato et al., 2015	Fusion between UAV-SFM and terrestrial laser	International Geoscience and Remote Sensing
	scanner for field validation of satellite remote sensing	Symposium (IGARSS)
47. Kelbe et al., 2013	Reconstruction of 3D tree stem models from low-cost	Laser Radar Technology and Applications XVIII
	terrestrial laser scanner data	
48. Kelbe et al., 2015	Single-scan stem reconstruction using low-resolution	IEEE Journal of Selected Topics in Applied Earth
	terrestrial laser scanner data	Observations and Remote Sensing
19. Kim et al.,2016	Simulated full-waveform lidar compared to Riegl VZ-	Laser Radar Technology and Applications XXI
	400 terrestrial laser scans	**

Author (s), Year	Title	Journal
50. Kirton et al., 2009	Detailed structural characterisation of the savanna flux	International Geoscience and Remote Sensing
	site at Skukuza, South Africa	Symposium (IGARSS)
51. Kong et al., 2015	New hybrid algorithms for estimating tree stem	Sensors (Switzerland)
	diameters at breast height using a two dimensional	
	terrestrial laser scanner	
52. Krooks et al., 2014	Tree structure vs. height from terrestrial laser scanning	Silva Fennica
	and quantitative structure models	
53. LaRue et al., 2020	Compatibility of Aerial and Terrestrial LiDAR for	Remote Sensing
	Quantifying Forest Structural Diversity	
54. Lau et al., 2018	Quantifying branch architecture of tropical trees using	Trees - Structure and Function
	terrestrial LiDAR and 3D modelling	
55. Lau et al., 2019	Estimating architecture-based metabolic scaling	Forest Ecology and Management
	exponents of tropical trees using terrestrial LiDAR and	
	3D modelling	
56. Li et al., 2019	Assessing revegetation effectiveness on an extremely	Agriculture, Ecosystems and Environment
	degraded grassland, southern Qinghai-Tibetan	
	Plateau, using terrestrial LiDAR and field data	
57. Liang et al., 2018	International benchmarking of terrestrial laser	ISPRS Journal of Photogrammetry and Remote
	scanning approaches for forest inventories	Sensing
58. Maas et al., 2008	Automatic forest inventory parameter determination	International Journal of Remote Sensing
	from terrestrial laser scanner data	
59. Magney et al., 2016	LiDAR canopy radiation model reveals patterns of	Agricultural and Forest Meteorology
	photosynthetic partitioning in an Arctic shrub	
	Detaining mounthefered in dev from an individual	Canadian Journal of Remote Sensing
60. Moorthy et al., 2008	Retrieving crown leaf area index from an individual	Callaulan journal of Kentole Sensing

Author (s), Year	Title	Journal
61. Moorthy et al., 2019	Semi-automatic extraction of liana stems from	ISPRS Journal of Photogrammetry and Remote
	terrestrial LiDAR point clouds of tropical rainforests	Sensing
62. Moskal and Zheng, 2012	Retrieving forest inventory variables with terrestrial	Remote Sensing
	laser scanning (TLS) in urban heterogeneous forest	
63. Muir et al., 2018	Measuring plot scale woodland structure using	Remote Sensing in Ecology and Conservation
	terrestrial laser scanning	
64. Odipo et al., 2016	Assessment of aboveground woody biomass dynamics	Forests
	using terrestrial laser scanner and L-band ALOS	
	PALSAR data in South African Savanna	
65. Olivier et al., 2017	A method to quantify canopy changes using multi-	Agricultural and Forest Meteorology
	temporal terrestrial lidar data: Tree response to	
	surrounding gaps	
66. Olofsson et al., 2014	Tree stem and height measurements using terrestrial	Remote Sensing
	laser scanning and the RANSAC algorithm	
67. Olsoy et al., 2014	Aboveground total and green biomass of dryland	ISPRS Journal of Photogrammetry and Remote
	shrub derived from terrestrial laser scanning	Sensing
68. Oveland et al., 2017	Automatic estimation of tree position and stem	Remote Sensing
	diameter using a moving terrestrial laser scanner	
69. Paynter et al., 2018	Bounding uncertainty in volumetric geometric models	Interface Focus
	for terrestrial lidar observations of ecosystems	
70. Pitkänen et al., 2019	Measuring stem diameters with TLS in boreal forests	ISPRS Journal of Photogrammetry and Remote
	by complementary fitting procedure.	Sensing
71. Popovas et al., 2017	Individual tree parameters estimation from terrestrial	10th International Conference on Environmental
	laser scanner data	Engineering, ICEE 2017

Author (s), Year	Title	Journal
72. Putman et al., 2018	Detecting and quantifying standing dead tree	Remote Sensing of Environment
	structural loss with reconstructed tree models using	
	voxelized terrestrial lidar data	
73. Ravaglia et al., 2019	Comparison of three algorithms to estimate tree stem	Forests
	diameter from terrestrial laser scanner data	
74. Reddy et al., 2018	Automatic estimation of tree stem attributes using	Current Science
	terrestrial laser scanning in central Indian dry	
	deciduous forests	
75. Reddy et al.,2018	Automatic Tree Identification and Diameter	Journal of the Indian Society of Remote Sensing
	Estimation Using Single Scan Terrestrial Laser Scanner	
	Data in Central Indian	
76. Schulze-Brüninghoff et al., 2019	Methods for LiDAR-based estimation of extensive	Computers and Electronics in Agriculture
	grassland biomass	
77. Singh et al., 2018	Variability in fire-induced change to vegetation	Ecosphere
	physiognomy and biomass in semi-arid savanna	
78. Singh et al., 2020	Moving from plot-based to hillslope-scale assessments	International Journal of Applied Earth Observation
	of savanna vegetation structure with long-range	and Geoinformation
	terrestrial laser scanning (LR-TLS)	
79. Soma et al., 2020	Mitigating occlusion effects in Leaf Area Density	Remote Sensing of Environment
	estimates from Terrestrial LiDAR through a specific	
	kriging method	
80. Srinivasan et al., 2014	Multi-temporal terrestrial laser scanning for modeling	Forest Ecology and Management
	tree biomass change	
81. Srinivasan et al., 2015	Terrestrial laser scanning as an effective tool to	Remote Sensing
	retrieve tree level height, crown width, and stem	
	diameter	

Author (s), Year	Title	Journal
82. Stovall and Shugart, 2018	Improved biomass calibration and validation with	IEEE Journal of Selected Topics in Applied Earth
	terrestrial lidar: Implications for future LiDAR and	Observations and Remote Sensing
	SAR missions	
83. Sun et al., 2015	Retrieval and Accuracy Assessment of Tree and Stand	IEEE Geoscience and Remote Sensing Letters
	Parameters for Chinese Fir Plantation Using	
	Terrestrial Laser Scanning	
84. Tan & Cheng, 2015	Intensity data correction based on incidence angle and	Journal of Applied Remote Sensing
	distance for terrestrial laser scanner	
85. Tan & Cheng, 2016	Correction of incidence angle and distance effects on	Remote Sensing
	TLS intensity data based on reference targets	
86. Tan et al., 2018	Investigation of TLS intensity data and distance	Remote Sensing
	measurement errors from target specular reflections	
87. Tansey et al., 2009	Estimating tree and stand variables in a Corsican Pine	International Journal of Remote Sensing
	woodland from terrestrial laser scanner data	
88. Tao et al., 2015	Segmenting tree crowns from terrestrial and mobile	ISPRS Journal of Photogrammetry and Remote
	LiDAR data by exploring ecological theories	Sensing
89. Thies et al., 2004	Three-dimensional reconstruction of stems for	Scandinavian Journal of Forest Research
	assessment of taper, sweep and lean based on laser	
	scanning of standing trees	
90. Tian et al., 2014	Derivation of tree stem structural parameters from	Lidar Remote Sensing for Environmental Monitoring
	static terrestrial laser scanning data	XIV
91. Vaaja et al., 2016	the Effect of Wind on Tree Stem Parameter Estimation	ISPRS Annals of Photogrammetry, Remote Sensing
	Using Terrestrial Laser Scanning	and Spatial Information Sciences
92. Vaccari et al., 2013	Bias in lidar-based canopy gap fraction estimates	Remote Sensing Letters
93. Vrlingie et al., 2013	Shrub characterization using terrestrial laser scanning	Canadian Journal of Remote Sensing
	and implications for airborne LiDAR assessment	

Author (s), Year	Title	Journal
94. Wan et al., 2019	Quantification of occlusions influencing the tree stem	Forest Ecosystems
	curve retrieving from single-scan terrestrial laser	
	scanning data	
95. Wang et al., 2016	Fast and robust stem reconstruction in complex	International Archives of the Photogrammetry,
	environments using terrestrial laser scanning	Remote Sensing and Spatial Information Sciences -
		ISPRS Archives
96. Wang et al.,2014	A structure-aware global optimization method for	IEEE Transactions on Geoscience and Remote Sensing
	reconstructing 3-D tree models from terrestrial laser	
	scanning data	
97. Watt and Donoghue, 2005	Measuring forest structure with terrestrial laser	International Journal of Remote Sensing
	scanning	
98. Wu et al., 2018	Estimation of forest trees diameter from terrestrial	International Geoscience and Remote Sensing
	laser scanning point clouds based on a circle fitting	Symposium (IGARSS)
	method	
99. Xi et al., 2016	Automating plot-level stem analysis from terrestrial	Forests
	laser scanning	
100. Xia et al., 2015	Detecting stems in dense and homogeneous forest	Forests
	using single-scan TLS	
101. Xiangyu et al., 2014	3D reconstruction of a single tree from terrestrial	International Geoscience and Remote Sensing
	LiDAR data	Symposium (IGARSS)
102. Xu et al., 2020)	Estimation of degraded grassland aboveground	Ecological Indicators
	biomass using machine learning methods from	
	terrestrial laser scanning data	
103. Yang et al., 2013	Studying canopy structure through 3-D reconstruction	International Geoscience and Remote Sensing
-	of point clouds from full-waveform terrestrial lidar	Symposium (IGARSS)

Author (s), Year	Title	Journal
104. Yang et al., 2013	Three-dimensional forest reconstruction and structural	Remote Sensing of Environment
	parameter retrievals using a terrestrial full-waveform	
	lidar instrument (Echidna®)	
105. You et al., 2016	Precise measurement of stem diameter by simulating	Remote Sensing
	the path of diameter tape from terrestrial laser	
	scanning data	
106. Yrttimaa et al., 2019	Investigating the feasibility of multi-scan terrestrial	Remote sensing
	laser scanning to characterize tree communities in	
	southern boreal forests	
107. Yu et al., 2013	Stem biomass estimation based on stem reconstruction	Remote Sensing Letters
	from terrestrial laser scanning point clouds	
108. Yurtseven et al., 2019	Individual tree measurements in a planted woodland	Turkish Journal of Agriculture and Forestry
	with terrestrial laser scanner	
109. Zhang et al., 2019	A novel approach for the detection of standing tree	Remote Sensing
	stems from plot-level terrestrial laser scanning data	
110. Zheng etal.,2013	Retrieval of effective leaf area index in heterogeneous	IEEE Transactions on Geoscience and Remote Sensing
	forests with terrestrial laser scanning	
111. Zhou et al., 2018	Estimation of the plot level forest parameters from	IGARSS 2018 - 2018 IEEE International Geoscience and
	Terrestrial Laser Scanning Data	Remote Sensing Symposium
112. Zhu et al., 2015	3D leaf water content mapping using terrestrial laser	ISPRS Journal of Photogrammetry and Remote
	scanner backscatter intensity with radiometric	Sensing
	correction	
113. Zimbres et al., 2020	Savanna vegetation structure in the Brazilian Cerrado	Forest Ecology and Management
	allows for the accurate estimation of aboveground	
	biomass using terrestrial laser scanning	