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Abstract: Pests and diseases affect the yield and quality of grapes directly and engender noteworthy
economic losses. Diagnosing “lesions” on vines as soon as possible and dynamically monitoring
symptoms caused by pests and diseases at a larger scale are essential to pest control. This study has
appraised the capabilities of high-resolution unmanned aerial vehicle (UAV) data as an alternative to
manual field sampling to obtain sampling canopy sets and to supplement satellite-based monitoring
using machine learning models including partial least squared regression (PLSR), support vector
regression (SVR), random forest regression (RFR), and extreme learning regression (ELR) with a new
activation function. UAV data were acquired from two flights in Turpan to determine disease severity
(DS) and disease incidence (DI) and compared with field visual assessments. The UAV-derived canopy
structure including canopy height (CH) and vegetation fraction cover (VFC), as well as satellite-based
spectral features calculated from Sentinel-2A/B data were analyzed to evaluate the potential of UAV
data to replace manual sampling data and predict DI. It was found that SVR slightly outperformed
the other methods with a root mean square error (RMSE) of 1.89%. Moreover, the combination of
canopy structure (CS) and vegetation index (VIs) improved prediction accuracy compared with
single-type features (RMSEcs of 2.86% and RMSEVIs of 1.93%). This study tested the ability of UAV
sampling to replace manual sampling on a large scale and introduced opportunities and challenges
of fusing different features to monitor vineyards using machine learning. Within this framework,
disease incidence can be estimated efficiently and accurately for larger area monitoring operation.

Keywords: unmanned aircraft system (UAS); vineyard monitoring; machine learning; pests and
diseases; Sentinel-2 data; UAV data

1. Introduction

China, which has the second largest grape planting area of in the world, has seen
steady growth in planted area. The largest wine-grape growing region of China is Xin-jiang
province with 371,152 acres planted in 2018. Especially in Turpan city, given the high
economic benefits of this commodity crop, and the enormous planted area and production,
there is significant interest in developing a strategy to ensure grape quality and yield [1].
In the present study, the quality and yield of grapes were found to depend on their content
of sugars, acids, and phenols, and the accumulation of these substances during grape
development and maturation was influenced by the health of the grapes [2,3]. However,
pests and diseases incidence seriously affected the health of the grapes [4]. Studies have
shown that environmental (climatic and rainfall) conditions and vineyard management
programs play a vital role in the occurrence of pests and diseases. In particular, increases
in temperature and humidity with climate change have caused increasing occurrences of
pests and diseases [5]. Pests and diseases are a major threat to grape yield and composition,
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because they often dramatically affect the spongy tissues of leaves, change the ratio between
different kinds of pigments, and damage photosynthetic pigments of microalgae [6,7], thus
affecting photosynthesis during the growth stage. The use of pesticides is still a mainly
pests and diseases control [8]. However, food security and sustainability are of major
importance to agriculture production [9]. In recent years, many studies have shown that
scientific pest management programs are important because overuse of pesticides can be
harmful to human health and the environment [8,10]. Therefore, an in-depth understanding
of the incidence and distribution of pests and diseases in vineyards for the purpose of pest
control has become difficult for local governments and growers to achieve. It is necessary to
evaluate infection indicators as important evidence to predict the development of pests and
diseases, so as to develop scientific and organic protection plans [9]. Monitoring vineyards
affected by pests is an initial and crucial step during pest control, because it can provide
reference information and valuable parameters for government and growers to generate a
strategy for pesticide purchases [1].

To provide important information on vineyard status at different scales all year round
for different managers, remote sensing is an outstanding choice [11]. Traditional and
classical crop monitoring provides two main methods to monitor the status of crops
and changes caused by various factors such as plant stress, pests, and diseases. One is
measuring leaves and shoots under field conditions based on the polarization characteristics
of reflected radiation and using a hand-held spectrometer and fluorometer to estimate plant
stress [12]. In addition to leaf-scale measurements, the vegetation index, leaf water indices,
and chlorophyll fluorescence can be measured for the entire canopy and crops [12,13].
Both traditional methods have the common weakness that they do not lend themselves
to large-scale monitoring operation [14]. Recent advances in remote sensing techniques
provide an additional tool to monitor plants at the canopy scale, which has facilitated
the discrimination of crops affected by pest infestation [15,16]. Among remote sensing
platforms, satellites and unmanned aerial vehicle (UAV) platforms are the most widely used
to carry sensors in present-day research. Although satellite optical data are widely used,
their limitations due to spatial resolution and atmospheric effects cannot be ignored [17].
When separating the contributions of different land-surface components such as canopy
and soil, the accuracy of satellite data cannot meet application requirements due to mixed
pixels [18,19]. In addition, one crucial step of monitoring by Sentinel-2 imagery is collecting
validation and reference data. These data for remote sensing applications are traditionally
acquired through manual field surveys, which are associated with some limitations and
risks [20]. Moreover, the lack of three-dimensional canopy information impedes the
accuracy of crop monitoring applications in precision agriculture [21].

In remote sensing monitoring applications, considering the weaknesses of satellite
platforms and the fact that UAV platforms to support high-resolution data can be easily
obtained, more and more small commercial UAVs with various types of sensors are being
used to provide measurements. Over the past decade, a growing number of researchers
have used multi-sensor data to monitor crops [14]. In previous studies, many researchers
have proposed various methods of combining canopy 3D structures extracted from UAV
data and spectral information from Sentinel-2 data to estimate bio-physical crops’ param-
eters such as Chlorophyll (Chl) a content, Chl b content, and leaf nitrogen concentration
(N) [1,22]. Researchers have used fusion of data from low-cost RGB, multispectral, and
thermal data to estimate biophysical and biochemical [14,23], such as nitrogen concentra-
tion and Chl a content [14]. For large-scale monitoring, UAV and Sentinel-2 data have been
used to estimate the initial biomass of green algae in the sea [24], as well as the combination
of UAV and Sentinel-2A data has been used to evaluate plant physiological status under
water stress in vineyards [25]. Several researchers have used low-cost sensors integrated
onto a UAV and satellite imaging for stress detection [15]. Previous studies have shown
the combination of UAV-extracted information with the Sentinel-2-based vegetation index
is effective for crop monitoring and disaster assessment [25–27].
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However, as demand for precision agriculture increases from growers and govern-
ments, providing physiological monitoring results is not enough. It is necessary to provide
visual results when monitoring crops to help growers and government workers visualize
crop conditions. Unfortunately, it is difficult to provide intuitive quantitative data on
disease incidence for growers, because quantitative research studies on disease incidence
are still lacking, especially in pergola crops such as vineyards. In addition, field sampling is
a common method of assessing vine disease in each row of existing pest incidence studies,
which is a difficult process due to several limitations: (1) this is difficult, expensive, and
time-consuming work [28]; (2) the reliability of ground-based positioning data may be
affected by the impact and density of canopy cover [29,30]; (3) field assessment is restricted
by topography [31,32]; (4) considering that the vine canopies vigor is well related to vines
diseases status, field assessment can not observe the whole vine canopies from a bird’s
eye view [18]. In order to overcome these limitations, UAV data are used as an alternative
source for reference data for field assessment. In addition, the fusion of high-resolution
UAV-derived information and Sentinel-2 based vegetation index is used for monitoring
vineyards and quantifying disease incidence and severity.

The fusion of satellite data with UAV data provides a wealth of information as ex-
planatory variables to improve estimation performance of grapevine quality. Nevertheless,
the health status of the grapevine is determined by the interaction of many factors, and the
relationship between them is not always linear, so it cannot be predicted by linear statistical
methods [33]. To overcome the nonlinearity inherent in a large number of variables, ma-
chine learning is usually used for estimation. Over the past decade, the growing number
of studies focused on modern agricultural applications based on remote sensing using
different machine learning (ML) methods have shown the capability of ML methods for
classification and regression analysis. Approaches such as partial least squares regression
(PLSR) [34], random forest regression (RFR) [35], support vector regression (SVR) [36], and
the extreme learning machine (ELM) and its variants [37] have been used for a series of
remote sensing-based agricultural analyses. PLSR overperformed in yield prediction of
drought-stressed spring crops [38]. Especially, ELM and extended ELM algorithms with
the sigmoid activation function replaced by various new activation functions were applied
to berry yield and quality prediction [33]. These previous studies demonstrated that ML
methods have achieved accurate yield predictions by overcoming the drawbacks of remote
sensing datasets such as nonlinearity and spatial autocorrelation [39].

This study has investigated the ability to combine Sentinel-2 data and UAV-derived
canopy structure data for monitoring the pests caused by Lycorma delicatula, using UAV
data as an alternative to field data. This study assessed the following: (i) the feasibility
and ability of replacing field samples by UAV data to monitor pest incidence and severity;
(ii) the capability of VIs calculated from Sentinel-2 data to accurately evaluate disease
severity (DS) and disease incidence (DI) levels in pest-infected vineyards in Turpan; (iii) the
potential for combining features regarding canopy spectral and structure from UAV data
and temporal Sentinel-2 data to monitor and predict DI in vineyards using ML methods.

2. Materials
2.1. Study Site and Field Data Collection

The study was conducted in a grape-growing area in Turpan (northwestern China,
87◦6′ E, 41◦12′ N), where various kinds of grape are widely planted and have been affected
by pests and diseases in recent years showed in Figure 1. The region has a continental
warm temperate desert climate with a mean annual precipitation of 16.4 mm and a mean
annual temperature of 13.9 ◦C. As studied by Serrano [25], the grapevine canopies were
more affected by pests when high temperatures and heavy rainfall occurred during the
vegetative period and during the initial growth period of the berries. Therefore, the Turpan
grape plantation became a suitable research area.
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Figure 1. The top image area A covered by a light red mask shows the unmanned aerial vehicle (UAV)
sampling region in Gaochang zone of Turpan, and area B shows RGB mosaics over a Sentinel-2A
tile, and C is a 6-cm spatial resolution image acquired on 16 May 2019. Multispectral images were
acquired on the same day and covered the same area. The bottom image area covered by a light red
mask shows the locations of the observed field plots.

The field survey was conducted on 16 May to 18 May 2019, observing 25 fields.
According to the information provided by grape growers and local professionals, different
grades of symptoms and damaged area were classified as shown in Table 1, and individual
rows graded data as 0 (Healthy), 1 (Initial infestation), 2 (Medium infestation), 3 (High
infestation), and 4 (Very high infestation) within a sampling area. In the next section,
these criteria were also used to determine whether a vine is sick based on high-resolution
UAV data.
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Table 1. Pests and diseases evaluation criteria.

DS Level Severity Symptom Damaged Area Incidence

0 Healthy Symptomless 0% No Incidence
1 Initial Leaves became brown and curled up 0%–25% Incidence

2 Medium Canopy with a small portion of dead
branches and brown leaves 25%–45% Incidence

3 High Canopy with a large area of dead branches 45%–65% Incidence
4 Very high Dead canopy >65% Incidence

2.2. Remote Sensing Data Acquisition
2.2.1. UAV Data

Using UAV data as an alternative to field data, high-resolution multispectral data
were collected on 16 July 2018 and 25 May 2019 using an airborne vehicle with a Parrot
Sequoia+ agricultural camera. This camera consists of two sensors: one was a multispectral
sensor that included four 1.2-million-pixel monochrome sensors (global shutter single-band
multispectral agricultural camera) that registered bands in the spectral ranges of Green
(530–570 nm, Central Wavelength (CWL) at 550), Red (640–680 nm, CWL at 660), Red Edge
(730–740 nm, CWL at 735) and Near infrared (770–810 nm, CWL at 790), with a horizontal
angular field of view (HFOV) of 61.9, a vertical angular field of view (VFOV) of 48.5, and an
RGB camera. When collecting each image, four monochrome sensors were simultaneously
triggered to produce four raw images in 12-bit tiff format, which also recorded a set
of latitude and longitude coordinates and the height of the ellipsoid coordinates in the
WGS84 coordinate system, as well as the rotation angle, position accuracy, and rotation
accuracy in the Exchangeable Image File (EXIF) information. Triggering all four sensors
simultaneously and recording EXIF information solves the lens parallax problem and
ensures the accuracy of four-band image geographical registration in the preprocessing
process. The second sensor was a Sunshine Sensor, which had the same interference filter
as the four monochrome sensor bands. This component was equipped with Global Position
System (GPS), Inertial Measurement Unit (IMU), and a magnetometer. As for the external
elements of the Sunshine Sensor, the irradiance at the moment of recording and the size
of the bottom angle were also recorded and were later used in the radiometric calibration.
Parrot Sequoia+ is set to automatic exposure in flight, and the sensor has an International
Organization for Standardization (ISO) of 100. More sensor details can be found in the
official Parrot Store.

In this study, the RGB map mosaicked from UAV data had a ground resolution of 6
cm, which made it possible distinguish canopy from background components and assess
disease severity (DS) and disease incidence (DI) for every vineyard quickly. DS indicates
the severity of the disease, and DI was the proportion of diseased rows in a plot [40,41]. A
value 0 was used to represent no incidence and 1 was used to represent incidence. DS and
DI were estimated by equations as follows:

DS = ∑(xini)/N (1)

DI = ∑ x/N, (2)

where xi represented the DS level shown in Table 1, ni represented the number of diseased
rows on different DS level, x was the number of diseased rows, and N represented the
number of rows within a plot [41]. Two variables, ∆DS and ∆DI, were defined to express
the increase or decrease is pests and disease in vineyards as follows:

∆DS = (DS2019−DS2108)/DS2018 (3)

∆DI = (DI2019−DI2018)/DI2018. (4)
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2.2.2. Sentinel-2 Data

Sentinel-2 is a high-resolution multispectral imaging satellite carrying a multispectral
instrument (MSI). The Sentinel-2 system is made up of two satellites, 2a and 2b, that acquire
data once every 10 days under constant observation conditions. The complementarity of
the two satellites results in 5-day revisit time. The MSI covers 13 bands from 442 nm up to
2202 nm with different resolutions: 10 m (Central Wavelength (CWL) at 490, 560, 665, and
842 nm with bandwidths of 65, 35, 30, and 115 nm, respectively), 20 m (CWL at 705, 740, 783,
865, 1610, and 2190 nm with bandwidths of 15, 15, 20, 20, 90, and 180 nm, respectively), and
60 m (CWL at 443, 940, and 1375 nm with bandwidths of 20, 20, and 30 nm, respectively) [17].
Sentinel-2 images have been available for free since 2015 [17]. Sentinel-2 improved the
feasibility of satellite-based crop monitoring because its spectral band located in the red-
edge region greatly increased the estimation accuracies of chlorophyll content, the fractional
cover of forest canopies, and leaf area index (LAI) [11]. Furthermore, the short revisit
interval (every 2–3 days) of the Sentinel-2 satellite at moderate latitudes provides abundant
information on crop status in the short term over a large area.

A multi-temporal Sentinel-2 dataset was used to analyze the correlation between VIs
derived from Sentinel-2 data and DS, DI acquired from UAV images, and the feasibility of
detecting pests and disease using VI trends. This dataset consists of 22 cloud-free Sentinel-2
data including 2a and 2b, and it covered a vegetative period and initial berry growth period
over two years from May to July 2018 and from May to July 2019. These Level-1C (L1C)
data cover May to July 2018 from Google Earth Engine (GEE) (https://earthengine.google.
com/), and Level-2A (L2A) data covering May to July 2019 were downloaded from the
European Space Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home).

2.3. Image Preprocessing
2.3.1. UAV Data Preprocessing

Previous studies provided evidence that Pix4Dmapper is more user-friendly than
other similar software [42]. We used Pix4Dmapper4.3 for photogrammetry and radiometric
raw UAV images processing in three steps, including initial processing, dense point cloud
point, digital surface model (DSM), orthomosaic, and index map. Raw images were radio-
metrically calibrated in a target-less automatic workflow [43]. The cooperation between
Parrot Sequoia+ and Pix4Dmapper provided absolute reflectance measurements without
the need to use radiometric calibration target. Typical workflow and details are described in
official technical papers [44]. In addition, an RGB image with 6 cm resolution was acquired
by an RGB camera using the Pix4Dmapper software for this study.

2.3.2. Sentinel-2 Data Preprocessing

The multi-temporal Sentinel-2 dataset included L1C and L2A data. The L1C data were
atmospherically corrected to L2A expressed in terms of bottom-of-atmosphere reflectance
with the Sen2cor Atmospheric Correction Processor (version255) in ESA SNAP. Resampling
was performed using a tool specifically designed for Sentinel-2 in ESA SNAP before
calculating the VIs.

Meanwhile, the ability of UAV data to be used as field data was tested using field
samples and spectral analysis. Previous studies showed that the spectral band of Parrot
Sequoia+ was very similar to that of ASD [45]. Therefore, this study tested the correlation
between VIs derived from Sentinel-2 and Parrot Sequoia+ and compared the results with
the appearance of the high-resolution UAV and Sentinel-2 images.

3. Methods
3.1. Feature Extraction
3.1.1. UAV Imagery-Based Canopy Feature Extraction

Canopy height is an important characteristics of canopy structure. Alessandro [46]
has researched the correlation between canopy height (CH) and vine vigor by comparing
the CH and the vigor map obtained from Normalized Difference Vegetation Index (NDVI).

https://earthengine.google.com/
https://earthengine.google.com/
https://scihub.copernicus.eu/dhus/#/home
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A digital elevation model (DEM) was generated from UAV point data using the Pix4D
mapper (v.4.3), and a digital surface model (DSM) was generated from UAV point data
using ArcGIS. The canopy height (CH) was obtained by subtracting DEM from DSM [47,48].

In addition, there are two indicators that can reflect the density and vigor of vines
and have been used in previous studies: canopy coverage (CC) and fractional vegetation
coverage (VFC). They are both based on computing the percentage green vegetation area per
plot using different methods. In this study, vegetation was extracted from high-resolution
RGB images using the SVM classifier [49–51] shown in Figure 2. The classification result
was tested using random selected 288 samples with an overall accuracy of 96.9% and Kappa
coefficient of 0.936. Then, the CC is calculated by dividing the area that is classified as
grapes by the total plot area, and VFC was calculated based on multispectral information
as follows:

VFC = (NDVI−NDVIsoil ) /
(
NDVIveg − NDVIsoil

)
(5)

where NDVIsoil and NDVIveg represent the NDVI on bare soil and under full vegeta-
tion coverage [52–54], respectively; these were normally replaced by the minimum and
maximum NDVI in the test area. The two indicators are compared in the next section.
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3.1.2. Sentinel-2 Imagery-Based VI Feature Extraction

To find suitable VIs that correlated with changes in pest incidence and severity, this
study selected 17 VIs that were sensitive to changes in vegetation-related physiological
and biochemical parameters and that were calculated from the Sentinel-2 spectral bands
as shown in Table 2. For 144 vineyards, the average of the accurate values was used to
fill the gap, and daily VIs were reconstructed through an S-G filter to reduce the effect of
atmospheric conditions and other factors [55]. The time series VI consists of data from
three weeks before and after the UAV sampling date, and VI_2019/VI_2018 was calculated
to determine the strength of statistical relationships among VI, ∆DI, and ∆DS through
Pearson correlations and p-values.

Table 2. Description of spectral features derived from Sentinel-2.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index NDVI = R800−R670
R800+R670

[56]

Green Normalized Difference Vegetation Index GNDIV = R800−R550
R800+R550

[57]

Renormalized Difference Vegetation Index RDVI = R800−R670√
(R800+R670)

[58]

Modified Simple Ratio MSR = R800/R670−1√
(R800/R670)

[59]

Transformed NDVI TNDVI =
√
(R800 − R670)/(R800 + R670) + 0.5 [59]

Normalized Difference Index NDI = (R706 − R664)/(R706 + R664) [60]

Optimized Soil-Adjusted Vegetation Index OSAVI = (1 + 0.16) R800−R670
R800+R670+0.16 [59]

Modified Soil-Adjusted Vegetation Index MSAVI = (1 + L) R800−R670
R800+R670+L [61]

Atmospherically Resistant Vegetation Index ARVI = R800−R670−y(R670−R450)
R800+R670−y(R670−R450)

[62]

Chlorophyll Index CI = R750
R710

[63]

Inverted Red-Edge Chlorophyll Index IRECI = (R783 − R665)/(R705 + R740) [64]

Pigment Specific Simple Ratio A PSSra = R800
R680

[65]

Sentinel-2 Red Edge Position S2REP =
705 + 35 ∗ ((R783 + R665)/2− R705)/(R740 − R705)

[65]

Transformed Chlorophyll Absorption Ratio Index TCARI = 3
(
(R700 − R670)− 0.2(R700 − R550)

R700
R670

)
[60]

Modified Chlorophyll Absorption Ratio Index MCARI =
[(R700 − R665)− 0.2 ∗ (R705 − R550)] ∗ (R700/R670)

[66]

TCARI/OSAVI TCARI
OSAVI = TCARI/OSAVI [60]

Plant Senescence Reflectance Index PSRI = R678−R500
R750

[67]

To connect these features (CH and VIs) with DI, the average of CH and the VIs was
computed for every plot. A binary mask layer was applied to exclude soil/shadow and
weeds from the background components. Figure 3 shows the workflow, including data
preprocessing, feature extraction, machine learning modeling, and analysis.
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3.2. Modeling Methods

ML methods have been efficiently applied to remote sensing studies because these
methods have the potential to monitor crops and estimate vegetation parameters and crop
yield using spectral information and canopy structure derived from satellite and UAV data,
including machine learning regression algorithms, such as PLSR, RFR, SVR, and extreme
learning regression (ELR). To address the nonlinearity of remote sensing datasets, several
studies have indicated that these methods are useful. PLSR is a popular method used in
crop monitoring because of its ability to decrease loss of the information contained in the
input variables, which is similar to Principal Component Regression (PCR) in that it uses
statistic rotation [68]. Random forests(RF) is a regression technique; its basic idea is to
grow “trees” using Classification and Regression Trees (CART) methodology. RFR is the
regression version of RF. The difference between random forests for regression and for
classification is that the former’s predictor and output values are numerical [69]. SVR is
an important branch of SVM(support vector machine); its basic concept is to transform
the original input features into a new hyper-space using kernel functions [70]. ELR is the
implementation of ELM for regression; the classic ELM is a simple and faster learning
algorithm for Single-hidden Layer Feedforward Neural Network (SLFN), which can be
easily implemented and decrease training error. In this study, an extension of classic ELM,
which has a different activation function from the classic ELM and has been applied to
crop monitoring in previous studies [37], was modified. The activation function of this
new ELM proposed by Maimaitiyiming [33] and called TanhRe is the combination of two
frequently used functions: the rectified linear unit (ReLU) and the hyperbolic tangent
(Tanh) functions, with the goal of fitting an input pattern better. TanhRe takes the following
form: if x > 0, the nonlinear activation f (x) = x; if x ≤ 0, f (x) = c·tanh(x), where the
reasonable range of the constant c is from 0 to 1.

One hundred vineyard samples (70% of the total) including VIs (ARVI, OSAVI, and
GNDVI), VFC, CH, and DI were used as input features to train the models; the rest of
the samples were used as validation samples to assess the performance and reliability of
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the prediction models. In the process of implementing the ML method, grid search was
used to determine the number of principal components for PLSR, the parameter C, and the
coefficient c for ELR. For the SVR method, poly was determined as the kernel function, and
the parameter C was determined by tuning. For the RFR method, the number of trees was
400. To assess the performance of these methods, the coefficient of determination (R2), the
root mean square error (RMSE), and the coefficient of variance of the RMSE (CV-RMSE)
were calculated [71]:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (6)

RMSE =

√
∑N

i=1(yi − ŷi)
2

n− 1
(7)

CV − RMSE =
RMSE

mean(observations)
(8)

where yi and ŷi are the measured and the predicted parameters, respectively. yi is the mean
of measured parameters, and n is the number of samples. These machine learning methods
and accuracy assessments are implemented through the sklearn package in Python.

4. Results
4.1. Assessment of Sampling Data Based on the UAV
4.1.1. Validation of Canopy Height

CH derived from UAV imagery was validated by comparison with the field samples
in 22 vineyards, which presented an R2 of 0.82 and an RMSE of 0.047 m, as shown in
Figure 4. The slight error can usually be attributed to Geometric Standard Deviation (GSD),
the corresponding DSM calculation, and deviation of the edge pixels [72].
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4.1.2. Assessment of the Relevance of UAV Data to Sentinel-2 Data

The next step was to validate the ability of UAV high-spatial-resolution data alter-
nating with field samples for monitoring vineyards. Figure 5 shows very high-resolution
images taken on May 16, 2019 for two health conditions: healthy and medium pest inci-
dence, as well as the corresponding Sentinel-2 images. Through visual interpretation, the
distinctness of the two conditions can be clearly observed from a bird’s-eye and a global
perspective. The comparison between the appearance of the high-resolution UAV image
and the Sentinel-2 image is obvious. VIs acquired from UAV and Sentinel-2 data over
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the 144 vineyards, and Figure 6 shows a strong correlation between the two (R2 = 0.85,
p < 0.001 for NDVI and R2 = 0.71, p < 0.001 for OSAVI). NDVI lightly outperformed OSAVI.
Compared with NDVI, OSAVI is more sensitive to vegetation and is more susceptible to
changes in atmospheric correction results and observation angle, which also leads to the
slightly poor correlation between UAV-derived OSAVI and satellite-derived OSAVI [73].
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Figure 5. Example of vineyards with different pests and diseases incidences viewed by a high-
resolution RGB camera and Sentinel-2. (Left) panels show medium incidence, and (right) panels
show a healthy vineyard.
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Figure 6. The left image is a comparison between NDVI derived from Sentinel_2 and Parrot Sequoia+. The right image is a
comparison between OSAVI based on Sentinel_2A and Parrot Sequoia+ surveyed in May 2019.

4.1.3. Correlation between DI and VIs

In addition, the potential of UAV sampling data to monitor vineyards was assessed on
two scales: the relationship between temporal DI trends and the rate of change in vegetation
indices was examined, and DI was related to VIs in 2019. All DI and DS were derived
from images acquired by Parrot Sequoia+ in July 2018 and May 2019 from the surveyed
vineyards (Figures 7 and 8). The correlation between DS and DI was significant (r2 = 0.728,
p < 0.001), as well as that between temporal change rates ∆DS and ∆DI (r2 = 0.489, p < 0.001).
Vineyards affected by pests show different rates of change in incidence and severity, and
vineyards that had already been affected lightly in 2018 showed an obvious increase in
2019 (e.g., A66 and A102).
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Figure 7. (Top) Disease severity (DS) and disease incidence (DI) in 2019 derived from high-resolution
RGB images. The X-axis indicates the vineyards sampled, which were labeled from A1 to A148. Due
to lack of space, not all labels are shown.
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Figure 8. (bottom) ∆DS and ∆DI between 2018 and 2019. The X-axis indicates the vineyards sampled,
which were labeled from A1 to A148. Due to lack of space, not all labels are shown.

Figure 9 shows the significant correlation of 12 out of 17 VIs with both DI and DS.
Among the VIs, ARVI, OSAVI, and GNDVI produced higher correlations and coefficients of
determination (R2) with ∆DI than the others (R2

ARVI = 0.44, R2
OSAVI = 0.42, R2

GNDVI = 0.43).
These coefficients of determination (R2) demonstrated that using a temporal rate of change
in VI to fit ∆DI is not very accurate. It can be speculated that the relationship between pests
and diseases caused by the change of climate in early spring with temporal vegetation
incidence is not obvious. This speculation needs further confirmation. Notably, the results
showed that ∆DI decreased with smaller increase in VI (Figure 10). In addition, the VIs
and DI in 2019 were correlated for every plot in Figure 10 and showed strong correlation,
and three coefficients of determination (R2

ARVI = 0.55, R2
OSAVI = 0.57, R2

GNDVI = 0.51)
outperformed the others, as shown in Figure 11.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 8. (bottom) ∆DS and ∆DI between 2018 and 2019. The X-axis indicates the vineyards sam-

pled, which were labeled from A1 to A148. Due to lack of space, not all labels are shown. 

Figure 9 shows the significant correlation of 12 out of 17 VIs with both DI and DS. 

Among the VIs, ARVI, OSAVI, and GNDVI produced higher correlations and coefficients 

of determination (R2) with ∆DI than the others (R2ARVI=0.44, R2OSAVI=0.42, R2GNDVI=0.43). 

These coefficients of determination (R2) demonstrated that using a temporal rate of 

change in VI to fit ∆DI is not very accurate. It can be speculated that the relationship 

between pests and diseases caused by the change of climate in early spring with temporal 

vegetation incidence is not obvious. This speculation needs further confirmation. Nota-

bly, the results showed that ∆DI decreased with smaller increase in VI (Figure 10). In 

addition, the VIs and DI in 2019 were correlated for every plot in Figure 10 and showed 

strong correlation, and three coefficients of determination (R2ARVI=0.55, R2OSAVI=0.57, 

R2GNDVI=0.51) outperformed the others, as shown in Figure 11. 

 

Figure 9. Relationship between ΔDI, ΔDS, and the temporal rate of change in VI. The range 

co-domain of the correlation coefficients is shown in the color bar. (X) symbols represent 

non-significant relationships (p≥0.001). 

Figure 9. Relationship between ∆DI, ∆DS, and the temporal rate of change in VI. The range co-
domain of the correlation coefficients is shown in the color bar. (X) symbols represent non-significant
relationships (p ≥ 0.001).
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4.2. Machine Learning Modeling

Table 3 shows the relationship between the training and reference samples. It presents
the mean, median, minimum, maximum, coefficient of variation (CV), kurtosis, and skew-
ness of samples clearly. ML methods including PLSR, SVR, RFR, and SVR were used to
predict DI using the UAV-derived canopy structure, satellite-based VIs, and the combina-
tion of canopy structure and VIs.

Table 3. Statistical data of training and reference samples for the study area.

DI2019(%) All Samples Training Reference

No. of Samples 144 100 44

Mean 19.3 19.4 18.9
Median 18 18 18

Minimum 12 12 12
Maximum 39 39 39
Kurtosis 4.050 5.343 0.711

Skewness 1.497 1.784 0.849
CV 0.205 0.207 0.197

The performance of the UAV-derived canopy structure information used in the models
was not ideal with R2 ranging from 0.305 to 0.432 and CV-RMSE ranging from 0.163 to
0.147. Satellite-based VIs performed better than UAV-derived information regardless of the
regression model used, with R2 ranging from 0.682 to 0.728 and CV-RMSE ranging from
0.11 to 0.1. A combination of UAV-derived canopy structure and satellite-based VIs outper-
formed the others described, with R2 ranging from 0.69 to 0.736 and CV-RMSE ranging
from 0.109 to 0.1. Table 4 provides details of the validation metrics for DI2019 estimation.
In addition, canopy coverage extraction results using different methods were combined
with spectral information separately. UAV-derived VFC yielded superior performance to
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UAV-derived CC with R2 ranging from 0.69 to 0.736 and CV-RMSE from 0.109 to 0.1. CC
features presented poorer performance with R2 varying from 0.68 to 0.716 and CV-RMSE
varying from 0.11 to 0.104. Although at a minor scale, VFC features slightly outperformed
CC features regardless of the regression models.

Table 4. Predictions of results from partial least squared regression (PLSR), support vector regression
(SVR), random forest regression (RFR), and extreme learning regression (ELR) based on different fea-
tures.

Platform Metric RSLR SVR RFR ELR

Parrot Sequoia+
(CH, VFC)

R2 0.432 0.399 0.305 0.432
RMSE 2.785 2.863 3.078 2.785

CV-RMSE 0.147 0.151 0.163 0.147

Satellite
(VI)

R2 0.706 0.728 0.682 0.709
RMSE 2.009 1.925 2.083 1.989

CV-RMSE 0.106 0.1 0.11 0.105

Satellite+
Parrot Sequoia+
(CH, VFC, VI)

R2 0.71 0.736 0.69 0.723
RMSE 1.982 1.898 2.057 1.946

CV-RMSE 0.105 0.1 0.109 0.103

Satellite+
RGB

(CH,CC,VI)

R2 0.69 0.716 0.68 0.69

RMSE 2.058 1.97 2.076 2.058

CV-RMSE 0.109 0.104 0.11 0.109

In addition, Figure 12 shows the comparison of DI2018 and DI2019 prediction results
by PLSR, SVR, RFR, and ELR. R2 and CV-RMSE are presented in this figure to show the
accuracy of the various models. Taken as a whole, the performance of SVR was superior to
other models in this study with higher R2 and lower CV-RMSE.
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Figure 12. R2 and coefficient of variance of the root mean square error (CV-RMSE) of DI2018 and
DI2019 estimates with different machine learning methods using UAV-derived canopy information
(U), satellite-based spectral information (S), and the fusion of both (U + S).

5. Discussion
5.1. Overall Potential of UAV Data as Alternative to Field Sampling

This study has shown that UAV data have the potential to replace field sampling in
vineyards affected by pests and diseases. Since leaf damage and branch wilt are the most
direct manifestations of pests and diseases for individual plants, UAV high-resolution
RGB images can well reflect the phenomenon of dying canopy leaves and tree branches to
evaluate the presence of grape diseases. Therefore, it is reasonable to distinguish between
onset and incidence by visual interpretation. There was a strong correlation between the
incidence rate and vegetation index, and the incidence decreased with increases in the
vegetation index. In addition, DI calculated by UAV image interpretation can be predicted
by machine learning methods over a large area.
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It is worth noting that high spatial-resolution UAV data can replace field data as a more
economical and convenient method to acquire large-area vineyards canopy information.
Specifically, the Parrot Sequoia+ agricultural camera integrated four single spectral sensors
that solved the robustness problem resulting from parallax during rectification of image
pairs. This sensor is a good choice for canopy structure extraction.

5.2. Comparison of Machine Learning Models

As evidenced by high R2 and low CV-RMSE, SVR produced more accurate model
in DI prediction. The SVR model has been reported to deal better with high-dimensional
and overfitting datasets in previous studies [74]. In second place was the less powerful
ELR, which presented superior ability to identify plant traits and perform yield prediction,
especially for vineyards, with a new activation function combining Tanh and the ReLu
function [33]. However, its performance was slightly inferior to SVR for DI estimation. RFR
and PLSR were slightly inferior to the other models. RFR was comparable to SVR in most
previous studies because both can tackle high data dimensionality, which is a strength that
was also apparent in this study [75]. Although RFR has better noise tolerance, SVR has
provided higher accuracies than RFR when using Sentinel-2 imagery in a few studies [76].
PLSR has limitations in dealing with nonlinear relationships between target and features,
which also has been demonstrated [77].

5.3. Contributions of Different Types of Features Extracted from Multiplicity Sensors

SVR yielded the best performance for predicting DI compared to other ML models
(Figure 9). Therefore, it was used to generate a prediction of DI2018 based on various input
features including UAV-derived information, satellite-based VIs, and the fusion of UAV
with satellite-based features.

It has already been shown that UAV-derived canopy information can improve the
accuracy of predicting DI [78] (Table 5 and Figure 13). Canopy features can reflect canopy
growth status and supplement satellite-based spectral information. Specifically, the con-
tribution of VFC can be demonstrated from two important aspects: one is increasing DI
along with lower VFC, and the other is that adding VFC as a supplement can reduce noise
resulting from satellite-based spectral information with background soil reflectance in
crop monitoring.

Table 5. Results for DI2018 and DI2019 using support vector regression (SVR) estimation.

Platform Metric DI2018 DI2019

Parrot Sequoia+
(CH, VFC)

R2 0.632 0.399
RMSE 2.11 2.863

CV-RMSE 0.148 0.151

Satellite
(VI)

R2 0.648 0.727
RMSE 2.066 1.928

CV-RMSE 0.145 0.102

Satellite+
Parrot Sequoia+
(CH, VFC, VI)

R2 0.662 0.736
RMSE 2.024 1.898

CV-RMSE 0.142 0.1
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Among spectral variables, the most crucial VIs included ARVI, OSAVI, and red-edge
bands, which were also found to be important in other studies on crop monitoring [79].
Furthermore, these variables have been reported as predictors because they are related to
changes in DI and the growth status of canopy affected by pests and diseases.

Notably, test results showed that the UAV-based canopy structure input SVR for
DI2019 performed poorly compared to DI2018. In addition, spectral information lightly
outperformed canopy structures in the case of a single feature type. This may have been due
to the relatively sparse canopy in areas of high incidence and severity in 2019. Undergrowth
crops under a sparse canopy interfere with vegetation coverage. Especially for pergola
crops such as grapes, there are many undergrowth crops under the canopy, which makes
it difficult to distinguish the canopy from the background [22]. In addition, when the
grape is seriously damaged, not only the death of branches and leaves and the growth of
understory vegetation will occur, but also some physiological parameters of the canopy
will change, resulting in the instability of the CH. The unstable performance of CH at
different growth stage in crop monitoring has also been reported by Näsi et al. [79,80]. This
may be due to a weaker correlation between UAV-derived features and DI in 2019 than in
2018 when the grapes were growing well. The error caused by undergrowth crops and the
unstable performance of CH reduce the performance of high-resolution UAV data in the
year 2019. By using the fusion of UAV and satellite data, the canopy structure can reduce
soil reflectivity and improve performance [22,79]. However, it is still necessary to conduct
experiments on how to remove understory vegetation accurately when calculating canopy
coverage. Further investigation should be conducted to examine the potential/possibility
of canopy structure features for crop monitoring at different development stages over
different crop species and environments.

6. Conclusions

This study has demonstrated the potential of high-resolution UAV data acquired
by Parrot Sequoia+ to replace manual field samples and supplement satellite-based crop
monitoring. With the capability to provide high-resolution canopy features and multispec-
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tral information, the Parrot Sequoia+ camera showed itself to be an up-and-coming tool
to replace field samples. It has also been shown that the fusion of UAV-derived canopy
information with essential Sentinel-2 derived VIscan improve the accuracy of DI estimation
using machine learning models. Among the machine learning models, SVR outperformed
the others in DI prediction. Additionally, to improve the availability of canopy structures
information, it may be feasible to extract accurate canopy structure through 3D transfer
models or vegetation biophysical variables to reduce errors caused by understory vege-
tation for monitoring grapevines, and tree heights under different growth states can be
studied to improve the monitoring accuracy.
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17. Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Frederic, B.; Atzberger, C. Data Service Platform
for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [CrossRef]

18. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based
Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [CrossRef]

19. Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of Ultrasonic and Spectral Sensor Data for Improving the
Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sens. 2017, 9, 98. [CrossRef]

20. Wang, R.; Gamon, J.A. Remote Sensing of Terrestrial Plant Biodiversity. Remote Sens. Environ. 2019, 231. [CrossRef]
21. Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data. Remote Sens. 2016,

9, 11. [CrossRef]
22. Hornero, A.; Hernández-Clemente, R.; North, P.R.J.; Beck, P.S.A.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Monitoring the

Incidence of Xylella fastidiosa Infection in Olive Orchards Using Ground-Based Evaluations, Airborne Imaging Spectroscopy and
Sentinel-2 Time Series Through 3-D Radiative Transfer Modelling. Remote Sens. Environ. 2020, 236. [CrossRef]

23. Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Soriano, M.A.; Fereres, E.; Vega, V.; Pastor, M.
Monitoring Yield and Fruit Quality Parameters in Open-Canopy Tree Crops under Water Stress. Implications for ASTER. Remote
Sens. Environ. 2007, 107, 455–470. [CrossRef]

24. Xu, F.; Gao, Z.; Jiang, X.; Shang, W.; Ning, J.; Song, D.; Ai, J. A UAV and S2A Data-Based Estimation of the Initial Biomass of
Green Algae in the South Yellow Sea. Mar. Pollut. Bull. 2018, 128, 408–414. [CrossRef] [PubMed]

25. Serrano, L.; González-Flor, C.; Gorchs, G. Assessment of Grape Yield and Composition Using the Reflectance Based Water Index
in Mediterranean Rainfed Vineyards. Remote Sens. Environ. 2012, 118, 249–258. [CrossRef]

26. Pla, M.; Bota, G.; Duane, A.; Balagué, J.; Curcó, A.; Gutiérrez, R.; Brotons, L. Calibrating Sentinel-2 Imagery with Multispectral
UAV Derived Information to Quantify Damages in Mediterranean Rice Crops Caused by Western Swamphen (Porphyrio porphyrio).
Drones 2019, 3, 45. [CrossRef]

27. Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data Fusion of Spectral, Thermal and Canopy
Height Parameters for Improved Yield Prediction of Drought Stressed Spring Barley. Eur. J. Agron. 2016, 78, 44–59. [CrossRef]

28. Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A.C.; Fassnacht, F.E. UAV Data as Alternative to Field Sampling to Map Woody
Invasive Species Based on Combined Sentinel-1 and Sentinel-2 Data. Remote Sens. Environ. 2019, 227, 61–73. [CrossRef]

29. Ordóñez Galán, C.; Rodríguez Pérez, J.R.; García Cortés, S.; Bernardo Sánchez, A. Analysis of the Influence of Forestry Envi-
ronments on the Accuracy of GPS Measurements by Means of Recurrent Neural Networks. Math. Comput. Model. 2013, 57,
2016–2023. [CrossRef]

30. Wing, M.G.; Frank, J. Vertical Measurement Accuracy and Reliability of Mapping-Grade GPS Receivers. Comput. Electron. Agric.
2011, 78, 188–194. [CrossRef]

31. Turner, W. Sensing Biodiversity. Science 2014, 346, 301–302. [CrossRef]
32. Leitao, P.J.; Schwieder, M.; Pötzschner, F.; Pinto, J.R.R.; Teixeira, A.M.C.; Pedroni, F.; Sanchez, M.; Rogass, C.; van der Linden, S.;

Bustamante, M.M.C.; et al. From Sample to Pixel: Multi-Scale Remote Sensing Data for Upscaling Aboveground Carbon Data in
Heterogeneous Landscapes; Humboldt-Universität zu Berlin: Berlin, Germany, 2018. [CrossRef]

33. Maimaitiyiming, M.; Sagan, V.; Sidike, P.; Kwasniewski, M. Dual Activation Function-Based Extreme Learning Machine (ELM)
for Estimating Grapevine Berry Yield and Quality. Remote Sens. 2019, 11, 740. [CrossRef]

34. Margenot, A.; O’Neill, T.; Sommer, R.; Akella, V. Predicting Soil Permanganate Oxidizable Carbon (POXC) by Coupling DRIFT
Spectroscopy and Artificial Neural Networks (ANN). Comput. Electron. Agric. 2020, 168. [CrossRef]

35. Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping Canopy Nitrogen in European
Forests Using Remote Sensing and Environmental Variables with the Random Forests Method. Remote Sens. Environ. 2020, 247,
111933. [CrossRef]

36. Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks,
and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015,
52, 394–403. [CrossRef]

37. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

38. Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.;
Raines, C.; et al. High-Throughput Field Phenotyping Using Hyperspectral Reflectance and Partial Least Squares Regression
(PLSR) Reveals Genetic Modifications to Photosynthetic Capacity. Remote Sens. Environ. 2019, 231. [CrossRef]

39. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using
Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237. [CrossRef]

40. Cardoso, J.; Santos, A.A.; Rossetti, A.; Vidal, J. Relationship between Incidence and Severity of Cashew Gummosis in Semiarid
North-Eastern Brazil. Plant Pathol. 2004, 53, 363–367. [CrossRef]

http://doi.org/10.5194/isprs-archives-XLII-2-W13-715-2019
http://doi.org/10.1016/j.rsase.2017.10.004
http://doi.org/10.3390/rs8110938
http://doi.org/10.3390/rs11040436
http://doi.org/10.3390/rs9010098
http://doi.org/10.1016/j.rse.2019.111218
http://doi.org/10.3390/rs9010011
http://doi.org/10.1016/j.rse.2019.111480
http://doi.org/10.1016/j.rse.2006.09.014
http://doi.org/10.1016/j.marpolbul.2018.01.061
http://www.ncbi.nlm.nih.gov/pubmed/29571390
http://doi.org/10.1016/j.rse.2011.11.021
http://doi.org/10.3390/drones3020045
http://doi.org/10.1016/j.eja.2016.04.013
http://doi.org/10.1016/j.rse.2019.03.025
http://doi.org/10.1016/j.mcm.2012.03.006
http://doi.org/10.1016/j.compag.2011.07.006
http://doi.org/10.1126/science.1256014
http://doi.org/10.18452/19459
http://doi.org/10.3390/rs11070740
http://doi.org/10.1016/j.compag.2019.105098
http://doi.org/10.1016/j.rse.2020.111933
http://doi.org/10.1016/j.ecolind.2014.12.028
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1016/j.rse.2019.04.029
http://doi.org/10.1016/j.rse.2019.111599
http://doi.org/10.1111/j.0032-0862.2004.01007.x


Remote Sens. 2021, 13, 457 20 of 21

41. Carisse, O.; Lefebvre, A.; Heyden, H.; Roberge, L.; Brodeur, L. Analysis of Incidence–Severity Relationships for Strawberry
Powdery Mildew as Influenced by Cultivar, Cultivar Type, and Production Systems. Plant Dis. 2013, 97, 354–362. [CrossRef]

42. Govorcin, M.; Pribicevic, B.; Ðapo, A. Comparison and Analysis of Software Solutions for Creation of a Digital Terrain Model
Using Unmanned Aerial Vehicles. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference SGEM
2014, Albena, Bulgaria, 17–26 June 2014. [CrossRef]

43. Cubero-Castan, M.; Schneider-Zapp, K.; Bellomo, M.; Shi, D.; Rehak, M.; Strecha, C. Assessment of the Radiometric Accuracy in a
Target Less Work Flow Using Pix4D Software. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018; pp. 1–4.

44. Generate High Resolution Outputs for Any Project and Use Case. Available online: https://www.pix4d.com/product/pix4
dmapper-photogrammetry-software (accessed on 27 January 2021).

45. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A
Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [CrossRef]

46. Matese, A.; Di Gennaro, S.; Berton, A. Assessment of a Canopy Height Model (CHM) in a Vineyard Using UAV-Based Multispectral
Imaging. Int. J. Remote Sens. 2016, 38, 1–11. [CrossRef]

47. Wilke, N.; Siegmann, B.; Klingbeil, L.; Burkart, A.; Kraska, T.; Muller, O.; van Doorn, A.; Heinemann, D.G.S. Quantifying Lodging
Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach.
Remote Sens. 2019, 11, 515. [CrossRef]

48. Panagiotidis, D.; Abdollahnejad, A.; Surovy, P.; Chiteculo, V. Determining Tree Height and Crown Diameter from High-Resolution
UAV Imagery. Int. J. Remote Sens. 2017, 38. [CrossRef]

49. Tzotsos, A.; Argialas, D. Support Vector Machine Classification for Object-Based Image Analysis. In Lecture Notes in Geoinformation
and Cartography; Springer Nature: Cham, Switzerland, 2008; pp. 663–677. [CrossRef]

50. Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain Yield Prediction of Rice Using
Multi-Temporal UAV-Based RGB and Multispectral Images and Model Transfer—A Case Study of Small Farmlands in the South
of China. Agric. For. Meteorol. 2020, 291. [CrossRef]

51. Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring Agronomic Parameters of Winter
Wheat Crops with Low-Cost UAV Imagery. Remote Sens. 2016, 8, 706. [CrossRef]

52. Song, Y.; Lu, Y.; Liu, T.; Li, H.; Yue, Z.; Liu, H.; Gao, T. Variation of Vegetation Fractional Coverage and Its Relationship with
Climate in a Desert Steppe: Optimization of Farmland Layout in a Farming–Pastoral Ecotone Using the Ecological Suitability
Index. Ecol. Eng. 2020, 150, 105834. [CrossRef]

53. Tong, S.; Zhang, J.; Ha, S.; Lai, Q.; Ma, Q. Dynamics of Fractional Vegetation Coverage and Its Relationship with Climate and
Human Activities in Inner Mongolia, China. Remote Sens. 2016, 8, 776. [CrossRef]

54. Wang, Y.; Sun, M.; Song, B. Public Perceptions of and Willingness to Pay for Sponge City Initiatives in China. Resour. Conserv. and
Recycl. 2017, 122, 11–20. [CrossRef]

55. Jönsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci.
Remote Sens. 2002, 40, 1824–1832. [CrossRef]

56. Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Pepe, M.; Nelson, A. Remote Sensing-Based Crop Lodging Assessment: Current
Status and Perspectives. ISPRS J. Photogramm. Remote Sens. 2019, 151, 124–140. [CrossRef]

57. Gitelson, A.; Kaufman, Y.; Merzlyak, M. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

58. Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens.
Environ. 1995, 51, 375–384. [CrossRef]

59. Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22,
229–242. [CrossRef]

60. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of
Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]

61. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ.
1994, 48, 119–126. [CrossRef]

62. Nichol, C.J.; Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; Walthall, C.L.; Grace, J.; Hall, F.G. Remote Sensing of Photosynthetic-light-
Use Efficiency of Boreal Forest. Agric. For. Meteorol. 2000, 101, 131–142. [CrossRef]

63. Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Estimation of Chlorophyll Fluorescence under
Natural Illumination from Hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 321–327. [CrossRef]

64. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of
Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [CrossRef]

65. Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int.
J. Remote Sens. 1998, 19, 657–675. [CrossRef]

66. Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index.
Agron. J. 2011, 103, 1090–1099. [CrossRef]

67. Merzlyak, M.N.G.; Anatoly, A.; Chivkunova, O.B.; Rakitin, V.Y. Non-Destructive Optical Detection of Pigment Changes during
Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [CrossRef]

http://doi.org/10.1094/PDIS-05-12-0508-RE
http://doi.org/10.13140/2.1.2352.4803
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
http://doi.org/10.1016/j.isprsjprs.2018.09.008
http://doi.org/10.1080/01431161.2016.1226002
http://doi.org/10.3390/rs11050515
http://doi.org/10.1080/01431161.2016.1264028
http://doi.org/10.1007/978-3-540-77058-9_36
http://doi.org/10.1016/j.agrformet.2020.108096
http://doi.org/10.3390/rs8090706
http://doi.org/10.1016/j.ecoleng.2020.105834
http://doi.org/10.3390/rs8090776
http://doi.org/10.1016/j.resconrec.2017.02.002
http://doi.org/10.1109/TGRS.2002.802519
http://doi.org/10.1016/j.isprsjprs.2019.03.005
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.1016/0034-4257(94)00114-3
http://doi.org/10.1080/07038992.1996.10855178
http://doi.org/10.1016/S0034-4257(02)00018-4
http://doi.org/10.1016/0034-4257(94)90134-1
http://doi.org/10.1016/S0168-1923(99)00167-7
http://doi.org/10.1016/S0303-2434(01)85039-X
http://doi.org/10.1016/j.isprsjprs.2013.04.007
http://doi.org/10.1080/014311698215919
http://doi.org/10.2134/agronj2010.0395
http://doi.org/10.1034/j.1399-3054.1999.106119.x


Remote Sens. 2021, 13, 457 21 of 21

68. Yeniay, Ö.; Goktas, A. A Comparison of Partial Least Squares Regression with Other Prediction Methods. Hacet. J. Math. Stat.
2002, 31, 99–111.

69. Genuer, R.; Poggi, J.-M. Random Forests with R; Springer: Berlin, Germany, 2020; pp. 33–55. [CrossRef]
70. Gholizadeh, A.; Boruvka, L.; Saberioon, M.; Vašát, R. A Memory-Based Learning Approach as Compared to Other Data Mining

Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra. Remote Sens. 2016, 8, 341. [CrossRef]
71. Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of Different Machine Learning Algorithms and Added-Value of

Predicting Aggregated-Level Energy Performance of Commercial Buildings. Energy Build. 2020, 209. [CrossRef]
72. Johansen, K.; Raharjo, T.; McCabe, M. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess

Pruning Effects. Remote Sens. 2018, 10, 854. [CrossRef]
73. Steven, M. The Sensitivity of the OSAVI Vegetation Index to Observational Parameters. Remote Sens. Environ. 1998, 63, 49–60.

[CrossRef]
74. Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support Vector Regression Snow-Depth Retrieval Algorithm Using Passive

Microwave Remote Sensing Data. Remote Sens. Environ. 2018, 210, 48–64. [CrossRef]
75. Rodriguez-Galiano, V.; Sánchez Castillo, M.; Chica-Olmo, M.; Chica Rivas, M. Machine Learning Predictive Models for Mineral

Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev.
2015, 71. [CrossRef]

76. Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of Machine Learning Algorithms for Forest Stand Species Mapping Using
Sentinel-2 Imagery and Environmental Data in the Polish Carpathians. Remote Sens. Environ. 2020, 251. [CrossRef]

77. Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Mapping of Macro and Micro Nutrients of Mixed Pastures Using Airborne AisaFENIX
Hyperspectral Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 1–10. [CrossRef]

78. Stanton, C.; Starek, M.J.; Elliott, N.; Brewer, M.; Maeda, M.M.; Chu, T. Unmanned Aircraft System-Derived Crop Height and
Normalized Difference Vegetation Index Metrics for Sorghum Yield and Aphid Stress Assessment. J. Appl. Remote Sens. 2017, 11.
[CrossRef]

79. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion
and Machine Learning. Remote Sens. 2020, 12, 1357. [CrossRef]

80. Näsi, R.; Viljanen, N.; Kaivosoja, J.; Alhonoja, K.; Hakala, T.; Markelin, L.; Honkavaara, E. Estimating Biomass and Nitrogen
Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features. Remote Sens. 2018, 10,
1082. [CrossRef]

http://doi.org/10.1007/978-3-030-56485-8_3
http://doi.org/10.3390/rs8040341
http://doi.org/10.1016/j.enbuild.2019.109705
http://doi.org/10.3390/rs10060854
http://doi.org/10.1016/S0034-4257(97)00114-4
http://doi.org/10.1016/j.rse.2018.03.008
http://doi.org/10.1016/j.oregeorev.2015.01.001
http://doi.org/10.1016/j.rse.2020.112103
http://doi.org/10.1016/j.isprsjprs.2016.03.010
http://doi.org/10.1117/1.JRS.11.026035
http://doi.org/10.3390/rs12091357
http://doi.org/10.3390/rs10071082

	Introduction 
	Materials 
	Study Site and Field Data Collection 
	Remote Sensing Data Acquisition 
	UAV Data 
	Sentinel-2 Data 

	Image Preprocessing 
	UAV Data Preprocessing 
	Sentinel-2 Data Preprocessing 


	Methods 
	Feature Extraction 
	UAV Imagery-Based Canopy Feature Extraction 
	Sentinel-2 Imagery-Based VI Feature Extraction 

	Modeling Methods 

	Results 
	Assessment of Sampling Data Based on the UAV 
	Validation of Canopy Height 
	Assessment of the Relevance of UAV Data to Sentinel-2 Data 
	Correlation between DI and VIs 

	Machine Learning Modeling 

	Discussion 
	Overall Potential of UAV Data as Alternative to Field Sampling 
	Comparison of Machine Learning Models 
	Contributions of Different Types of Features Extracted from Multiplicity Sensors 

	Conclusions 
	References

