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Abstract: We developed an extension of a previously proposed classification scheme that is based
upon Freeman–Durden and Cloude–Pottier decompositions of polarimetric Synthetic Aperture Radar
(SAR) data, along with a Double-Bounce Eigenvalue Relative Difference (DERD) parameter, and a
Random Forest (RF) classifier. The extension was done, firstly, by using dual-copolarization SAR data
acquired at shorter wavelengths (C- and X-band, in addition to the previously used L-band) and,
secondly, by adding indicators derived from the (polarimetric) Kennaugh elements. The performance
of the newly developed classification scheme, herein abbreviated as FCDK-RF, was tested using
SAR data of exposed intertidal flats. We demonstrate that the FCDK-RF scheme is capable of
distinguishing between different sediment types, namely mud and sand, at high spatial accuracies.
Moreover, the classification scheme shows good potential in the detection of bivalve beds on the
exposed flats. Our results show that the developed FCDK-RF scheme can be applied for the mapping
of sediments and habitats in the Wadden Sea on the German North Sea coast using multi-frequency
and multi-polarization SAR from ALOS-2 (L-band), Radarsat-2 (C-band) and TerraSAR-X (X-band).

Keywords: intertidal flats; SAR; sediments; bivalve beds; polarization; classification; decomposition;
Kennaugh elements

1. Introduction

Located at the interface of land and sea, intertidal flats are one of the most productive
and dynamic ecosystems in the world [1]. The world’s largest coherent intertidal area, the
Wadden Sea, stretches over more than 500 km along the North Sea coast of the Netherlands,
Germany, and Denmark [2,3]. The system of barrier islands, sand flats, seagrass meadows,
intertidal channels, and salt marshes forms the transition between the mainland and
the open North Sea [4]. Being a UNESCO World Heritage since 2011, the Wadden Sea
forms a large natural ecosystem with a high level of biodiversity. Since it is increasingly
exposed to anthropogenic threats such as (over-) fishing, high nutrient loads, oil and gas
production, and tourism, its continuous monitoring is mandatory according to national
and international directives [5,6]. However, most areas are difficult to access, hence in-situ
observations are sparse, which makes remote sensing techniques important and powerful
tools for the mapping of key parameters in such regions [7,8]. The strong dependence on
sunlight and weather conditions always limits the usage of optical remote sensing sensors.
Here, Synthetic Aperture Radar (SAR) data can provide additional information, at a high
spatial resolution, on surface structures and their distribution, thereby complementing the
information gained from optical data [4,9,10].
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Polarimetric SAR (PolSAR) data have already been used to estimate roughness param-
eters of exposed intertidal flats [11–13]. Geng et al. [14] demonstrated that different targets
on intertidal flats can be identified using polarimetric decomposition methods applied to
C- and X-band SAR data. Chen et al. [15] and Banks et al. [16] individually used L- and
C-band PolSAR data to discriminate sediments on intertidal flats. Choe et al. [17] and
Cheng et al. [18], respectively, used L- and C-band pol-SAR data to detect bivalve beds.
However, common PolSAR classification schemes always depend on the availability of
quad-polarization (qual-pol) SAR data, and comprehensive PolSAR features from intertidal
flats are rare. Therefore, the analysis of multi-polarization PolSAR features at multiple SAR
wavelengths and from intertidal areas are subject to ongoing research.

Along these lines, Wang et al. [9] proposed an FCD-RF classification scheme for the dis-
crimination of mud and sand flats, which is based on Freeman–Durden and Cloude–Pottier
decompositions, Double-Bounce Eigenvalue Relative Difference (DERD) parameter and
Random-Forest (RF) classifiers, and tested its effectiveness using ALOS-2 L-band PolSAR
imagery. Later on, Wang et al. [19] proposed a new method for the derivation of indicators
for bivalve beds on intertidal flats and demonstrated its effectiveness at multiple radar
wavelengths. Their indicators were based on a decomposition of the Kennaugh matrix,
whose elements were used to gain information on the total intensity at both co-polarizations
and on the relative strength of even- and odd-bounce backscattering. These indicators were
further used to study the influence of imaging geometry and environmental conditions
on the radar return, and thereby, to gain further insight into the radar backscattering from
exposed intertidal flats [5].

In this paper, we combine the expertise gained in previous studies [9,19] to develop
feature sets used for the classification of sediments and habitats on intertidal flats, and we
evaluate their performance at three different radar bands using PolSAR data from ALOS-2
(L-band), Radarsat-2 (C-band) and TerraSAR-X (X-band). The aim of the present research
study was to apply the existing FCD-RF classification scheme to SAR data acquired at
shorter radar wavelengths (C-band and X-band), to expand it by including parameters
derived from Kennaugh matrices, thereby demonstrating the effectiveness of the new
FCDK-RF classification scheme, and eventually to demonstrate its applicability for a coastal
environment different from that on the Chinese coast, i.e., for the German Wadden Sea.

The area of interest is introduced in Section 2, and the SAR data basis and the devel-
oped FCDK-RF scheme are described in Section 3. Results of multi-frequency and multi-
polarization analyses are presented in Section 4, separating the influence of radar wave-
lengths and feature combinations, and they are discussed in Section 5. Finally, Section 6
provides the conclusions.

2. Study Area

The study area (Figure 1) lies on the German North Sea coast, between the islands
of Amrum and Föhr. It represents an area of a typical mixture of muddy and sandy
sediments, bivalve beds (mainly Pacific oysters, but also blue mussels), and seagrass
meadows [3,7,10,19]. Muddy sediments are mainly found along the coast, because of
the calm local hydrologic conditions. In contrast, sandy and mixed (sandy and muddy)
sediments dominate the open flats of the Wadden Sea [5]. The frequent monitoring of
sediments and bivalve beds is conducted both during field campaigns and using optical
imagery [20].

Figure 2 shows the classification of surface sediments and bivalve beds in the study
area for the years 2014–2016, as derived from Landsat-8 OLI data (© Brockmann Consult
2020). It can be seen that mostly sandy sediments are found in the study area, although
muddy and mixed sediments are also encountered at various places. Marked in red are the
locations of bivalve beds. These classification results were used as reference data in the
present study. Herein, we regard mixed sediments as mud flats for better comparison.
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Figure 2. Classification of surface sediments and bivalve beds in the study area on the German North
Sea coast, based on optical/IR data (Landsat-8 OLI acquired 2014–2016; © Brockmann Consult 2020).
Islands and open water are masked out (“no data”).

In addition to the above classification, we used in-situ data gained during annual
monitoring campaigns and provided by the local National Park Administration. If a crude
assessment based on aerial photography shows changes in the distribution of bivalve
beds, or if specific beds have not been monitored in-situ for long, they become part of
the field monitoring program. During this survey, the bed position was recorded by
means of differential GPS, and samples were taken to record accompanying fauna and
flora [21,22]. The left panel of Figure 3 shows a map with labelled patches marking bivalve
beds encountered during in-situ campaigns in 2013 and 2014. Blue and red patches denote
beds of blue mussels and oysters, respectively. Hereinafter, we regard these in-situ data
as references for bivalve beds in general, i.e., independent of the bivalve species. We note
that the bivalve beds were found not to change considerably in size or location by the time,
when the SAR data were acquired.
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Figure 3. (Left): results from field campaigns carried out in 2013 and 2014. The labelled patches denote bivalve beds of blue
mussels (blue) and oysters (red); (upper right): map showing the map location as red rectangle; (lower right): photograph
(J. Kohlus) of bivalve beds showing the typical patchy distribution of elevated bivalves, water puddles, and sediments.

3. Materials and Methods
3.1. SAR Data

We used three sets of single-look complex (SLC) SAR data of the test site “Amrum”
acquired around low tide by ALOS-2 (hereinafter abbreviated as AL2), Radarsat-2 (RS2),
and TerraSAR-X (TSX). The VV-polarization SAR images acquired on 29 February 2016,
24 December 2015 and 20 June 2016, respectively, are shown in Figure 4. Here, we focus on
a small 18.2 km × 18.2 km area of interest within the “Amrum” site, which was analyzed
in greater detail, see the blue rectangle in Figure 1.

Figure 4 demonstrates that the inner parts of exposed flats (primarily off Amrum)
often appear on SAR images as dark patches, which may be due to remnant water, which
effectively flattens the surface, or to flat sandy sediments (off Föhr). The tidal creeks and
channels, and their narrow branches in particular, are marked by bright patches along their
rims, which are due to elevated, hence rougher, sandy sediments. Several extended bivalve
beds are located within the study area, showing up as bright patches in the SAR imagery.
The bivalves (blue mussels and oysters) stick out of the sediments, increasing the surface
roughness locally, thereby increasing the radar backscattering.

Table 1 shows the acquisition information of the SAR data, including the acquisition
dates and times, the sensors and frequencies, polarizations, incidence angles, and water
levels measured by the tide gauge “Wittdün” at the southern tip of Amrum. The SAR
images’ pixel sizes range from 1 m × 1 m to 5 m × 5 m. The AL2 image was acquired in
Strip-Map Ultra-Fine mode (quad-pol), the RS2 image in Fine Quad-Pol mode (quad-pol),
and the TSX image in High-Resolution Spotlight mode (dual-co-pol: HH and VV). All
SAR images were acquired within 30 min off low tide and at comparable incidence angles
(between 30◦ and 40◦). Note that the SAR signatures at C- and X-band radar are similar,
which is in agreement with earlier findings by Gade et al. [5,13].
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Figure 4. VV-polarization Synthetic Aperture Radar (SAR) imagery of the study area, acquired by Radarsat-2 (RS2; top;
29.6 km × 31.7 km), ALOS-2 (AL2; bottom left; 18.2 km × 18.2 km), and TerraSAR-X (TSX; bottom right; 18 km × 16 km).
All SAR images were acquired shortly after low tide. RS2: © MacDonald, Dettwiler and Associates Ltd. 2015—All Rights
Reserved; AL2: © JAXA 2016; TSX: © DLR 2016.

Table 1. SAR acquisition dates and times, sensors and radar bands, acquisition modes, and environmental conditions during image
acquisitions. Water levels are geopotential heights measured at pile “Wittdün”. Polarizations: dual-co-pol HH + VV (D), quad-pol HH
+ HV + VH + VV (Q).

Date/Time Sensor/Band Polarization/
Inc. Angle

Wind
Speed/Direction

Water
Level

Time/Water Level
at Low Tide

24 December 2015/05:43 UTC RS2/C Q/36.3◦ 9.2 m/s/180◦ −94 cm 05:25 UTC/−103 cm
29 February 2016/23:10 UTC AL2/L Q/35.3◦ 2.2 m/s/110◦ −171 cm 23:46 UTC/−176 cm

20 June 2016/05:50 UTC TSX/X D/31.4◦ 6.4 m/s/230◦ −160 cm 06:22/UTC/−171 cm

3.2. FCDK-RF Classification Scheme

In the previously proposed FCD-RF classification scheme [9], quad-pol L-band SAR
data were used to obtain the feature set, which included Freeman–Durden (F) and Cloude–
Pottier (C) polarimetric decomposition components as well as a Double Bounce Eigenvalue
Relative Difference (D) parameter. The classification was then carried out using Random
Forest (RF) classifiers to distinguish sediment types, especially mud and sand. High accura-
cies were obtained using L-band SAR data; however, the effectiveness of that classification
scheme using SAR data acquired at shorter wavelengths (C- and X-band) needed further
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tests. In this paper, we address this issue and further extend the FCD feature set by includ-
ing Kennaugh elements (K), resulting in an overall classification scheme abbreviated as
FCDK-RF.

3.2.1. FCD Feature Set

The FCD feature set consists of the Freeman–Durden decomposition components,
Cloude–Pottier decomposition components, and DERD parameter [9]. This method per-
formed very well on natural surfaces because its model matching is based on physical radar
scattering models rather than on a mathematical derivation only. The three components
of the Freeman–Durden decomposition are orthogonal and trace-normalized, and they
describe surface scattering (represented by the ODD parameter), double-bounce scattering
(DBL) and volume scattering (VOL). The Cloude–Pottier decomposition focuses on a physi-
cal partition in the scattering process, and is necessary for interpreting all random scattering
mechanisms. The three components of that decomposition are entropy (represented by
H), mean alpha angle (α), and anisotropy (AN). Finally, the DERD parameter has proven
to be useful when describing geophysical parameters of natural media, and its potential
for interpreting the slight scattering disparities between sediments has been assessed and
applied [9].

3.2.2. Developed FCDK Feature Set

Apart from the prevailing sandy and muddy sediments, bivalve beds are encountered
at many places on the German North Sea coast and hence, a reliable classification scheme
needs to account for such habitats too. Recently, Kennaugh elements [23–25] were sug-
gested as parameters that can accurately describe differences in the radar backscattering
from different intertidal flat surfaces and that can be used to derive indicators for bivalve
beds [5]. In order to improve our classification scheme, therefore, we added to its feature
set indicators derived from the Kennaugh matrix [19]. In dual-co-pol (HH and VV) SAR
data, four elements can be obtained from the Kennaugh matrix, namely K0, K3, K4, and
K7 [5]. Among them, K0 reflects the total backscatter intensity, K3 is the difference between
even- and odd-bounce scattering, K4 is the relation between horizontal and vertical dipoles,
and K7 is the phase difference between odd- and even-bounce scattering [24].

The third normalized Kennaugh element, k3, showed good performance in the detec-
tion of bivalve beds. Applying a moving 11 pixel × 11 pixel window, we calculated for
every window the difference D3 of the mean and standard deviation of the third normalized
Kennaugh element, D3 = µ3 − σ3, and the respective product P4 of the absolute mean and
standard deviation of the normalized fourth Kennaugh element, P4 = |µ4| × σ4. Both D3
and P4 have proven useful indicators for bivalve beds [19]. Therefore, the FCDK feature set
includes parameters indicating odd-bounce, double-bounce and volume scattering (ODD,
DBL and VOL, respectively) from the Freeman–Durden decomposition, entropy H, angle α
and anisotropy AN from the Cloude–Pottier decomposition, and the parameters D3 and P4
derived from the Kennaugh framework, together with the DERD parameter.

TSX data were available only as dual-co-pol SAR data (Table 1); therefore, we sim-
plified the SAR feature expressions setting the cross-polarization (cross-pol; HV and VH)
channels as zero, thereby deriving simplified Freeman–Durden and Cloude–Pottier decom-
position components. For simplicity, we set the contribution of volume scattering, hence
the VOL component, of the Freeman–Durden decomposition [26] as zero. Moreover, in the
Cloude–Pottier decomposition [27], we disregarded the cross-pol channels and got two
eigenvalues of the 2 × 2 coherency matrix only. For DERD [28], our simplified scheme
assumes no multiple scattering from rough surfaces, and it normalizes the eigenvalues by
the scattering angle instead of the volume scattering.

3.2.3. FCDK-RF Classification Scheme

The RF classifier is an ensemble of unpruned decision trees constructed from bootstrap
samples derived from training data, and it is relatively robust with respect to outliers and



Remote Sens. 2021, 13, 360 8 of 13

noise without over-fitting [29]. In this research, the predefined number of classification trees
was set to 500, and the output of the classifier was determined by a majority vote among the
decision trees. Finally, we combined the FCDK feature set with the RF classifier, resulting
in the new FCDK-RF classification scheme. Note that no post-classification filtering or
exclusion of particular training or validation areas was applied. Here, we took four classes
into consideration, i.e., sandy sediments, mixed sediments, open water, and bivalve beds.
For the accuracy assessment, we regard in-situ data (Figure 3) as references for bivalve beds,
and sediment classification results (Figure 2) for sand sediments and mixed sediments. In
total, 8000 validation samples were used for accuracy calculation in a confusion matrix.

4. Results

We used AL2 (L-band), RS2 (C-band), and TSX (X-band) PolSAR data of the test site
“Amrum”, which were calibrated, speckle-filtered, and co-registered. The classification
results based on AL2 L-band quad-pol SAR data, RS2 C-band quad-pol SAR data and TSX
dual-co-pol SAR data are shown in Figures 5–7, respectively.

The classification results show sandy surface sediments in yellow, mixed (muddy)
sediments in light brown, bivalve beds in red, and open water in blue. A comparison with
the reference classification (Figure 2) shows good agreements of all results irrespective of
the radar band: the spatial distributions of the different sediment types, of bivalve beds,
and of the open water coincide well with the validation data. It is obvious that the FCDK
feature set is capable of discriminating sand and mud flats, and of identifying bivalve
beds. Combined with the RF classifier the FCDK-RF scheme performs well in resolving
fine structures on the exposed flats and in reducing the contamination by noise.
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We note some differences between our classification results, primarily the different
spatial extents of the exposed flats, which we attribute to different environmental conditions
(water level and wind speed) at the SAR acquisition times. The water level at the time
of the RS2 acquisition was much higher (see Table 1), hence larger parts of the exposed
flats stayed submerged. Wind does not have a significant direct influence on the radar
backscattering from exposed sediments [5]; however, high southerly or westerly winds
may drive more water into the area at flood tide, or may prevent it from running off at ebb
tide. This results in higher water levels, hence in wider tidal channels and creeks and in
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more remnant water on the exposed flats. The latter may be the reason why open sand flats
were often misclassified as muddy sediments, when the classification was based on the
RS2 data (Figure 6). Additionally, note that Figure 7 shows more noise in areas classified
as sea water and on the open flats. We hypothesize that this is due to the finer resolution
of the TSX data (1 m × 1 m), causing a slightly higher confusion of sediments and water.
However, we also note that the extent of bivalve beds corresponds to that derived from the
AL2 and RS2 data.

An accuracy assessment was performed by generating an error matrix that includes
individual accuracies for the classifications based on the different radar bands. As vali-
dation datasets served the existing classification based on optical data (Figure 2) and the
location and spatial extent of bivalve beds recorded in-situ (Figure 3). In total, 8000 valida-
tion samples were taken (2000 samples for each class). We conducted assessment for the
classification results derived from L-, C-, and X-band SAR data, respectively, and calculated
their accuracies using confusion matrix. Table 2 shows as a confusion matrix the Producer’s
Accuracy (PA; share of correctly classified surface types), the User’s Accuracy (UA; share
of correct classifications) for each surface type and radar sensor, as well as the respective
Overall Accuracy (OA) for each sensor, the latter being 86.2% (AL2 L-band), 88.7% (RS2
C-band), and 85.9% (TSX X-band).

Table 2. Accuracy assessments for the classification results derived from AL2 L-band, RS2 C-band
and TSX X-band SAR data. PA: Producer’s Accuracy; UA: User’s Accuracy; OA: Overall Accuracy.

AL2 (L-Band) RS2 (C-Band) TSX (X-Band)

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Sandy sediments 86.7 85.6 89.1 86.2 81.7 79.8

Mixed sediments 86.8 87.2 88.0 86.7 81.0 80.9

Open water 86.5 88.5 88.9 87.6 86.2 87.0

Bivalve beds 89.0 91.8 90.9 91.3 91.6 92.7

OA (%) 86.2 88.7 85.9

Sandy and mixed sediments show User’s Accuracies of 85.6% and 87.2%, respectively,
for the AL2 data, and of 86.2% and 86.7%, respectively, for the RS2 data. Very high User’s
Accuracies exceeding 90% were achieved for bivalve beds for all sensors, i.e., irrespective
of the radar wavelength, while the respective Producer’s Accuracies decrease slightly with
increasing radar wavelength. We attribute this to the roughness scale of the bivalves, which
is on the order of a decimeter and which makes the surface of bivalve beds much rougher
for X-band microwaves (wavelength 3 cm) than for L-band microwaves (25 cm). That is,
the use of shorter radar wavelengths is advantageous over longer radar wavelengths in
distinguishing between bare (mixed and sandy) sediments and bivalve beds on exposed
intertidal flats. Accuracies for open water strongly depend on the water level, which in
turn depends on the very acquisition time, relative to low water, and on the local weather
conditions (wind speed and direction, see Table 1).

Table 2 also demonstrates that the lack of cross-pol channels in the TSX (X-band) data
results in lower User’s Accuracies for sandy (79.8%) and mixed (80.9%) surfaces. Since
we set the cross-pol scatter contribution to zero, thereby losing the VOL component of
the FD decomposition, we only obtained the second-order coherency matrix from the
CP decomposition. Obviously, slight depolarization on the surface of bare sediments
can lead to an erroneous classification, such as sea water, or to a misclassification of the
sandy and mixed sediments. However, we also note that the Overall Accuracy for the
dual-copol X-band SAR data is almost as high as that for the other sensors (85.9% compared
to 86.2% and 88.7%), which shows evidence that bare sediments and habitats are classified
at satisfying accuracies, even without post-classification filtering and the exclusion of
particular training/validation areas.
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5. Discussion

The FCDK-RF classification scheme presented here has proven to be applicable to
multi-frequency PolSAR data and shows good potential for the classification of bare
sediments and bivalve beds on exposed intertidal flats. Moreover, the additional inclusion
of parameters derived from Kennaugh elements can compensate for the loss of information
on scattering mechanisms, when only dual-co-pol SAR data are used. Our results also
show that the classification scheme previously developed for the use of SAR data on the
Chinese coast, in the expanded form presented here, can also be applied to PolSAR data of
other intertidal areas worldwide.

In fact, quad-pol SAR data are better suited the discrimination of sediments, as could
be expected [9], which is due to the complete FD and CP decomposition and the finer DERD
parameter. As shown in Figure 7, dual-co-pol (HH and VV) channels help in discriminating
between mud and sand flats, but Table 2 also indicates that additional cross-pol channels
improve the classification accuracies. For the monitoring of dynamic intertidal areas,
however, dual-co-pol SAR data plays an important role, because of their higher temporal
and areal coverage and their higher spatial resolution compared to quad-pol SAR data.

Van Beijma et al. [30] combined dual-frequency (S- and X-band) SAR and optical data
for a classification of coastal saltmarsh habitats. They found that the inclusion of SAR data
combined with an RF classifier increases the classification accuracy considerably, which
corresponds with our results. Moreover, they demonstrated the great potential of FD and
CP decompositions to provide more information about backscatter processes [30], which
we also found for our FCDK-RF classifier. In addition, we demonstrated that duad-pol
SAR data are also suitable for polarimetric analyses of sediments on intertidal flats.

It has to be emphasized that sea-grass meadows were not taken into consideration
here, since only the TSX data were acquired during the vegetation period (Table 1). Shimada
et al. [31] derived forest/non-forest map based on ALOS PALSAR datasets, using which
we checked our study site labelled as water body. The influence of imaging geometry and
environmental conditions (wind speed, water level, and vegetation period) on the radar
return from sea-grass and bare sediments has already been demonstrated [5]. Further
research will include coastal vegetation into the classification scheme.

6. Conclusions

We have introduced the FCDK-RF classification scheme for sediments and habitats
on intertidal flats in the German Wadden Sea. The FCDK feature set consists of the
Freeman–Durden (F) and Cloude–Pottier (C) decomposition components, the Double-
Bounce Eigenvalue Relative Difference (D) parameter, and the new D3 and P4 parameters
extracted from elements of the Kennaugh matrix (K). Using fully polarimetric SAR (PolSAR)
data acquired at different radar bands (L-band, C-band and X-band), we conducted the
classification with a Random Forest (RF) classifier. A comparison with reference data
obtained from optical data and field campaigns revealed that the FCDK feature set has
good potential of identifying sandy and mixed sediments on intertidal flats, even when
they merge into or mix with each other, and of detecting bivalve beds.

We also presented a simplified FCDK-RF scheme for the use of dual-co-pol SAR data.
Although the accuracies of the discrimination of mixed and sandy flat surfaces is lower
than that gained from the use of quad-pol data, the Overall Accuracy still exceeds 85%.
Therefore, we conclude that also dual-co-pol (HH and VV) SAR data can be used in the
presented FCDK-RF classification scheme. Moreover, we have shown that the FCDK-RF
classification scheme can be applied to SAR data acquired at various radar wavelengths
(X-, C-, and L-band).
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