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Abstract: Transformers have demonstrated remarkable accomplishments in several natural language
processing (NLP) tasks as well as image processing tasks. Herein, we present a deep-learning (DL)
model that is capable of improving the semantic segmentation network in two ways. First, utilizing
the pre-training Swin Transformer (SwinTF) under Vision Transformer (ViT) as a backbone, the model
weights downstream tasks by joining task layers upon the pretrained encoder. Secondly, decoder
designs are applied to our DL network with three decoder designs, U-Net, pyramid scene parsing
(PSP) network, and feature pyramid network (FPN), to perform pixel-level segmentation. The results
are compared with other image labeling state of the art (SOTA) methods, such as global convolutional
network (GCN) and ViT. Extensive experiments show that our Swin Transformer (SwinTF) with
decoder designs reached a new state of the art on the Thailand Isan Landsat-8 corpus (89.8% F1 score),
Thailand North Landsat-8 corpus (63.12% F1 score), and competitive results on ISPRS Vaihingen.
Moreover, both our best-proposed methods (SwinTF-PSP and SwinTF-FPN) even outperformed
SwinTF with supervised pre-training ViT on the ImageNet-1K in the Thailand, Landsat-8, and ISPRS
Vaihingen corpora.

Keywords: vision transformer; fully transformer networks; convolutional neural network; feature
pyramid network; high-resolution representations; ISPRS Vaihingen; Landsat-8

1. Introduction

In general, automated semantic segmentation is studied to analyze remote sens-
ing [1–3]. Research into semantic segmentation of aerial or satellite data has grown in
importance. Over the years, due to its full range of autonomous driving, automatic map-
ping, and navigation application, significant progress has been made in this field. In the last
decade, DL has been revolutionized by computer science. Among modern convolutional
neural networks (ConvNet/CNNs), there are many techniques, e.g., dual attention [4]
and self-attention [5], that have gained increasing attention due to their capability. Such
techniques generate highly precise semantic segmentation from remote sensing data. Still,
all suffer from issues regarding the accuracy of performance.

Currently, many deep learning architectures [2,6] have been applied in urban or
agriculture segmentations, such as global convolutional networks [7], DeepLab [8], mask
R-CNN [9], BiseNet [10], and CCNet [11]. These networks have been created for semantic
recognition and consist of stacked convolution blocks. Due to reduced costs of computation,
the use of kernel maps has decreased gradually.
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Thus, the encoder network can learn more semantic visual theories with a steadily
increased receptive field. Consequently, this also inflates a primary restriction of study-
ing long-range dependency knowledge, which is significant for computer vision tasks.
However, the situation is still challenging due to the limited size of the region in the input
that produces the feature. These receptive fields require dense high-resolution predictions;
transformers conduct self-attention on that receptive field. Previously, architecture has not
fully leveraged various feature maps from convolution or attention blocks conducive to
image segmentation, and this was a motivation for this work.

To overcome this weakness, completely new networks viz. Swin Transformer
(SwinTF) [12] with Vision Transformer (ViT) [13] as the major backbone, have a tremen-
dous capacity in long-range dependency acquisition and sequence-based picture modeling.
Transformers are the first transduction models that rely entirely on self-attention to com-
pute their input and output representations without using sequence-aligned RNNs or
convolution. No recurrent units are used to obtain these features; they are simply weighted
sums and activations, which prove to be very efficient and parallelizable [14].

ViT is one of the most well-known Transformers used in several computer vision
tasks, such as hyperspectral image classification [15,16], bounding-box detection [17,18],
and semantic segmentation [19,20]. ViT moves the window divider between successive
levels of self-attention. The shifted windows provide links between the windows of the
last layer, considerably increasing modeling capability.

Most relevant to our proposed method is the Vision Transformer (ViT) [13] and their
follow-ups [21–25]. ViT is a deep learning architecture that utilizes the mechanism of
attention, focusing on image recognition and is greatly valued in their works [21–25].
Several works of ViT directly employ a transformer model on non-overlapping medium-
sized image patches for image classification. ViT reaches an exciting speed-performance
trade-off on almost all computer vision tasks compared to previous DL networks. DeiT [26]
introduces several training policies that also allow it to be efficient using the extra modest
ImageNet-1K corpus.

The effects of ViT on computer vision tasks are encouraging. The ViT model is inap-
propriate for low-resolution kernel filters and the image size’s quadratic improvement in
complexity. Some works utilize ViT models for the dense image tasks of semantic segmen-
tation and detection. Notably, ViT [12,27] models are seen to have the best performance-
accuracy trade-offs among these methods on computer vision tasks, even though this work
concentrates mostly on general-purpose performance rather than focusing on semantic
segmentation.

Moreover, it usually takes high computational costs for the previous transformer
network, e.g., Pyramid ViT [28], which is quadratic to the size of an image. In contrast,
SwinTF has solved the computational issue and costs linear to the image size. SwinTF has
improved the accuracy by operating the model regionally, enhancing receptive fields that
highly correlate to visual signals. Furthermore, it is efficient and effective, achieving SOTA
performance, e.g., MeanIoU, AveragePrecision on COCO object detection, and ADE20K
semantic segmentation.

In this paper, transformer-based decoder designs for multi-object segmentation from
medium-resolution (Landsat-8) and very high-resolution (aerial) images are introduced, as
demonstrated in Figures 1 and 2. This work helps to further improve SOTA on semantic
segmentation in Landsat-8 and aerial images. For better performance, three styles of
decoder designs into transformer-based reasoning are implemented. Our goals are two-
fold:

• Utilizing a pre-training ViT to retrieve the virtual visual tokens based on the vision
patches from aerial and satellite images: we immediately fine-tune the model weights
on downstream responsibilities by appropriating pre-training SwinTF under ViT, as a
backbone, by appending responsibility layers and superimposing the pretrained en-
coder.
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• Proposing the decoder designs to our DL network with three decoder designs in-
cluding (i) U-Net [29], (ii) pyramid scene parsing (PSP) network [30], and (iii) feature
pyramid network (FPN) [31] to perform pixel-level segmentation.

The experimental results on three remotely sensed semantic segmentation corpora,
including two Thailand Landsat-8 data sets and one ISPRS Vaihingen [32] corpora, demon-
strate the effectiveness of the proposed scheme. The results prove that our SwinTF with
decoder designs can overcome the previous encoder–decoder network [33–36] on aerial
and satellite images and Swin Transformer models [12] in terms of the Precision, Recall,
and F1 score sequentially.

The remainder of this article is structured as follows. Section 2 discusses the materials
and methods. The results are detailed in Section 3, and Section 4 presents our discussion,
including our limitations and outlook. Finally, our conclusions are drawn in Section 5.

2. Material and Methods
2.1. Transformer Model
2.1.1. Transformer Based Semantic Segmentation

SwinTF follows a sequence-to-sequence vector with transformers [37] as well as a
corresponding output vector with input vector fabrication, such as NLP. NLP concerns
the interaction between computers and human language in order to process and analyze
a large amount of matured language. Accordingly, the SwinTF, as described in Figure 1
allows a 1D sequence of vector embeddings z ∈ RL×C as input, L is the length of the vector,
and C is the hidden kernel size. The image sequence is consequently obliged to modify an
input layer of image x ∈ RH×W×3 into Z.

The traditional SwinTF model [12] focuses on the relationship between a token (image
patches); the other tokens are calculated. ViT focuses on the quadratic complexity concern-
ing the number of image patches; finding it unsuitable for many image problems requiring
an immense set of tokens for the softmax layer.

A traditional transformer-based encoder learns vector representations as to the 1D
vector of embedding sequence E input. This means that each ViT layer has a global
receptive field, which answers the insufficient receptive field problems of the existing
encoder–decoder deep neural network. The ViT encoder consists of Le layers of multilayer
perceptron (MLP) and multi-head self-attention (MSA) modules.

A method for the sequence of image vectors is to flatten the pixel of values of images
within a 1D vector with a size of 3×H×W. For a representative image, i.e., 512(H) × 512(W)
× 3, the resulting vector will have a length of 786,432. It is not conceivable that such high-
dimensional vectors can be handled in both time and vector space. Accordingly, tokenizing
every pixel of the image as input to our SwinTF is subject to a linear embedding layer.

In the case whereby a conventional encoder designed for semantic segmentation
would downsample a 2D image x ∈ RHW3 into a grid via a featuremap x f ∈ R

H
16×

W
16×C, we

decided to set the transformer input sequence length L as H
16 ×

W
16 = W

256 . This means that
the output of the vector sequence of ViT can be clearly reshaped to the point kernel map x f .

To recover the HW
256 -long vector sequence of our input, we divide the image x ∈ RH×W×3

into a grid of as H
16 ×

W
16 patches. Thus, several ViT modules with modified self-attention

calculation (SwinTF modules) are adapted on these image patch tokens. The ViT module
maintains the number of patches H

4 ×
W
4 and then makes a series out of this grid. Each

vectorized patch p is mapped into a latent C-dimensional embedding space using a linear
projection function. f : p→ e ∈ RC, for a patch x; we obtain a 1D series of vector em-
beddings. Therefore, we obtain a unique embedding pi for each position i to encode the
patch spatial information, which is then added to ei to generate the final sequence input
E = {e1 + p1, e2 + p2, ..., eL + pL}. In this process, spatial data is kept, notwithstanding the
order-less attention type of transformers.

A classical transformer-based encoder accepts feature representations when given the
1D embedding sequence E as input. This encoder means that each ViT layer has a global
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receptive field, resolving the problem of the standard deep learning encoder’s restricted
sensory area once and for all. The encoder of SwinTF consists of Le vector of MLP and
MSA modules (Figure 1). At each layer l, the input to self-attention is depicted as a triplet
of (query, key, value), and calculated from the input Zl−1 ∈ RL×C as:

query = Zl−1WQ, key = Zl−1WK, value = Zl−1WV (1)

where WQ/WK/WV ∈ RC×d are the learnable weights of three linear projection vectors
and d is the dimension of (query, key, value). Self-attention (SA) is then expressed as:

Figure 1. The overall architecture of our SwinTF.

SA(Zl−1) = Zl−1 + so f tmax(
Zl−1WQ(ZWK)

T
√

d
)(Zl−1WV) (2)
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MSA clearly calculated a reckoning with m self-supporting SA actions and projects their
concatenated outputs: MSA(Zl−1) = [SA1(Zl − 1); SA2(Zl − 1); . . . ; SAm(Zl − 1)]WO.
Where WO ∈ Rmd × C. d is typically set to C/m. The output of MSA is then transformed
by an MLP module with a residual skip as the output layer as:

Zl = MSA(Zl−1) + MLP(MSA(Zl−1)) ∈ RL×C. (3)

Lastly, a normalized layer is employed before MLP and MSA modules, which are
omitted for clearness. We express Z1, Z2, Z3, . . . , ZLe as the weights of transformer vectors.

2.1.2. Decoder Designs

To assess the effectiveness of SwinTF’s encoder vector, as represented by Z, three
various decoder designs as portrayed in Figure 2 are set up to achieve pixel-level labeling.
Next, the three decoders can be expressed as:

(1) U-Net [29]: The expansion route (decoder) on the right-hand side applies trans-
posed convolutions with ordinary convolutions. The image size gradually increases in the
decoder, whereas the depth gradually decreases. To improve precision, we employ the skip
connections at every stage of the decoder by concatenating the output of the transposed
convolution layers with the feature maps from the encoder at the same level. The encoder
path’s high-resolution (but semantically infirm) characteristics are mixed and reused with
the upsampled output in this way.

As seen in the diagram below, U-Net has an asymmetrical design. Every step in the
expanding direction, consisting of an upsampling of the feature map followed by a 2 × 2
transpose convolution that halves the number of feature channels, is used in the Decoder
route. Accordingly, we have a concatenation with the contracting path’s appropriate feature
map, as well as a 3 × 3 convolutional neural network (each followed by a Rectified Linear
Unit (ReLU)). A 1 × 1 convolution transfers the channels to the required number of classes
in the final layer. Such a purpose is to bridge the feature gap between the decoder and
encoder feature maps before concatenation.

(2) For pixel-level scene parsing, the PSP network is used and provides excellent global
contextual prior [30]. The pyramid pooling module can capture more representative levels
of data than global average pooling (GAP). The concept of sub-region average pooling is
comparable to SPPNet’s Spatial Pyramid Pooling [38]. Bilinear interpolation is employed
to make all the feature maps’ sizes equal; the 11 convolution then concatenation is akin to
the depthwise convolution in Depthwise Separable Convolution utilized by Xception [39]
or MobileNet [40]. To minimize the detrimental effect as much as possible, upsampling to
2× is limited.

As a result, full-resolution from BZLe with size A H
16 ×

W
16 requires a total of four

processes. The green layer, as seen in Figure 2, is the coarsest level, performing GAP over
each feature map to provide a single bin output. The yellow layer is the second level, which
divides the feature map into 2 × 2 sub-regions and performs average pooling for each of
them. The third level, the light blue layer, separates the feature map into 33 sub-regions
before serving average pooling for each sub-region. Finally, each low-dimension feature
map is up-sampled to the same size as the original feature map (last blue layer), followed
by a convolution layer to produce the final prediction map.

(3) FPN [31] is a characteristic extractor created with accuracy and speed in mind
for such a pyramid idea. FPN takes the place of detectors, like Faster R-feature CNN’s
extractor [41]. Image recognition generates many feature map layers (multi-scale feature
maps) and has superior quality to the traditional feature pyramid. FPN also utilizes specifi-
cally constructed transformers in a self-level, top-down, and bottom-up interactive pattern
to change any feature pyramid into another feature pyramid of the same size but with
richer contexts. The simple query, key, and value operation (Equation (1)) demonstrates
its importance in choosing informative long-range interaction, which fits our objective of
non-local interaction at appropriate sizes.
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The higher-level feature using the visual qualities of the lower-level “pixels” is de-
picted. Each level’s feature maps (red, yellow, and blue) are resized to their matching map
size and concatenated with the original map before being sent to the convolution layer,
which resizes them to the accurate “thickness”. Higher-resolution features are upsampled
from higher-pyramid-level feature maps, which are spatially coarser but semantically more
robust. Spatial resolution is upsampled by a factor of two, with the nearest neighbor being
used for simplicity. Each lateral link combines feature maps from the bottom-up and
top-down paths of the same spatial size. To minimize the channel dimensions, the feature
maps from the bottom-up course are convolutional (11 times).

In addition, element-wise addition is used to combine the feature maps from the
bottom-up and top-down pathways. Finally, a 33 convolution is applied to each merged
map to form the final feature map to reduce the aliasing impact of upsampling. This last
collection of feature maps corresponds to the precise spatial dimensions. As all layers of
the pyramid, as in a standard featured picture pyramid, employ joint classifiers/regressors,
the feature dimension at output d is fixed at d = 256. As a result, the outputs of all further
convolutional layers are 256-channel.

Figure 2. SwinTF with three variations of our decoder designs: SwinTF-UNet, SwinTF-PSP, and
SwinTF-FPN.

2.1.3. Environment and Deep Learning Configurations

Herein, a stochastic depth dropout of 0.25 for the first 70% of training iterations is
employed, and the dropout ratio to 0.6 is increased for the last 20%. As for the multi-
scale flipping testing, testing scales of 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75 are presented
along with random horizontal flips by following standard practices, as in the literature
(e.g., [12,13,31,37]) throughout training for all the experiments.

As the optimizer, a learning rate (LR) schedule is used with Stochastic gradient descent
(often abbreviated SGD) for optimizing an the loss function with suitable smoothness
properties. Weight decay and momentum are locked to 0.25 and 0.75, sequentially, for all
the experiments on the three datasets. The initial LR of 0.0001 is set up on the Thailand
Landsat-8 corpora and 0.001 on the ISPRS Vaihingen data set. Finally, batch normalization
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in the fusion layers is employed and carried out using batch size 48. Images are resized to
512 pixels side length.

2.2. Aerial and Satellite Imagery

There are three primary sources of data in our experiments: one public and two
private data sets. The private data sets are medium resolution imagery gathered from
the satellite “Landsat-8” owned by the Thai government’s Geo-Informatics and Space
Technology Development Agency (GISTDA). As there are two different annotations, the
Landsat-8 data is divided into two categories (Isan and North corpora), as illustrated in
Table 1. The public data collection consists of high-resolution imagery from the “ISPRS
Vaihingen (Stuttgart)” standard benchmark.

In our works, two types of data sets are used: satellite data and aerial data. Table 1
displays one aerial corpus (ISPRS Vaihingen data set) and two satellite data sets (TH-Isan
Landsat-8 and TH-North Landsat-8 data sets). The Vaihingen data set contains 16 patches.
Such data have been collected at particular locations with different sizes of resolution.

Table 1. Numbers of training, validation, and testing sets.

Data Set Total Images Training Set Validation Set Testing Set

TH-Isan Landsat-8 Corpus 1420 1000 300 120
TH-North Landsat-8 Corpus 1600 1000 400 200

ISPRS Vaihingen Corpus 16 (Patches) 10 2 4

2.2.1. North East (Isan) and North of Thailand Landsat-8 Corpora

The Isan district of Thailand’s northeast is characterized by gently undulating topog-
raphy, which mostly ranges in altitude from 90 to 180 m (300 to 600 feet), sloping from the
Phetchabun Mountains in the west down to the Mekong River. The plateau is separated
into different plains: the Mun and Chi rivers drain the southern Khorat plain, while the
Loei and Songkhram rivers drain the northern Sakon Nakhon plain. The two tables are
divided by the Phu Phan Mountains. The land is primarily sandy, with a great deal of salt
deposits.

The north of Thailand is known for its varied landforms: low hills, crisscrossing
mountains and valleys, with a large area of land suitable for cultivation, such as corn,
pineapple, and para rubber. The Ping, Wang, Yom, and Nan rivers travel south through
mountain valleys before uniting to form the Chao Phraya in Nakhon Sawan Province in
central Thailand.

All the images in this data set were captured in Thailand’s northern and Isan regions
(Changwat). The Landsat-8 satellite contributed to the data gathering, which included
1420 and 1600 satellite images for the north data set and Isan data set, respectively, as
seen in sampled data as in Figures 3 and 4. This data set has a massive collection of
(46,128 × 47,616) pixel medium-quality images; corn (yellow), para rubber (red), and
pineapple (green) are the three classes. A total of 1420 images are divided into 1000 training,
300 validation images, and 120 test images for the northern corpus. A total of 1600 images
are divided into 1000 training, 400 validation images, and 200 test images for the Isan
corpus for comparability with other baseline methods.
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Figure 3. An illustration of a Landsat-8 scene (northern province (left) and northeastern region (right).

Figure 4. The left image is a sample of the northern province, and the right is the target image from
the TH-Isan Landsat-8 corpus. Three classes comprise the target of the medium-resolution data set:
para rubber (red), corn (yellow), and pineapple (green).

2.2.2. ISPRS Vaihingen Corpus

Our benchmark dataset is the ISPRS semantic segmentation challenge [32] (Figures 5 and 6)
in Vaihingen (Stuttgart). They seized command of the German city of Vaihingen. The ISPRS
Vaihingen corpus contains 3-band IRRG (Red, Infrared, and Green) image data, corresponding
NDSM (Normalized Digital Surface Model), and DSM (Digital Surface Model) data. The latter
highlights 33 scenes with a resolution of approximately 2500× 2000 pixels and a capacity of



Remote Sens. 2021, 13, 5100 9 of 21

about 9 cm. According to prior approaches, four locations, such as scenes 5, 7, 23, and 30, were
eliminated from the training set as a testing set.

Figure 5. Very high-resolution imagery: ISPRS Vaihingen data set.

2.2.3. Evaluation Metrics

A true negative (TN) is an outcome where the model predicts the negative class
correctly. Similarly, a true positive (TP) is an outcome where the model correctly predicts
the positive class. A false negative (FN) is an outcome where the model incorrectly predicts
the negative class, and a false positive (FP) is an outcome where the model incorrectly
predicts the positive class.

F1 is the weighted average of Precision and Recall. Accordingly, this score needs both
false negatives and false positives to verify the calculation. However, its Accuracy is not
straightforward. Although F1 is regularly more valuable than Accuracy, especially with an
uneven class distribution, Accuracy is achieved only if false positives and false negatives
have similar costs.

It is noted that, for all corpora, the performance of “Pretrained SwinTF with decoder
designs” is assessed for F1 and Accuracy. The Intersection ovenion (IoU), F1, Precision,
recall, and Accuracy metrics are used to evaluate class-specific performance; the sympho-
nious average of recall, and accuracy is used to calculate it. The core metrics of Precision,
Recall, IoU, F1 as well as the Accuracy, which divides the number of properly catego-
rized locations by the total number of reference positions are all implemented. Applying
Equations (4)–(8), the Accuracy, IoU, and F1 metrics can be expressed as:

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Intersection over Union (IoU) =
TP

TP + FP + FN
(5)

F1 =
2×Precision×Recall

Precison + Recall
(6)

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)
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Figure 6. This is an example scene from Figure 5. The input image (left) depicts an example of an
input scene and a target image (right). Tree (green), building (blue), jumble/background (red), low
vegetation or LV (greenish-blue), and impervious surface or IS (white) are the five categories in the
annotated Vaihingen data set.

3. Results

Regarding the DL environmental setup, the “TensorFlow Core v2.6.0 (TF)” [42] was
created as an end-to-end open-source platform. All experiments were carried out via
servers with Intel® Xeon® Scalable 4210R (10 core, 2.4 GHz, 13.75 MB, 100W), 256 GB of
memory, and the NVIDIA RTX™ 1080Ti (11 GB) × 2 cards. As designated in Table 2, there
are eight procedural acronyms in all proposed designs.

Table 2. Acronyms on our proposed scheme strategies.

Acronym Representation

DL Deep Learning
FPN Feature Pyramid Network
LR Learning Rate
PSP Pyramid Scene Parsing Network

ResNet152 152-layer ResNet
SwinTF Swin Transformer

SwinTF-FPN Swin Transformer with FPN Decoder Design
SwinTF-PSP Swin Transformer with PSP Decoder Design

SwinTF-UNet Swin Transformer with U-Net Decoder Design
TH-Isan Landsat-8 corpus North East Thailand Landsat-8 data set

TH-North Landsat-8 corpus North Thailand Landsat-8 data set
ViT Vision Transformer

3.1. Results for TH-Isan Landsat-8 Corpus
3.1.1. Effect of Swin Transformer and Pretrained Models

To ensure the contribution of the transformer module, SwinTF was compared with
and without Pretrained models on ImageNet-1K by adding or removing the concatenation
of this feature in our backbone architecture. The results presented in Tables 3 and 4 suggest
that the Pretrained model on ImageNet-1K of Transformer is crucial for the segmentation.
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In Table 3, the segmentation F1 scores are significantly improved by 3.4% for the backbone
networks as compared with SwinTF without Pretrained and GCN-A-FF-DA with Res152.

Furthermore, in Table 4, the impact on the corn is 19.82%; this feature is due to the
higher accuracy for almost all classes except the para rubber class. F1 scores of 87.74% can
still be achieved with the same backbone networks in Table 3 as compared with SwinTF
without Pretrained and GCN-A-FF-DA with Res152. Results suggest that the network of
the transformer was compatible with end-to-end deep learning.

3.1.2. Effect of Transformer with Decoder Designs

To investigate the transformer-based decoder designs, we evaluate our deep architec-
ture with FPN, PSP, and UNet. In Table 3 of our proposed methods, SwinTF-PSP decoder
design (the best-proposed model) achieves an F1 score of 88.95%, with the FPN decoder
design achieving an F1 score of 89.80% and with the U-Net decoder design achieving an F1
score of 88.30%. Using the same training schedule, our best-proposed model (SwinTF-PSP)
significantly outperforms the baselines (GCN), achieving F1 of 6.4% and the baselines
(Pretrained SwinTF), achieving F1 of 2.05% with a clear margin.

Moreover, the decoder designs of our transformers yield concretely better results than
original pretrained Swin Transformers. In Table 3 comparing SwinTF-PSP with SwinTF
with Pretrained, our best model (PSP decoder designs) achieves 0.14%, 3.85%, and 2.06%
improvements for precision, recall, and F1, respectively.

Table 3. Results on our testing set: TH-Isan Landsat-8 corpus.

Pretrained Backbone Model Precision Recall F1 IoU

Baseline Yes - DeepLab V3 [8] 0.7547 0.7483 0.7515 0.6019
Yes - UNet [29] 0.7353 0.7340 0.7346 0.5806
Yes - PSP [30] 0.7783 0.7592 0.7686 0.6242
Yes - FPN [31] 0.7633 0.7688 0.7660 0.6208
Yes Res152 GCN-A-FF-DA [36] 0.7946 0.7883 0.7909 0.6549
Yes RestNest-K50-GELU GCN-A-FF-DA [36,43] 0.8397 0.8285 0.8339 0.7154
No ViT SwinTF [12,13,37] 0.8778 0.8148 0.8430 0.7319
Yes ViT SwinTF [12,13,37] 0.8925 0.8637 0.8774 0.7824

Proposed
Method

Yes ViT SwinTF-UNet 0.8746 0.8955 0.8830 0.7936
Yes ViT SwinTF-PSP 0.8939 0.9022 0.8980 0.8151
Yes ViT SwinTF-FPN 0.8966 0.8842 0.8895 0.8025

Table 4. Results on our testing set: TH-Isan Landsat-8 corpus (each class).

Pretrained Backbone Model Corn Pineapple Para Rubber

Baseline Yes - DeepLab V3 [8] 0.6334 0.8306 0.7801
Yes - UNet [29] 0.6210 0.8129 0.7927
Yes - PSP [30] 0.6430 0.8170 0.8199
Yes - FPN [31] 0.6571 0.8541 0.8191
Yes Res152 GCN-A-FF-DA [36] 0.6834 0.8706 0.8301
Yes RestNest-K50-GELU GCN-A-FF-DA [36,43] 0.8982 0.9561 0.8657
No ViT SwinTF [12,13,37] 0.7021 0.9179 0.8859
Yes ViT SwinTF [12,13,37] 0.9003 0.9572 0.8763

Proposed
Method

Yes ViT SwinTF-UNet 0.9139 0.9652 0.8876
Yes ViT SwinTF-PSP 0.9386 0.9632 0.8985
Yes ViT SwinTF-FPN 0.9234 0.9619 0.8886
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3.2. Results for TH-North Landsat-8 Corpus
3.2.1. Effect of Swin Transformer and Pretrained Models

As presented in Tables 5 and 6, the results suggest that the Pretrained model on
ImageNet-1K of Transformer proved significant for the segmentation. The results greatly
improved the segmentation F1 score by 1.06% for the backbone networks and 4.8% for
the baseline networks. Furthermore, there was little impact on the para rubber, corn, and
pineapple (2%); this feature was due to the higher accuracy for all classes in Table 6. In
Table 5, an F1 score of 88.73% with the same backbone networks can still be achieved as
compared with SwinTF without Pretrained and GCN-A-FF-DA with Res152. This outcome
suggests that the network architecture of the transformer was compatible with end-to-end
DL.

3.2.2. Effect of Transformer with our Decoder Designs

To examine the transformer-based decoder designs, our deep architecture with FPN,
PSP, and UNet was assessed. In Table 5 of our proposed methods, the SwinTF-PSP network
(remaining the best-proposed model) achieved an F1 score of 63.12%. Further, the FPN
decoder design achieved an F1 score of 63.06%, and the UNet decoder design achieved an
F1 score of 62.24%.

Table 5. Results on our testing set: TH-North Landsat-8 corpus.

Pretrained Backbone Model Precision Recall F1 IoU

Baseline Yes - DeepLab V3 [8] 0.5019 0.5323 0.5166 0.3483
Yes - UNet [29] 0.4836 0.5334 0.5073 0.3398
Yes - PSP [30] 0.4949 0.5456 0.5190 0.3505
Yes - FPN [31] 0.5112 0.5273 0.5192 0.3506
Yes Res152 GCN-A-FF-DA [36] 0.5418 0.5722 0.5559 0.3857
Yes RestNest-K50-GELU GCN-A-FF-DA [36,43] 0.6029 0.5977 0.5977 0.4289
No ViT SwinTF [12,13,37] 0.6076 0.5809 0.5940 0.4225
Yes ViT SwinTF [12,13,37] 0.6233 0.5883 0.6047 0.4340

Proposed
Method

Yes ViT SwinTF-UNet 0.6273 0.6177 0.6224 0.4519
Yes ViT SwinTF-PSP 0.6384 0.6245 0.6312 0.4613
Yes ViT SwinTF-FPN 0.6324 0.6289 0.6306 0.4606

Table 6. Results on our testing set: TH-North Landsat-8 corpus (each class).

Pretrained Backbone Model Corn Pineapple Para Rubber

Baseline Yes - DeepLab V3 [8] 0.4369 0.8639 0.8177
Yes - UNet [29] 0.4135 0.8418 0.7721
Yes - PSP [30] 0.4413 0.8702 0.8032
Yes - FPN [31] 0.4470 0.8743 0.8064
Yes Res152 GCN-A-FF-DA [36] 0.4669 0.9039 0.8177
Yes RestNest-K50-GELU GCN-A-FF-DA [36,43] 0.5151 0.9394 0.8442
No ViT SwinTF [12,13,37] 0.5375 0.9302 0.8628
Yes ViT SwinTF [12,13,37] 0.5592 0.9527 0.8873

Proposed
Method

Yes ViT SwinTF -UNet 0.5850 0.9703 0.9117
Yes ViT SwinTF-PSP 0.6008 0.9877 0.9296
Yes ViT SwinTF-FPN 0.6006 0.9857 0.9245

Using the same training schedule, our best-proposed model (SwinTF-PSP) significantly
outperformed both baselines (GCN), achieving an F1 score of 7.52% and the baselines
(Pretrained Swin-TF), achieving an F1 score of 2.65% by a clear margin. It is evident that the
decoder designs of our transformers yielded far better results than the original pretrained
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Swin Transformers. In Table 5 comparing SwinTF-PSP with SwinTF with Pretrained,
our best model (PSP decoder designs) achieved 1.5%, 3.6%, and 2.6% improvements for
precision, recall, and F1, respectively.

3.3. Results for ISPRS Vaihingen Corpus

This research aims to take semantic segmentation methods via modern deep learning
and apply them to high-resolution geospatial corpora. These differences are summed up in
Tables 7 and 8. We noted that our best model (Pretrained SwinTF-FPN) had more robust
results on this corpus.

3.3.1. Effect of Swin Transformer and Pretrained Models

In Tables 7 and 8, the results suggest that the Pretrained model on ImageNet-1K of
Transformer is also significant for the segmentation. In Table 7, the results much improved
the segmentation F1-score by 2.73% for the backbone networks and 8.01% for the baseline
networks compared with SwinTF without Pretrained and GCN-A-FF-DA with Res152. In
Table 8, there was little impact on the impervious surfaces, tree, and car classes at 2.19%,
2.48%, and 9.39%, respectively; this feature was due to the higher accuracy almost of all
classes. It is clear that SwinTF-FPN can still achieve F1 scores of 94.94% with the same
backbone network in Table 7. This result suggests that the network architecture of the
transformer was compatible with end-to-end deep learning.

3.3.2. Effect of Transformer with Our Decoder Designs

To investigate the transformer-based decoder designs, our deep architecture was
evaluated via FPN, PSP, and UNet, respectively. In Table 7 of our proposed methods,
SwinTF-PSP also achieved an F1 score of 94.83%. Furthermore, the FPN decoder design
(the winner) achieved an F1 score of 94.94%, whilst the UNet decoder design achieved an
F1 score of 94.38%. Using the same training schedule, our best-proposed model (SwinTF-
FPN) significantly outperformed both the baselines (GCN), achieving F1 of 6.4% and the
baselines (Pretrained SwinTF), achieving F1 of 2.05% by a clear margin.

Table 7. Results on our testing set: ISPRS Vaihingen Corpus.

Pretrained Backbone Model Precision Recall F1 IoU

Baseline Yes - DeepLab V3 [8] 0.8672 0.8672 0.8672 0.7656
Yes - UNet [29] 0.8472 0.8572 0.8522 0.7425
Yes - PSP [30] 0.8614 0.8799 0.8706 0.7708
Yes - FPN [31] 0.8701 0.8812 0.8756 0.7787
Yes Res152 GCN-A-FF-DA [36] 0.8716 0.8685 0.8694 0.8197
Yes RestNest-K50-GELU GCN-A-FF-DA [36,43] 0.9044 0.9088 0.9063 0.8292
No ViT SwinTF [12,13,37] 0.8537 0.9356 0.8770 0.7701
Yes ViT SwinTF [12,13,37] 0.9756 0.8949 0.9221 0.8753

Proposed
Method

Yes ViT SwinTF-UNet 0.9203 0.9732 0.9438 0.8977
Yes ViT SwinTF-PSP 0.9271 0.9820 0.9483 0.9098
Yes ViT SwinTF-FPN 0.9296 0.9756 0.9494 0.9086

Moreover, the decoder designs of our transformers yielded much better results than
the original pretrained SwinTF. In Table 7, comparing SwinTF-PSP with SwinTF and
Pretrained, our best model (FPN decoder design) attained 8.07% and 2.76% improvements
for the recall and F1, respectively.

Figure 7 shows the prediction results for the entire Isan scene, and Figure 8 shows the
prediction results for the entire North scene. Agriculture regions are more dispersed in
these zones, and the scenery is more varied. Furthermore, exposed rocks and patches of
flora in semiarid environments may have comparable backscatter intensities to structures
and be readily misclassified.
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Table 8. Results on our testing set: ISPRS Vaihingen Corpus (each class).

Model IS Buildings LV Tree Car

Baseline DeepLab V3 [8] 0.8289 0.8026 0.8257 0.7985 0.6735
UNet [29] 0.8189 0.7826 0.7857 0.7845 0.6373
PSP [30] 0.8273 0.8072 0.8059 0.8050 0.6781
FPN [31] 0.8327 0.8111 0.8127 0.8117 0.6896

GCN-A-FF-DA [36] 0.8431 0.8336 0.8362 0.8312 0.7014
GCN-A-FF-DA [36,43] 0.9005 0.9076 0.8942 0.8877 0.8233

SwinTF [12,13,37] 0.8811 0.8934 0.8878 0.8734 0.7866
Pretrained SwinTF [12,13,37] 0.9137 0.9139 0.8803 0.8922 0.8118

Proposed
Method

Pretrained SwinTF-UNet 0.9139 0.9101 0.8870 0.9035 0.9006
Pretrained SwinTF-PSP 0.9259 0.9195 0.8790 0.9093 0.9019
Pretrained SwinTF-FPN 0.9356 0.9157 0.8746 0.9169 0.9057

Figure 7. Prediction result of “Pretrained SwinTF-PSP” on the entire TH-Isan Landsat-8 corpus scene.

Figure 8. Prediction result of “Pretrained SwinTF-PSP” on the entire TH-North Landsat-8 cor-
pus scene.
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4. Discussion

In this work, the usefulness of SwinTF-based semantic segmentation models for the
retrospective reconstruction of Thailand’s agriculture region was investigated. For the
chosen methodologies, the necessity to prepare sufficient training data may provide certain
restrictions.

As shown in Figure 9, the Isan Landsat-8 corpus provided a qualitative segmentation
comparison between SwinTF and decoder designs (SwinTF-PSP, SwinTF-FPN, and SwinTF-
UNet) and the SOTA baseline (an enhanced GCN). The results of the PSP decoder design
demonstrated more precise segmentation for bigger and thinner objects, e.g., the para
rubber and corn areas. Moreover, the PSP decoder design also achieved more integrated
segmentation on smaller objects, e.g., the pineapple class.

In the validation data of “SwinTF-PSP”, Figure 10, there is a more profound disparity
(hill) than that in the baseline, Figure 10a. In addition, Figures 10b and 11b show four
learning graphs viz. accuracy, precision, recall, and F1 lines. The loss line of the “SwinTF-
PSP” model appeared deceived (very soft) more than the traditional method in Figure 11a.
The number at epoch 99 was selected as a pretrained weight for validation and transfer
learning procedures.

As shown in Figure 12, the north Landsat-8 corpus provided a qualitative segmenta-
tion comparison between SwinTF and decoder designs (SwinTF-PSP, SwinTF-FPN, and
SwinTF-UNet) and the SOTA baseline (an enhanced GCN). The results of the PSP decoder
design revealed more precise segmentation for smaller objects, such as the corn area. More-
over, the PSP decoder design also achieved more integrated segmentation on oversized
objects, e.g., the para rubber class.

There is a more profound disparity (hill) in the validation data of “SwinTF-PSP”,
Figure 13, than that in the baseline, Figure 13a. In addition, Figures 13b and 14b depict
the four learning lines viz. accuracy, precision, recall, and F1 lines. The loss line of the
“SwinTF-PSP” model appeared deceived (very soft) more than the traditional method in
Figure 14a. The number at epoch 100 was chosen as a pretrained weight for validation and
transfer learning procedures.

As shown in Figure 15, the ISPRS Vaihingen corpus provided qualitative segmentation
comparison between SwinTF and decoder designs (SwinTF-PSP, SwinTF-FPN, and SwinTF-
UNet) and the SOTA baseline (an enhanced GCN). The results of the FPN decoder design
exhibited more precise segmentation for smaller objects, e.g., the car and tree (classes).
Moreover, the PSP decoder design achieved more integrated segmentation on oversized
objects, e.g., impervious surfaces. The number at epoch 99 was picked as a pretrained
weight for validation and transfer learning procedures.

In Figure 16, there was a more profound disparity (hill) in the validation data of
“SwinTF-PSP” than that in the baseline, Figure 16a. In addition, Figures 16b and 17b show
the four learning lines viz. accuracy, precision, recall, and F1 lines. The loss line of the
“SwinTF-PSP” model appeared deceived (very soft) more than the traditional method in
Figure 17a. The number at epoch 95 was picked as a pretrained weight for validation and
transfer learning procedures.
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Figure 9. Comparisons between our proposed methods and baseline for the TH-Isan Landsat-8
corpus testing set.

(a) (b)

Figure 10. Graph (learning curves): on TH-Isan Landsat-8, the proposed approach, and SwinTF-PSP
(a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance plot on the
testing corpus.

(a) (b)

Figure 11. Graph (learning curves): TH-Isan Landsat-8 corpus, the baseline approach, and SwinTF
(a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance plot on the
testing corpus.
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Figure 12. Comparisons between our proposed methods and baseline for the TH-North Landsat-8
corpus testing set.

(a) (b)

Figure 13. Graph (learning curves): TH-North Landsat-8 corpus, the proposed approach, and
SwinTF-PSP (a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance
plot on the testing corpus.

(a) (b)

Figure 14. Graph (learning curves): TH-North Landsat-8 corpus, the baseline approach, and SwinTF
(a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance plot on the
testing corpus.
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Figure 15. Comparisons between our proposed methods and baseline for the ISPRS Vaihingen corpus
testing set.

(a) (b)

Figure 16. Graph (learning curves): ISPRS Vaihingen corpus, the proposed approach, and SwinTF-
FPN (a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance plot on
the testing corpus.

(a) (b)

Figure 17. Graph (learning curves): ISPRS Vaihingen corpus, the baseline approach, and SwinTF
(a) Plot of model loss (cross-entropy) on training and testing corpora; (b) performance plot on the
testing corpus.

Limitations and Outlook

In this research, the appropriateness of transformer-based semantic segmentation
models for the retrospective reconstruction of cultivation (corn, pineapple, and para rubber)
in Thailand as well as the ISPRS Vaihingen data set (aerial images) was investigated. For
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the selected methods, the requirement to prepare extensive training data may pose some
limitations. For future studies, achieving high performance with limited training data
using our approach must be cost-effective for multi-temporal agriculture mapping.

Therefore, further evaluation of the effectiveness of using modern DL methods with
Landsat-8 data beyond a national scale is required. Notwithstanding some limitations,
this study adds a baseline, including DeepLab v3, PSP, FPN, and UNet, for proving our
best model performance. In future work, more varieties of modern image labeling, as
well as some analytical perspectives, e.g., evolving reinforcement learning (RL) algorithms,
generative adversarial networks (GANs), or quantization methods for efficient neural
network inference, will be reviewed and analyzed for such tasks.

5. Conclusions

This paper exhibits an alternative viewpoint for semantic segmentation by prefacing
decoder designs for transformer models. The experimental results show that (1) the
pretrained transformer models on ImageNet-1K achieved good results for both the Landsat-
8 (medium resolution) and ISPRS Vaihingen corpus (very high-resolution). The F1-scores
were found to range from 84.3% to 87.74%, 59.4% to 64.47%, and 87.7% to 92.21% for the
Isan, Nan, and ISPRS Vaihingen corpora, respectively. (2) Our results were compared with
other decoder design methods, including FPN, PSP, and U-Net.

It is evident that the proposed approach proved its worth as a dependable technique.
Our detailed qualitative and quantitative investigations on three complex remote sensing
tasks revealed that both FPN and PSP decoder designs consistently outperformed the
baselines and state-of-the-art techniques, thus, demonstrating their significant efficacy and
capabilities. In addition, the average accuracy was better than 90% for almost all classes of
the data sets.

Author Contributions: Conceptualization, T.P.; Formal analysis, T.P.; Investigation, T.P.; Method-
ology, T.P.; Project administration, T.P.; Resources, T.P.; Software, T.P.; Supervision, T.P. and P.V.;
Validation, T.P., K.J., S.L. and P.S.; Visualization, T.P.; Writing—original draft, T.P.; Writing—review
and editing, T.P. and P.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ratchadapisek Somphot Fund for Postdoctoral Fellow-
ship, Chulalongkorn University.

Acknowledgments: Teerapong Panboonyuen, also known as Kao Panboonyuen appreciates (thanks)
and acknowledges the scholarship from Ratchadapisek Somphot Fund for Postdoctoral Fellowship,
Chulalongkorn University, Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Su, J.; Wang, L.; Atkinson, P.M. Multiattention network for semantic segmentation of

fine-resolution remote sensing images. IEEE Trans. Geosci. Remote. Sens. 2021. [CrossRef]
2. Yang, N.; Tang, H. Semantic Segmentation of Satellite Images: A Deep Learning Approach Integrated with Geospatial Hash

Codes. Remote Sens. 2021, 13, 2723. [CrossRef]
3. Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic segmentation network with spatial and channel attention

mechanism for high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 905–909. [CrossRef]
4. Li, X.; Xu, F.; Lyu, X.; Gao, H.; Tong, Y.; Cai, S.; Li, S.; Liu, D. Dual attention deep fusion semantic segmentation networks of

large-scale satellite remote-sensing images. Int. J. Remote Sens. 2021, 42, 3583–3610. [CrossRef]
5. Chen, Z.; Li, D.; Fan, W.; Guan, H.; Wang, C.; Li, J. Self-attention in reconstruction bias U-Net for semantic segmentation of

building rooftops in optical remote sensing images. Remote Sens. 2021, 13, 2524. [CrossRef]
6. Tasar, O.; Giros, A.; Tarabalka, Y.; Alliez, P.; Clerc, S. Daugnet: Unsupervised, multisource, multitarget, and life-long domain

adaptation for semantic segmentation of satellite images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1067–1081. [CrossRef]
7. Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters—Improve semantic segmentation by global convolutional

network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 4353–4361.

8. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

http://doi.org/10.1109/TGRS.2021.3093977
http://dx.doi.org/10.3390/rs13142723
http://dx.doi.org/10.1109/LGRS.2020.2988294
http://dx.doi.org/10.1080/01431161.2021.1876272
http://dx.doi.org/10.3390/rs13132524
http://dx.doi.org/10.1109/TGRS.2020.3006161
http://dx.doi.org/10.1109/TPAMI.2017.2699184


Remote Sens. 2021, 13, 5100 20 of 21

9. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

10. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.

11. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 603–612.

12. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. arXiv 2021, arXiv:2103.14030.

13. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

15. He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498.
[CrossRef]

16. Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved Transformer Net for Hyperspectral Image Classification. Remote Sens. 2021, 13, 2216.
[CrossRef]

17. Sun, Z.; Cao, S.; Yang, Y.; Kitani, K.M. Rethinking transformer-based set prediction for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 19–25 June 2021; pp. 3611–3620.

18. Yang, F.; Zhai, Q.; Li, X.; Huang, R.; Luo, A.; Cheng, H.; Fan, D.P. Uncertainty-Guided Transformer Reasoning for Camouflaged
Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 19–25
June 2021; pp. 4146–4155.

19. Wang, L.; Li, R.; Wang, D.; Duan, C.; Wang, T.; Meng, X. Transformer Meets Convolution: A Bilateral Awareness Network for
Semantic Segmentation of Very Fine Resolution Urban Scene Images. Remote Sens. 2021, 13, 3065. [CrossRef]

20. Jin, Y.; Han, D.; Ko, H. TrSeg: Transformer for semantic segmentation. Pattern Recognit. Lett. 2021, 148, 29–35. [CrossRef]
21. Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-trained image processing transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 12299–12310.

22. Ranftl, R.; Bochkovskiy, A.; Koltun, V. Vision transformers for dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Nashville, TN, USA, 19–25 June 2021; pp. 12179–12188.

23. Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck transformers for visual recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 16519–16529.

24. Kim, K.; Wu, B.; Dai, X.; Zhang, P.; Yan, Z.; Vajda, P.; Kim, S.J. Rethinking the Self-Attention in Vision Transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 3071–3075.

25. Salvador, A.; Gundogdu, E.; Bazzani, L.; Donoser, M. Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers
and Self-supervised Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 19–25 June 2021; pp. 15475–15484.

26. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, PMLR, Online, 18–24 July 2021;
pp. 10347–10357.

27. Lin, A.; Chen, B.; Xu, J.; Zhang, Z.; Lu, G. DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation. arXiv
2021, arXiv:2106.06716.

28. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. arXiv 2021, arXiv:2102.12122.

29. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor
segmentation from CT volumes. IEEE Trans. Med Imaging 2018, 37, 2663–2674. [CrossRef]

30. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

31. Kim, S.W.; Kook, H.K.; Sun, J.Y.; Kang, M.C.; Ko, S.J. Parallel feature pyramid network for object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 234–250.

32. International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. Available online: http:
//www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html (accessed on 9 September 2018).

33. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for robust semantic
pixel-wise labelling. arXiv 2015, arXiv:1505.07293.

34. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

http://dx.doi.org/10.3390/rs13030498
http://dx.doi.org/10.3390/rs13112216
http://dx.doi.org/10.3390/rs13163065
http://dx.doi.org/10.1016/j.patrec.2021.04.024
http://dx.doi.org/10.1109/TMI.2018.2845918
http://www2.isprs.org/commissions/comm3/ wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/ wg4/semantic-labeling.html
http://dx.doi.org/10.1109/TPAMI.2016.2644615


Remote Sens. 2021, 13, 5100 21 of 21

35. Kendall, A.; Badrinarayanan, V.; Cipolla, R. Bayesian segnet: Model uncertainty in deep convolutional encoder–decoder
architectures for scene understanding. arXiv 2015, arXiv:1511.02680.

36. Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic Labeling in Remote Sensing
Corpora Using Feature Fusion-Based Enhanced Global Convolutional Network with High-Resolution Representations and
Depthwise Atrous Convolution. Remote Sens. 2020, 12, 1233. [CrossRef]

37. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2021; pp. 6881–6890.

38. Purkait, P.; Zhao, C.; Zach, C. SPP-Net: Deep absolute pose regression with synthetic views. arXiv 2017, arXiv:1712.03452.
39. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
40. Qin, Z.; Zhang, Z.; Chen, X.; Wang, C.; Peng, Y. Fd-mobilenet: Improved mobilenet with a fast downsampling strategy. In

Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018;
pp. 1363–1367.

41. Cheng, B.; Wei, Y.; Shi, H.; Feris, R.; Xiong, J.; Huang, T. Revisiting rcnn: On awakening the classification power of faster rcnn. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 453–468.

42. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the OSDI, Savannah, GA, USA, 2–4 November 2016; Volume 16,
pp. 265–283.

43. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

http://dx.doi.org/10.3390/rs12081233

	Introduction
	Material and Methods
	Transformer Model
	Transformer Based Semantic Segmentation
	Decoder Designs
	Environment and Deep Learning Configurations

	Aerial and Satellite Imagery
	North East (Isan) and North of Thailand Landsat-8 Corpora
	ISPRS Vaihingen Corpus
	Evaluation Metrics


	Results
	Results for TH-Isan Landsat-8 Corpus
	Effect of Swin Transformer and Pretrained Models
	Effect of Transformer with Decoder Designs

	Results for TH-North Landsat-8 Corpus
	Effect of Swin Transformer and Pretrained Models
	Effect of Transformer with our Decoder Designs

	Results for ISPRS Vaihingen Corpus
	Effect of Swin Transformer and Pretrained Models
	Effect of Transformer with Our Decoder Designs


	Discussion 
	Conclusions
	References

