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Abstract: Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the
estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the
satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with
the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been
discussed by the authors. However, the multi-frequency observations can improve the performances
of the ionospheric research compared with the single-frequency approaches. This paper presents
three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I
observations to investigate ionospheric activities. Datasets collected from the globally distributed
stations are used to evaluate the performance of the ionospheric modeling with the ionospheric
single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated
ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that
the three dual-frequency PPP models could all be applied to the ionospheric studies, among which the
dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-frequency
PPP models all possess the capacity for ionospheric applications in the GNSS community.

Keywords: BDS; PPP; mapping function; ionospheric VTEC; pseudorange OSB

1. Introduction

As we all know, a large amount of the free electrons exists in the Earth’s ionosphere.
Serving as the significant region of the Earth’s near space, the ionospheric delay is an
important error source in satellite PNT services, which can cause the delay of several
meters to several hundred meters in the GNSS signal transmission [1–5]. With the rapid
development of the GNSS, it has been the most important tool for ionospheric monitoring
and correction due to its advantages of all-weather global coverage and high temporal
and spatial resolutions. Since the ionosphere is a dispersive medium, the ionospheric
delay can be eliminated by multi-frequency observations. Single-frequency GNSS users
require external ionospheric information to eliminate the ionospheric delay. One commonly
applied way is to use the empirical models such as the Klobuchar, NeQuick, BDGIM, NTCM
and so on [6–10]. Another alternative way is to apply the ionospheric TEC map obtained
from the globally distributed stations.

The ways to extract the ionospheric STEC include the CCL and PPP [11,12]. CCL is
known as the most convenient method in the ionospheric community, entailing a process
of smoothing the pseudorange with the carrier phase observation, whose accuracy and
reliability can be affected by the smoothing error, multipath effect and receiver DCB intra-
day variation [13,14]. When the number of the continuous epoch observations is sufficient,
the noise effect of the the pseudorange observations will be significantly reduced, whereas
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the error caused by multipath cannot be eliminated. MCCL is an alternative, simple and
efficient method to estimate the ionospheric delay, in which the effect of the receiver DCB
intra-day variation can be avoided [15,16]. Similarly, the multi-frequency PPP can also
overcome the disadvantages of the traditional approaches. The DFPPP1 approach proposed
by Zhang et al. [14] is the typical method for extracting the ionospheric STEC, in which
the STEC observations and multipath is reduced by more than 70% compared to the CCL
approach. Tu el al. [17] also validated that the DFPPP1 approach in a real-time scenario
can be applied for the ionospheric study, in which the accuracy of the estimated VTEC and
satellite DCB is 1–2 TECU and 0.4 ns, respectively. Zhang et al. [18] modified and improved
the DFPPP1 approach to estimate the slant ionospheric observables, in which the receiver
pseudorange bias is considered as the time-varying parameter. Liu et al. [11] applied the
multi-GNSS multi-frequency ionosphere-float approach for the ionospheric modeling. PPP
has obvious advantages over the ionospheric observable extraction compared to the CCL.
The ionospheric STEC extracted from PPP is consistent with that from the CCL method
but with higher accuracy. The two methods have been widely applied in the ionospheric
modeling [11,19–21].

Regarding the above literatures, the MF used in ionospheric VTEC modeling is based
on the Earth ionospheric single-layer assumption. However, the influence of ionospheric
single-layer MF may cause larger errors in the vertical direction due to the effect of
ionospheric horizontal gradient and equilibrium condition deviation [22]. Hence, the
ionospheric height is an important factor in the ionospheric MF [23,24]. Hoque and
Jakowski [25] proposed the ionospheric multi-layer MF to describe the ionospheric vertical
structure, in which the ionospheric projected error can be reduced by more than 50%. Thus,
applying the ionospheric multi-layer MF is an effective way to improve the accuracy of
ionospheric modeling.

Su and Jin [26] has discussed the applications of the two single-frequency PPP models
for the ionospheric study. However, the multi-frequency observations can improve the
performances of the ionospheric modeling when compared with the single-frequency
approaches. With a view to extend this work, this study presents three dual-frequency
PPP models to investigate the ionospheric and hardware delay performance. The pre-
viously mentioned literature only concentrated on the ionosphere-float PPP solution for
the ionospheric study. The comparison of this study can help the readers better under-
stand the state-of-the-art approach for the ionospheric research and improve the real-time
ionospheric services in the GNSS community [27]. The pseudorange OSB is estimated by
viewing the undifferenced format of the DCB, which is more straightforward and directly
applicable to the original GNSS measurements [28]. The three models provide alternatives
for the pseudoraneg OSB estimation. The experimental data and analytical performance
are introduced. Finally, the conclusions are given.

2. Methods

In this section, we begin with the BDS general observation model. Then, three dual-
frequency methods are discussed with respect to the extracted ionospheric observables.
The approaches for the estimated ionospheric VTEC and satellite pseudorange OSB are
also discussed.

2.1. General Observations

The BDS raw observations for the satellite s with regard to the receiver r at epoch t
read [29]:{

φs
r,j(t) = ρs

r(t) + dtr(t)− dts(t) + Ts
r (t)− µj·Is

r,1(t) + br,j − bs
,j + Ns

r,j(t) + εs
φ,j(t)

ps
r,j(t) = ρs

r(t) + dtr(t)− dts(t) + Ts
r (t) + µj·Is

r,1(t) + dr,j − ds
,j + εs

p,j(t)
(1)

where φs
r,j(t) and ps

r,j(t) denote the carrier phase and pseudorange observables; ρs
r(t)

denotes the satellite and receiver geometrical range; dtr(t) and dts(t) denote the receiver
and satellite clock offsets; Ts

r (t) denotes the affected tropospheric delay; Is
r,1(t) denotes
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the slant ionospheric delay with respect to the BDS first frequency; µj = f 2
1 / f 2

j is the
frequency-dependent multiplier factor, where f j denotes the jth frequency; dr,j and ds

,j
denote the pseudorange instrumental delays for the receiver and satellite, respectively;
br,j and bs

,j denote the corresponding carrier phase instrumental delays; Ns
r,j(t) denotes

the ambiguity parameter; εs
p,j(t) and εs

φ,j(t) denote the pseudorange and carrier phase
measurement noise, including multipath, respectively.

2.2. DFPPP1: Dual-Frequency Ionosphere-Float PPP Model

We define the dual-frequency ionosphere-float PPP as DFPPP1 model here. With m
observed satellites tracking the signals on ith and jth frequencies, the DFPPP1 model is
written as [21]:[

PDF1,ij
ΦDF1,ij

]
= [e4 ⊗Mr, e4m, n2 ⊗ µ2 ⊗ Im, z2 ⊗ I2m]·ξDF1 +

[
εPDF1,ij

εΦDF1,ij

]
, q2 ⊗Qr ⊗Qm (2)

where

PDF1,ij =
[

p1
r,i(t), p2

r,i(t), · · · , pm
r,j(t)

]T
; ΦDF1,ij =

[
φ1

r,i(t), φ2
r,i(t), · · · , φm

r,j(t)
]T

;

ξDF1 =
[
ZWDr(t), dtr(t), τ, a2

]T
, ZWDr(t) denotes the tropospheric zenith wet delay

(ZWD), dtr(t) denotes the receiver clock offset, τ =
[

I1
r,1(t), · · · , Im

r,1(t)
]T

,

a2 =
[

N1
r,i(t), N2

r,i(t), · · · , Nm
r,j(t)

]T
;

em denotes m-dimension row vector, in which all values are 1;
Im denotes m-dimension identity matrix;

Mr =
[
m f 1

r,j(t), · · · , m f m
r,j(t)

]T
denotes the design matrix of the tropospheric wet mapping

function;
n2 = [1,−1]T ; µ2 =

[
µi, µj

]T ; z2 = [0, 1]T ;
q2 = diag(q2

i , q2
j ), in which qi denotes the ratio of the observation noise on ith frequency.

Qr = diag(δ2
p, δ2

φ) denotes the corresponding observation precision matrix in the vertical
direction, and Qm denotes the elevation diversity cofactor matrix;
⊗ denotes the Kronecker product.

The corresponding estimated parameters read:
dtr(t) = dtr(t) + dr,IF,ij
Is

r,1(t) = Is
r,1(t)− µ−1

GF,ij·d
s
,GF,ij + µ−1

GF,ij·dr,GF,ij

Ns
r,ς(t) = Ns

r,ς(t) + br,ς − bs
,ς − dr,IF,ij + µς·µ−1

GF,ij·dr,GF,ij − µς·µ−1
GF,ij·d

s
,GF,ij, ς = i, j

(3)

2.3. DFPPP2: Dual-Frequency Ionosphere-Free PPP Model

With m observed satellites tracking the signals on ith and jth frequencies, the DFPPP2
model is written as [30]:[

PDF2,ij
ΦDF2,ij

]
= [e2 ⊗Mr, e2m, z2 ⊗ Im]·ξDF2 +

[
εPDF2,ij

εΦDF2,ij

]
, ηT

2 ·q2·η2 ⊗Qr ⊗Qm (4)

where
PDF2,ij = PIF,ij, ΦDF2,ij = ΦIF,ij, in which

(·)IF,ij = −µ−1
GF,ij

[
µj,−µi

]
·
[
(·)i, (·)j

]T
=
[
αij, βij

]
·
[
(·)i, (·)j

]T
;

ξDF2 =
[
ZWDr(t), dtr(t), a1

]T , a1 =
[

N1
r,IF,ij(t), · · · , Nm

r,IF,ij(t)
]T

, η2 =
[
αij, βij

]T ;
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The corresponding estimated parameters read:{
dtr(t) = dtr(t) + dr,IF,ij
Ns

r,IF,ij(t) = Ns
r,IF,ij(t) + br,IF,ij − bs

,IF,ij − dr,IF,ij + ds
,IF,ij

(5)

The wide-lane ambiguity N
s
r,W,ij(k) can be represented by the wide-lane carrier phase

observables and narrow-lane pseudorange observables, which reads:

Ns
r,W,ij(t) = φs

r,W,ij(t)− ps
r,N,ij(t) = Ns

r,W,ij(k) + br,W,ij − bs
,W,ij − dr,W,ij + ds

,W,ij (6)

with  (·)W,ij =
[

f1
f1− f2

,− f2
f1− f2

]
·
[
(·)i, (·)j

]T

(·)N,ij =
[

f1
f1+ f2

, f2
f1+ f2

]
·
[
(·)i, (·)j

]T (7)

Thereafter, the ionospheric ambiguity Ns
r,GF,ij(t) can be represented by the wide-lane

ambiguity and ionospheric ambiguity in PPP, which reads:

Ns
r,GF,ij(t) =

f 2
i − f 2

j
fi · f j

[Ns
r,W,ij(t)− Ns

r,IF,ij(t)] = Ns
r,GF,ij(t) + br,GF,ij − bs

,GF,ij + dr,GF,ij − ds
,GF,ij (8)

Then, we can obtain the ionospheric observables as:

Is
r,1(k) = µ−1

GF,ij·[N
s
r,GF,ij(t)− φs

r,GF,ij(t)] = Is
r,1(k)− µ−1

GF,ij·d
s
,GF,ij + µ−1

GF,ij·dr,GF,ij (9)

Considering that the raw pseudorange observations have a higher noise, we apply
the Hatch filter to smooth the observations by the carrier phase observations [31,32]. The
sharp variation in the pseudorange observation that affect the leveling is checked and
removed [33].

2.4. DFPPP3: Dual-Frequency UofC PPP Model

With m observed satellites tracking the signals on ith and jth frequencies, the DFPPP3
model is written as [34]: PDF3,i

PDF3,j
ΦDF3,ij

 = [e3 ⊗Mr, e3m, Λ⊗ Im]·ξDF3 +

 εDF3,i
εDF3,j

εΦDF3,IF,ij

, κT
2 ·(q2 ⊗Qr)·κ2 ⊗Qm (10)

where

PDF3,i =
Pi + Φi

2
, PDF3,j =

Pj + Φj

2
, ΦDF3,ij = ΦIF,ij;

ξDF3 =
[
ZWDr(t), dtr(t), a2

]T ;

Λ =

[
0.5 0 αij
0 0.5 βij

]T

; κ2 =

 0.5 0 0.5 0
0 0.5 0 0.5
0 0 αij βij

T

;

The corresponding estimated parameters read:{
dtr(t) = dtr(t) + dr,IF,ij
Ns

r,ς(t) = Ns
r,ς(t) + br,ς − bs

,ς + dr,ς − 2dr,IF,ij, ς = i, j
(11)

Then, the ionospheric ambiguity can be combined by two estimated ambiguities in
DFPPP3 model, which can be expressed as:

Ns
r,GF,ij(t) = Ns

r,GF,ij(t) + br,GF,ij − bs
,GF,ij + dr,GF,ij − ds

,GF,ij (12)
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Similar to DFPPP2 solution, we can obtain the ionospheric observables as well.

2.5. Ionospheric Modeling and OSB Estimation

As we can see, the ionospheric delays estimated from the DFPPP1, DFPPP2 and
DFPPP3 models have the identical forms. The ionospheric observables can be viewed as
the linear relationship of the STEC and SPR DCB [35]. To build the link of the STEC and
VTEC, the ionospheric MF is usually established according to the satellite elevation. The
single-layer MF can be expressed as [36]:

MF(E) =
STECs

r(t)
VTECr(t)

=

1−
(

RE· sin
[
γ(π

2 − E)
]

RE + Hion

)2
−1/2

(13)

where γ denotes coefficient of the single-layer MF model, of which the SLM is 1 and MSLM
is 0.9782. RE and Hion denote the mean Radius Earth and IPP height. The IPP height is set
as the 450 km.

The multi-layer MF assumes that the ionosphere is composed of numerous thin shells.
The obliquity factors, manifesting the link of the corresponding VTEC and the incremental
STEC STECn+1

n , can be written as [25]:

MF(Ei) =
STECi+1

i
VTECi

≈

1−
(
(RE + hi)· sin

[
γ(π

2 − Ei)
]

RE + hmIPPi

)2
−1/2

·

erf

−exp
(
− hi−hmIPPi

HmIPPi

)
√

2




hi+1

hi

(14)

where hmIPPi denotes the peak ionization height and HmIPPi denotes the atmospheric scale
height.

The GTSF is applied to estimate the ionospheric VTEC values and reads [37]: VTECr(ϕ, T) =
2
∑

n=0

2
∑

m=0

{
Enm·(ϕ− ϕ0)

n·Tm}+ 4
∑

k=0
{Ck· cos(k·T) + Sk· sin(k·T)}

T = 2π·(t−14)
24

(15)

where ϕ and ϕ0 are the IPP latitude and receiver geographical latitude, respectively.
In the station-based local ionospheric modeling, the ionospheric observable weight is

applied by considering the local time satellite elevation effect and expressed as:

p =
1 + 1

2
[
cos
( t−2

12 π
)
− 1
]

1 + cos2 E
(16)

where p denotes the weight of the ionospheric observable.
To avoid the singularity of the equation, the constraints are introduced and read:

m
∑

k=0
dk

,i = 0

ds
,i − ds

,j = ds
,GF,ij

αij·ds
,i + βij·ds

,j = 0

(17)

Then, the ionospheric VTEC can be isolated and the satellite OSB can be estimated.

2.6. Analysis of PPP Approaches

Table 1 compares the three dual-frequency PPP approaches in the observations and
parameter fields. The degrees of freedom for the three PPP models are the same. The
DFPPP1 model directly estimates the ionospheric delay as the unknown parameters. The
ionospheric observables extracted by the DFPPP2 approach are influenced by the code and
leveling errors. The ionospheric observables estimated in DFPPP3 method are affected by
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the carrier phase noises. Theoretically, the ionospheric observables from the DFPPP1 and
DFPPP3 model are more accurate than that from the DFPPP2 approach.

Table 1. Comparison of three dual-frequency PPP approaches.

DFPPP1 DFPPP2 DFPPP3

Number of the observation 4m 2m + m 3m + m

Unknown parameters number sysNum + 3m + 1 sysNum + m + 1 + m sysNum + 2m + 1 + m

Freedom degrees m-sysNum-1 m-sysNum-1 m-sysNum-1

Ionospheric observable biases Ionospheric observables and
SPR DCB

Ionospheric observables, SPR
DCB, leveling errors and

pseudorange noises

Ionospheric observables, SPR
DCB, and carrier phase noises

3. Results and Analysis
3.1. Data Processing Strategy

We selected 77 stations from the MGEX network in October 2020 to analyze the
experimental performance. All of the stations can track the BDS-2 and BDS-3 B1I/B3I
signals. The DFPPP1, DFPPP2 and DFPPP3 models are all conducted. Figure 1 depicts the
distribution of the MGEX stations. The precise clock and orbit products provided by the
GFZ analysis center are applied for the PPP data processing. Moreover, we utilized the
forward and backward Kalman filter to avoid the effect of the unconverging ambiguities.
The elevation cutoff of satellites in PPP is 7.5◦ and the elevation cutoff for the ionospheric
VTEC modeling is 20◦ [38]. The random walk noise for the ionospheric delay is 10−4 m2/s
in DFPPP1 solution. The ionospheric single- and multi-layer MFs are both applied to
evaluate the experimental performance. Other error items in the data processing strategies
can refer to Su et al. [39].
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Figure 1. Distribution of the selected MGEX stations.

3.2. Analysis of the Ionospheric Observables from PPP

Figure 2 depicts the slant ionospheric delay estimated from one randomly selected
station ULAB with three dual-frequency PPP models. The extracted slant ionospheric
delay contains the pure slant ionospheric delay and SPR DCB. As we can see, the variation
tendency of the ionospheric observables from three models are generally consistent with
each other. For further analysis and understanding, we put the slant ionospheric delay from
different PPP models together. Figure 3 shows the estimated slant ionospheric delay with
the elevation for the BDS C26 satellite with the three PPP models. The results indicate that
the extracted ionospheric observables from the three models have generally overlapped
with each other, which proves the consistency of the ionospheric observables from three
models. Using the slant ionospheric observables from the DFPPP1 model as the datum, we
calculate the ionospheric observables difference STD for the remaining two PPP models.
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Figure 3. Slant ionospheric delay with the elevation variation with the DFPPP1, DFPPP2 and DFPPP3
models.

Figure 4 shows the STD distribution for the DFPPP2 and DFPPP3 models with regard
to the slant ionospheric observables. The STD of the ionospheric observables difference
is able to reflect the smoothing leveling of the ionospheric observables. We can see that
the higher consistency exists in the ionospheric observables of the DFPPP1 and DFPPP3
models. The mean values of the STD for the ionospheric observables difference with the
DFPPP2 and DFPPP3 models are 0.65 and 0.09 m, respectively, with respect to the DFPPP1
model. The leveling error and pseudorange noises lead to the higher noise in the DFPPP2
model. The DFPPP1 and DFPPP3 models are capable of estimating slant ionospheric delay
with the centimeter-level accuracy.
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models. The corresponding medium and mean values are also shown.

The effect of the pure ionospheric observables and satellite DCB can be eliminated
when differencing the ionospheric observables of the stations on short- or zero-baselines.
Based on this, the ionospheric observable leveling noise magnitude can be evaluated.
Figure 5 shows the slant ionospheric delay difference for the two stations WTZZ and WTZS
with three dual-frequency PPP models. The STDs of the single-difference ionospheric
observables are 0.06, 0.13 and 0.11 m, respectively, for the DFPPP1, DFPPP2 and DFPPP3
models. The ionospheric observables of the three PPP models are in the level of sub-meter
and the DFPPP1 model estimates the ionospheric observables with the highest accuracy.
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Figure 5. Slant ionospheric delay single difference for the short-baseline stations with the DFPPP1,
DFPPP2 and DFPPP3 models.

We selected five short baseline stations to analyze the ionospheric leveling error [26].
Figure 6 depicts the average STD of the slant ionospheric delay single difference with
the DFPPP1, DFPPP2 and DFPPP3 models. We can see that the ionospheric delay single
differences range from the 0.03 to 0.25 m. For the three PPP models, the leveling error of
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the DFPPP2 model is obviously larger than DFPPP3 and the DFPPP1 model exhibits the
slowest noise.
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Figure 6. Average values of the ionospheric delay single difference STDs with the DFPPP1, DFPPP2
and DFPPP3 models.

3.3. Analysis of the Estimated VTEC

The ionospheric single- and multi-layer MFs are both adopted to estimated VTEC. To
better analyze and evaluate the corresponding reliability, Figure 7 shows the estimated
ionospheric VTEC for six random selected stations with the DFPPP1, DFPPP2 and DFPPP3
models. The VTEC values from the IGS GIM values are also used for comparison, whose
accuracy is 2–8 TECU [40]. The corresponding VTEC accuracy varies from the 0.4 to
3.4 TECU.
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models.

For further discussion, Figure 8 shows the time series of the estimated ionospheric
VTEC with the ionospheric single- and multi-layer MFs for the two short-baseline stations
on three days with the DFPPP1, DFPPP2 and DFPPP3 models. The ionospheric VTEC
values can theoretically be considered as the same value. The ionospheric single-layer
MF estimated ionospheric VTEC is more consistent with the VTEC value from the GIM,
owing to the same MF in which they both applied by neglecting the ionospheric horizontal
gradient [41]. Figure 9 depicts the estimated ionospheric VTEC single-difference for the
two short-baseline stations with the DFPPP1, DFPPP2 and DFPPP3 models. The RMS of the
ionospheric observable single difference is shown to reflect the precision of the ionospheric
delay with the corresponding method. By applying the multi-layer MF, the precision of the
estimated ionospheric VTEC is improved.
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Figure 9. Estimated ionospheric VTEC single-difference for the two short-baseline stations with the
DFPPP1, DFPPP2 and DFPPP3 models.

With the GIM product as the reference, Figure 10 shows the distribution of the RMS,
mean bias and STD of the ionospheric VTEC difference for the three PPP models. The
VTEC accuracy with different approaches is approximately 2 TECU. The ionospheric VTEC
value estimated with the single-layer solution is larger than the multi-layer as a whole.
Faint difference can be found within the corresponding RMS and STD values.

Moreover, Figure 11 depicts the distribution of the RMS, mean bias and STD of the
ionospheric VTEC difference of the DFPPP2 and DFPPP3 models by using the DFPPP1
model as the reference. The results indicate that the accuracy of the ionospheric VTEC
value estimated with the multi-layer MF is better. The ionospheric observables derived
with the DFPPP3 models exhibit the higher consistency than the DFPPP2 model. The
median RMS errors of the ionospheric VTEC are 1.0, 0.9, 0.7 and 0.7 TECU for the DFPPP2
and DFPPP3 models with two MFs.

Figure 12 shows the RMS distribution of the ionospheric VTEC difference for the
short-baseline stations with two MFs by the DFPPP1, DFPPP2 and DFPP3 models. We can
also find the similar conclusion. For instance, the average RMS of the ionospheric VTEC
difference decrease from the (0.45, 0.47, 0.29, 0.52, 0.43) TECU to (0.39, 0.40, 0.25, 0.45, 0.36)
TECU after using the ionospheric multi-layer MF. The accuracy of the ionospheric VTEC
from the DFPPP2 model is relatively poorer. The results of five short-baseline stations
prove that the ionospheric VTEC can achieve the accuracy of the centimeter level.
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3.4. Analysis of the Estimated BDS Satellite Pseudorange OSB

To evaluate the performance of the estimated BDS C2I and C6I satellite pseudorange
OSB with three PPP models, we analyze the pseudorange OSB values for the whole month.
Firstly, the slant ionospheric observables are extracted from the PPP models. Then, the
BDS satellite pseudorange OSB values are estimated from the ionospheric observables. The
satellite pseudorange OSB values are analyzed and validated in terms of the stability and
consistency in this section.

Figure 13 depicts the time series of the estimated pseudorange OSB by the DFPPP1,
DFPPP2 and DFPPP3 models in October 2020. The estimated satellite pseudorange OSB
values in different days may be inconsistent with the zero-mean constraint by different
observed satellites, which will lead to systematic changes in the corresponding satellite
pseudorange OSB solutions in different days. Hence, we convert the satellite pseudorange
OSB obtained during all days to the same datum. It can be seen from the figure that the
BDS satellite OSB time series estimated by three PPP models is basically continuous and
stable, whereas a small number of BDS satellites will jump in part of the days. For example,
BDS C45 satellite shifts several nanoseconds at DOY 288, 2020. For the three PPP models,
the satellite pseudorange OSB estimated by the ionospheric single- and multi-layer MFs
is basically consistent, that is to say, different MFs have little influence on the satellite
pseudorange OSB [39]. The variation of satellite pseudorange OSB time series estimated
by the three PPP models is basically the same. The present PPP models all can effectively
estimate the satellite pseudorange OSB values.

To analyze the stability of the estimated BDS satellites pseudorange OSB, the monthly
average and STD values of the estimated BDS pseudorange OSB values by the DFPPP1,
DFPPP2 and DFPPP3 models in October 2020 are shown in Figures 14 and 15. We can see
that the monthly mean values of BDS satellite pseudorange OSB have a wide distribution,
ranging from −90 ns to 150 ns. With respect to the pseudorange OSB stability, the STD
values of BDS satellite pseudorange OSB are less than 1 ns except for the GEO satellites.
The STDs of the BDS satellite pseudorange OSB with three PPP models are at the same level.
The BDS satellite pseudorange OSB estimated with the DFPPP1 model exhibits the lowest
STD, indicating that the corresponding OSB time series are the most stable. Owing to the
introduced zero-mean condition, the ratio of the corresponding values of BDS satellites C2I
and C6I pseudorange OSB value is f 2

2 / f 2
1 . For BDS C45 and C46 satellites, the pseudorange

OSB stability is poorer than other satellites due to the influence of observation quality and
instability.
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Figure 13. Estimated BDS pseudorange OSB with two MFs by the DFPPP1, DFPPP2 and DFPPP3 models.
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Figure 14. Average value of the estimated BDS pseudorange OSB by the DFPPP1, DFPPP2 and
DFPPP3 models on October 2020.

Figure 16 shows the monthly RMS error of the estimated BDS C2I and C6I pseudorange
OSB with two MFs by the DFPPP1, DFPPP2 and DFPPP3 models in October 2020 compared
with the CAS satellite pseudorange OSB product. The average RMS error of the GEO, IGSO,
MEO and all BDS satellites are also shown. The accuracy of BDS GEO satellite pseudorange
OSB is 2–3 times less than that of IGSO among the BDS satellites. Due to the poor accuracy
of C45 and C46 satellites, the average RMS of MEO satellites is higher than that of IGSO
satellites on the whole. It is unsurprising that the some of the BDS-3 satellites are still in
the testing and improvement as the latest satellite navigation system fully deployed. For
the three PPP models, the RMS error of the satellite pseudorange OSB is (0.34, 0.35, 0.52,
0.54) ns for the DFPPP1 model. The RMS error of the satellite pseudorange OSB is (0.40,
0.41, 0.60, 0.61) ns for the DFPPP2 model. The RMS error of the satellite pseudorange OSB
is (0.37, 0.39, 0.57, 0.59) ns for the DFPPP3 model. The BDS satellite pseudorange OSB
estimated by different PPP models has high flexibility and reliable accuracy.
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Figure 15. Monthly STD value of the estimated BDS pseudorange OSB by the DFPPP1, DFPPP2 and
DFPPP3 models in October 2020. The average STD values are also shown in the figure.
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Figure 16. Cont.
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Figure 16. Monthly RMS error value of the estimated BDS pseudorange OSB by the DFPPP1, DFPPP2
and DFPPP3 models in October 2020 compared to the CAS product. The average RMS errors of the
GEO, IGSO, MEO and all BDS satellites are also shown.

4. Conclusions

In this study, three dual-frequency PPP models, namely DFPPP1, DFPPP2 and DFPPP3
models are presented for ionospheric studies. The mathematical models of the dual-
frequency PPP models are introduced in detail. Datasets collected from the MGEX network
are used to evaluate the performance of the estimated slant ionospheric observables, VTEC
and satellite pseudorange OSB. The following conclusions are derived.

Firstly, the ionospheric observables from the three PPP models are in the level of
sub-meter and the DFPPP1 model estimates the highest accuracy ionospheric observables.
The leveling error of the DFPPP2 model is obviously larger than DFPPP3 model and the
DFPPP1 model exhibits the slowest noise.

Secondly, the RMS error of the VTEC is approximately 2 TECU with respect to the
GIM product. The accuracy of the ionospheric VTEC value estimated with the ionospheric
multi-layer MF is higher. The ionospheric observables derived with the DFPPP3 models
exhibits a higher consistency than the DFPPP1 model. The ionospheric VTEC can achieve
the accuracy of the centimeter level.

Thirdly, the variation in satellite pseudorange OSB time series estimated by the three
PPP models is basically the same. The present PPP models can all effectively estimate the
satellite pseudorange OSB values. The partial BDS satellite pseudorange OSB stability
is poor due to the influence of observation quality and instability. The RMS error of the
satellite pseudorange OSB is in the level of sub-nanosecond. The accuracy of BDS GEO
satellite pseudorange OSB is 2–3 times less than that of IGSO among the BDS satellites.
Due to the poor accuracy of C45 and C46 satellites, the average RMS of MEO satellites is
higher than that of the IGSO satellites on the whole. The BDS satellite pseudorange OSB
estimated by different the PPP models has high flexibility and reliable accuracy.

In summary, the three PPP models can all be applied for the ionospheric studies. It
is recommended that the DFPPP1 and DFPPP3 models are used for the corresponding
performance is relatively reliable.
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Abbreviation

BDGIM BeiDou Global Ionospheric delay correction Model
BDS Beidou Navigation Satellite System
CCL Carrier-to-Code Leveling
DCB Differential Code Bias
DFPPP1 Dual-frequency ionosphere-float PPP
DFPPP2 Dual-frequency ionosphere-free PPP
DFPPP3 Dual-frequency UofC PPP
DOY Day Of Year
GEO Geostationary Earth Orbit
GFZ Deutsches GeoForschungsZentrum
GIM Global Ionospheric Map
GNSS Global Navigation Satellite System
GTSF Generalized Trigonometric Series Function
IGS International GNSS Service
IGSO Inclined GeoSynchronous Orbit
IPP Ionospheric Pierce Point
MCCL Modified Carrier-to-Code Leveling
MEO Medium Earth Orbit
MF Mapping Function
MGEX Multi-GNSS EXperiment
MSLM Modified Single-Layer Model
NTCM Neustrelitz TEC Model
OSB Observable-specific Signal Bias
PNT Positioning, Navigation and Timing
PPP Precise Point Positioning
RMS Root Mean Square
SLM Single-Layer Model
SPR Satellite Plus Receiver
STEC Slant Total Electron Content
STD STandard Deviation
TEC Total Electron Content
TECU Total Electron Content Unit
VTEC Vertical Total Electron Content
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