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Abstract: This paper proposes a unique Graph SLAM framework to generate precise 2.5D LIDAR
maps in an XYZ plane. A node strategy was invented to divide the road into a set of nodes. The
LIDAR point clouds are smoothly accumulated in intensity and elevation images in each node. The
optimization process is decomposed into applying Graph SLAM on nodes’ intensity images for
eliminating the ghosting effects of the road surface in the XY plane. This step ensures true loop-
closure events between nodes and precise common area estimations in the real world. Accordingly,
another Graph SLAM framework was designed to bring the nodes’ elevation images into the same
Z-level by making the altitudinal errors in the common areas as small as possible. A robust cost
function is detailed to properly constitute the relationships between nodes and generate the map
in the Absolute Coordinate System. The framework is tested against an accurate GNSS/INS-RTK
system in a very challenging environment of high buildings, dense trees and longitudinal railway
bridges. The experimental results verified the robustness, reliability and efficiency of the proposed
framework to generate accurate 2.5D maps with eliminating the relative and global position errors in
XY and Z planes. Therefore, the generated maps significantly contribute to increasing the safety of
autonomous driving regardless of the road structures and environmental factors.

Keywords: LIDAR SLAM; Graph SLAM; intensity maps; elevation maps; 2.5D maps; LIDAR;
autonomous vehicles

1. Introduction

Maps are a very important pillar to enable autonomous driving by encoding the real
world with good weather factors and environmental conditions. Maps are mainly used to
localize vehicles in the XY plane for safely conducting autonomous maneuvers with respect
to other road users [1,2]. In the Z plane, the maps are utilized to estimate pitch and roll
angles as well as to measure distances to other vehicles [3]. Therefore, the mapping module
must generate precise maps in terms of accurately positioning roads in XY-Z planes and
integrating the environmental representations at a high definition level.

Tunnels, dense trees, high buildings and railways are considered as challenging road
structures that may deflect and obstruct satellite signals even with the use of accurate
GNSS/INS-RTK (GIR) systems. This leads to ghosting effects in the XY map domain
because of the relative-position errors. The ghosting effects decrease the localization
accuracy because of changing the road pattern compared to that encoded in the observation
data during the autonomous driving as illustrated in Figure 1a. In the Z plane, the
altitudinal relative-position errors change the road slope and create virtual/unreal bumps
in the road consistency. Both of these phenomena indicate global-position errors of the map
in the Absolute Coordinate System (ACS). Thus, increasing the robustness of the mapping
module against challenging environments is a critical demand to globalize autonomous
driving safely.
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Figure 1. (a) Ghosting effects (duplication of road landmarks because of scanning the segment twice with different posi-
tioning accuracies by GNSS/INS-RTK) in the map and multiple matching patterns with the observation point cloud. (b) 
Identical map without ghosting and the corresponding matching result. 

Graph SLAM (GS) is a dominant approach to increase map accuracy in a probabilistic 
framework. Thrun applied Graph SLAM, showing promising results to enhance the map 
and trajectory positions [4]. Grisetti then explained the implementation steps in a simpler 
manner, illustrating experimental results by a small robotics platform [5]. Olson detailed 
some technical aspects to magnify the utilization level, such as strategizing loop-closure 
detection, covariance estimation and switchable constraints of GPS modeling [6]. Roh pro-
posed a framework called ISAM to generate maps based on LIDAR 3D point clouds and 
camera images [7]. The altitudinal features, such as walls and building fronts, are seg-
mented in the point clouds to create a set of polygons. Loop-closure events are detected 
according to the similarity score between the segmented walls to compensate the locali-
zation errors. The walls are decomposed in lines in the Z-direction and a full 3D map is 
then constructed by incorporating the elevation measurements of the lines. All of these 
components are integrated into a pose-slam platform to optimize the relationships be-
tween the vehicle positions and generate precise maps. Triebel suggested a Graph SLAM 
approach to generate 3D maps based on dividing, clustering and classifying the point 
clouds into multilayers [8]. A cloud is divided into a set of fixed-size cells with respect to 
the height interval. The divided cells are then determined to represent vertical and hori-
zontal structures in the real world. This tactic facilitates the loop-closure detection and 
improves the matching process between point clouds using iterative closest point (ICP) 
[9]. As each point cloud is assigned into a robot position, a set of constraints are designed 
to constitute the relationships between positions in ACS. Finally, an optimization process 
is applied to optimize the robot trajectory as well as the point cloud distributions in the 
map domain. Recently, an impressive effort has been demonstrated to apply SLAM based 
on ground feature extraction in the LIDAR point cloud [10]. The extracted features are 
then classified into edge and planner groups and used by the Levenberg-Marquardti op-
timization technique to estimate the vehicle poses in consecutive scans. Another method 
called LIO-SAM has been proposed to incorporate the estimated motion from an inertial 
measurement unit with the results of LIDAR scan matching for optimizing the vehicle 
trajectory [11].  

Most SLAM-proposed approaches operate in the point cloud domain [12] and rely 
on point distribution pattern-based iterative matching strategies to process xyz positions 
at once. This may reduce the utilization of environmental features to compensate relative 
position errors due to the LIDAR sparsity. Moreover, wrong matching results might be 
provided because of changing the distribution patterns, especially in the Z-direction at the 

Figure 1. (a) Ghosting effects (duplication of road landmarks because of scanning the segment twice with different
positioning accuracies by GNSS/INS-RTK) in the map and multiple matching patterns with the observation point cloud. (b)
Identical map without ghosting and the corresponding matching result.

Graph SLAM (GS) is a dominant approach to increase map accuracy in a probabilistic
framework. Thrun applied Graph SLAM, showing promising results to enhance the
map and trajectory positions [4]. Grisetti then explained the implementation steps in a
simpler manner, illustrating experimental results by a small robotics platform [5]. Olson
detailed some technical aspects to magnify the utilization level, such as strategizing loop-
closure detection, covariance estimation and switchable constraints of GPS modeling [6].
Roh proposed a framework called ISAM to generate maps based on LIDAR 3D point
clouds and camera images [7]. The altitudinal features, such as walls and building fronts,
are segmented in the point clouds to create a set of polygons. Loop-closure events are
detected according to the similarity score between the segmented walls to compensate
the localization errors. The walls are decomposed in lines in the Z-direction and a full 3D
map is then constructed by incorporating the elevation measurements of the lines. All of
these components are integrated into a pose-slam platform to optimize the relationships
between the vehicle positions and generate precise maps. Triebel suggested a Graph SLAM
approach to generate 3D maps based on dividing, clustering and classifying the point
clouds into multilayers [8]. A cloud is divided into a set of fixed-size cells with respect
to the height interval. The divided cells are then determined to represent vertical and
horizontal structures in the real world. This tactic facilitates the loop-closure detection
and improves the matching process between point clouds using iterative closest point
(ICP) [9]. As each point cloud is assigned into a robot position, a set of constraints are
designed to constitute the relationships between positions in ACS. Finally, an optimization
process is applied to optimize the robot trajectory as well as the point cloud distributions
in the map domain. Recently, an impressive effort has been demonstrated to apply SLAM
based on ground feature extraction in the LIDAR point cloud [10]. The extracted features
are then classified into edge and planner groups and used by the Levenberg-Marquardti
optimization technique to estimate the vehicle poses in consecutive scans. Another method
called LIO-SAM has been proposed to incorporate the estimated motion from an inertial
measurement unit with the results of LIDAR scan matching for optimizing the vehicle
trajectory [11].

Most SLAM-proposed approaches operate in the point cloud domain [12] and rely
on point distribution pattern-based iterative matching strategies to process xyz positions
at once. This may reduce the utilization of environmental features to compensate relative
position errors due to the LIDAR sparsity. Moreover, wrong matching results might be
provided because of changing the distribution patterns, especially in the Z-direction at the
revisited areas. In featureless areas and wide road segments, the features in the Z-direction
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do not play a significant role in enhancing the matching quality as illustrated in Figure 2a.
Furthermore, the altitudinal features in urban environments may also negatively affect
the matching process. For example, stopped cars at a traffic signal might be registered in
a point cloud and prevent the encoding of the real stationary environmental features as
shown in Figure 2b. The vehicle may revisit the same traffic signal during the map-data
collection with encoding either different patterns of stopped cars or the real stationary
environmental features. Consequently, the matching results in both cases to the registered
point-cloud in the first visit at the traffic signal will be wrong.
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Figure 2. (a) Featureless wide road in the Z-direction. (b) Preventing static features to be encoded at a traffic signal by
stopped cars.

The 2.5D maps are very promising components to power autonomous vehicles because
of reducing the storing size, providing dense details, decreasing the data representation and
sufficiently enabling real-time processes compared to 3D point cloud maps. In addition,
the 2.5D maps provide elevation values that can be used to enable many applications,
such as localization [13], pitch and roll angle calculations [3,14] and obstacle distance
estimation [15]. Furthermore, it allows the use of map matching models in the image
domain [16] instead of point cloud-based registration methods [17,18]. This significantly
decreases the mismatching events because of using LIDAR reflectivity compared to the
3D point distribution patterns [19]. This enables a continuous dense representation of
environments, reduces the processing time of compensating relative position errors and
simplifies the implementation process. However, applying SLAM technologies to generate
accurate 2.5D maps using LIDAR elevation and intensity data is still challenging and
rarely addressed [20–22]. We previously proposed a GS framework to generate precise
LIDAR elevation maps in the Z-direction without processing the map in the XY plane [21].
However, the need to use 2.5D maps (elevation and intensity) has significantly emerged to
enable many applications, such as 3D localization, pith and roll online calibration, building
3D perception model-based fusion camera and LIDAR data. Hence, we present in this
paper a unique GS framework to generate precise 2.5D LIDAR maps emphasizing the
robustness and reliability in very challenging environments and road structures.

2. Key Solution and Proposed Strategy

The most important pillars to obtain reliable results by SLAM are the utilization
strategy of the environmental features to compensate the relative position errors and the
mechanism of the optimization process. Therefore, we invented a new tactic to fully apply
GS in the node level and image domain instead of the vehicle position level and point cloud
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domain. In addition, the optimization process is decomposed into two phases: intensity in
the XY plane (GS-XY) and elevation in the Z plane (GS-Z), and the integration strategy of
both maps in the Absolute Coordinate System (ACS) is referred by GS-XYZ

2.1. Node Domain

The intensity and elevation maps are encoded by dividing the road into a set of nodes,
and each node represents an environment area in the real world. A LIDAR point-cloud is
cut at 0.3 m in the Z-direction with fixed width w and height h called LIDAR-frame. This
cutting threshold is simply designated to encode curbs, road edges, painted landmarks
and lower parts of poles, barriers, trees, traffic lights, etc. In addition, it prevents the
moving road users from being presented in the map. The cut point cloud is converted
into a grayscale image to represent the road surface as shown in Figure 3a. The frames are
accumulated in an intensity image, road-surface, based on dead reckoning (DR) position
estimation XDR

t in Equation (1) and [23].

XDR
t =

[
x
y

]DR

t
= g(vet, XDR

t−1) = XDR
t−1 + vet∆t (1)

where vet is the vehicle velocity and ∆t is the time interval with the previous position in
the XY plane. DR is used to preserve smooth measurements of the vehicle trajectory inside
the nodes and avoid local jumps of GPS signals. The elevation values of the road pixels
in the intensity image are simultaneously assigned to a floating matrix called elevation
image as illustrated in Figure 3b, applying a similar equation of (1) in the Z-direction. The
accumulation process is terminated to produce a node when the area (i.e., width W and
height H) of the corresponding intensity-image exceed 1 M pixels.

The top-left corner of each node is used to identify the XY position in ACS. The
xy coordinates of the top-left corner are obtained by the minimum/maximum vehicle
positions in x/y directions inside the node as demonstrated in Figure 3a. For the node
identification in the Z-plane, the average pixel value in the elevation image is calculated.
These arrangement, accumulation and identification procedures are concluded in the term
node strategy.
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2.2. GS Optimization Strategy in Node Domain

Figure 4 illustrates our vision of decomposing maps into elevation and intensity
components using the node strategy. Graph SLAM is applied twice to optimize the intensity
map and then the corresponding elevation map. The intuition behind this tactic is that
the most dominant stationary pattern to compensate the relative-position errors in the XY
plane is the road surface. This is because the road surfaces are less subject to the change
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compared to the higher features. Accordingly, the altitudinal positions of the road-surface
can be then easily optimized by forcing the relative position errors in the Z plane to be
zero at the loop closure areas in the XY plane. Figure 4a shows two nodes at a loop-closure
event representing the same road surface in ACS. The relative error in the XY plane is
illustrated in Figure 4b by the ghosting effects, whereas the elevation drifting occurs in the
Z plane. The coordinates of the top-left corners are firstly optimized by applying GS in the
XY plane (GS-XY) based on the intensity images as shown in Figure 4c. Accordingly, the
xy-correspondences between the nodes’ road-surfaces become accurate, and the altitudinal
relative-position errors can be precisely calculated using the elevation-images. Thus, GS
is secondly applied (GS-Z) to make these errors as small as possible and bring the nodes
into the same Z-level as indicated in Figure 4d. Consequently, the 2.5D map can then be
generated in ACS as detailed in the next section.
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Figure 4. Graph SLAM in node level. (a) Two nodes at a loop-closure event with intensity and elevation images. (b)
Deviations (relative position errors) between nodes in the XY and Z planes by the GIR system. (c) Applying GS-XY on
intensity images by eliminating ghostings and aligning the road perfectly. (d) Applying GS-Z on elevation images using
correct calculations of altitudinal errors by GS-XY and making altitudinal errors as small as possible.

3. The Proposed Graph SLAM Framework (GS-XYZ)
3.1. Edge Selection and Calculation

The compensation of the relative-position errors is an essential step to apply GS. How-
ever, these errors represent local relationships between two nodes. The map generation in
ACS can be achieved by optimizing the entire relative positions between nodes collectively
and globally. Therefore, the coherency, consistency and accuracy between entire nodes
in the map must be maintained and improved. This demand is achieved by properly de-
signing the GS cost function. Figure 5a particularly demonstrates the relationships/edges
between nodes in the XY plane. Each node possesses three types of edges: se-quential,
anchoring and potential loop-closure. A sequential edge EDR expresses the relationship
between two consecutive nodes Ni and Ni−1 based on the top-left corners X and can be
calculated using Equation (2).

EDR
i,i−1 = ( f (XNi

, XNi−1
)− XDR

Ni,i−1
)∑−1

i,i−1 ( f (XNi
, XNi−1

)− XDR
Ni,i−1

)
T

(2)
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where f (,) is a simple function to calculate the relative position, XDR is the edge constraint
representing the dead reckoning relative position and Σ is the standard deviation of the
vehicle velocity inside the driving area between Ni and Ni−1. These edges are necessary to
preserve the smoothness of the road context and prevent deviations in a local area because
of false loop-closure detection.
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Figure 5. (a) Relationship between nodes in the XY plane and edge types of GS-XY cost function. (b) Applying PhC to
merge two nodes (N3 and Nt) based on matching road landmarks with estimating common areas for loop-closure edges.

An anchoring edge EGPS is used to place a node in the real world according to the GIR
system as in Equation (3).

EGPS
i = (XNi

− XGPS
Ni

)Γ−1
i (XNi

− XGPS
Ni

)
T

(3)

where XGPS is the edge constraint representing the node position based on the GIR system
and Γ is the covariance error. These edges determine the position in ACS of merging many
participating nodes in the same area based on the smallest covariance error.

An image edge Eimg is mainly issued to compensate the XY relative position between
two nodes in a revisited road segment and estimate the common area as in Equation (4).

EImg
i,j = ( f (XNi

, XNj
)− XImg

Ni,j
)Ω−1

i,j ( f (XNi
, XNj

)− XImg
Ni,j

)
T

(4)

where Ximg is the edge constraint based on matching the environmental features. The
matching calculation is trigged when a loop-closure event between two nodes is detected.
The identification strategy by top-left corners facilitates the detection process. The coordi-
nates of the corners do not rely on the driving direction in the scanned environment. In
other words, if the vehicle trajectory was in the upper lane (opposite driving direction) in
Figure 3a, the xy-coordinates of the corner would be exactly the same. This makes the node
distribution in ASC very coherent and homogenous. Therefore, the loop-closure events
can be detected using a set of distance thresholds, such as the driving distance between
two node candidates, the Euclidian distance between two top-left corners and the driving
distance between two consecutive loop-closure events. Accordingly, a set of node-pairs
that potentially share a considerable area in the real world is obtained.
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As each node encodes a wide segment of the road surface in the intensity image,
phase correlation (PhC) is applied on the detected loop-closure events to estimate Ximg in
Equation (4) and locally bring the common areas between every two nodes into the same
xy-coordinates in ACS. PhC is widely utilized in the image processing and computer vision
fields to solve various issues [24–26]. Technically, PhC relies on the shared pattern between
two images to estimate xy-translation offsets using Fourier frequency transform (FFT) [27].
The robustness of PhC was the main motivation to invent the node strategy and design a
new Graph SLAM framework. Moreover, PhC provides a correlation matrix that can be
significantly employed to estimate the covariance error Ω in Equation (4). Accordingly,
PhC has been modified to improve the performance on the intensity images, increase
the matching accuracy and estimate the common area in each node of a loop-closure
event. Figure 5b shows two nodes of a detected loop-closure event with the results of
applying the enhanced PhC. The nodes are perfectly matched and provide the common area
specifications in each node without any prior information of the top-left corner coordinates.

3.2. Cost Function Concept (Example: GS-XY)

The cost function is designed to optimize the edges and minimize the relative and
global errors in the XY plane as in Equation (5).

X∗ = argmin
z

∑
i,i−1

EDR
i,i−1 + ∑

i,j
EImg

i,j + ∑
i

EGPS
i (5)

The optimization process (GS-XY) can mathematically be expressed by Equation (6),
which refers to the relationships of each node with other nodes in the map by H matrix.

∆X = −H−1b (6)

The diagonal elements in H imply the summing up of weighted confidences of the
sequential and anchoring edges, whereas the off-diagonal elements indicate the loop-
closure events weighted by PhC matching scores. The vector b demonstrates the weighted
accumulative errors of the entire edges that are contacted to each node. A set of translation
offsets ∆X is obtained by solving Equation (6) and added to the top-left corners of the
map nodes. The offsets move the nodes in the XY plane to the optimal positions in ACS,
eliminating the ghosting effects and maintaining smooth road contexts.

3.3. Transforming GS-XY to GS-Z

The style of applying GS-Z on the elevation images is similar to GS-XY in terms
of edge concept and cost-function design. On the other hand, calculating the elevation
relative position errors should be strategized. In our previous work [21], the detected
common areas by PhC at each loop-closure event were used to calculate the elevation
errors. PhC may provide inaccurate lateral matching results in the wide roads, where
the shared landmarks are not sufficient (Figure 6a), as well as wrong correspondences in
the longitudinal direction between nodes of critical environments, such as tunnels, where
the road pattern is identical. This leads to wrong calculations of the altitudinal errors
in the common areas, increases the excluded edges in the optimization process and may
negatively influence the optimization process in the Z plane by producing unsmooth local
road context in the elevation maps.

The inaccurate PhC matching results are overcome by adding ∆X of GS-XY to the
nodes’ top-left corners as demonstrated in Figure 6b. Accordingly, a common area in nodei
(U × V) can be projected accurately to nodej regardless of the previously estimated area by
PhC in nodej. These two areas are guaranteed to represent the same environment in the real
world, and they must be in the same Z-level. Therefore, a loop-closure elevation edge Zimg

is precisely estimated by calculating the average altitudinal error in Equation (7) between
the two areas based on the true pixel correspondences.
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ZImg
Ni,j

=
1

UV

U

∑
u=0

V

∑
v=0

zNi (u, v)−zNj(u, v); zNi (u, v) 6= 0, zNj(u, v) 6= 0 (7)

The cost function of GS-Z is designed in Equation (8) using similar edge concepts of
GS-XY as illustrated in Figure 6c, and a set of Z-offsets is obtained accordingly. A z-offset of
an ith node is added to the entire pixels in the corresponding elevation image, i.e., updating
the altitudinal average value for identifying the node in the Z plane. The elevation map is
then generated accurately by rearranging the nodes’ elevation images in ACS.

Z∗ = argmin
z

∑
i,i−1

ZDR
i,i−1 + ∑

i,j
ZImg

i,j + ∑
i

ZGPS
i (8)
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4. Experimental Platform and Test Course
4.1. Platform Configuration and Framework Setups

Figure 7 shows the robotics platform used to collect map data. The vehicle is equipped
with Velodyne LIDAR 64 for 360 scanning the environment and generating 3D point clouds.
A coupled GIR system POSLV 220 is deployed in the trunk to receive satellite signals
and estimate the vehicle position, acceleration, velocity and angular parameters. After
collecting the map data, these measurements are post-processed to produce very accurate
vehicle trajectories. LIDAR point clouds are then assigned to the trajectories to generate
the maps [28].

According to the proposed framework, the size of a LIDAR-frame w × h is 512 × 512.
The area threshold of a node to be generated is set to W.H = 1 M pixels. The pixel resolution
is 0.125 m in the intensity-image and 0.01 m in the elevation image (direct save of the
altitudinal information in a floating matrix). A LIDAR frame is generated every 100 ms,
whereas the GIR system provides measurements within 10 ms. Therefore, a synchronization
process is technically applied based on the timestamps to estimate the vehicle position
as soon as a LIDAR frame is created. Accordingly, DR is used to estimate the vehicle
position in XY and Z planes as explained in the node strategy. The processing unit has
Intel-Core™ i7-6700 CPU working at 3.40 GH with 64 GB of RAM. The operating system is
Windows 10 64X and the localization system was coded using VS-2010 C++ environment
with integrating OpenCV 2.3.1 and Eigen libraries. The FFTW library was integrated into
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the programing environments and the processing time to estimate that the relative position
between two nodes by PhC is around 20 ms and [29].
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4.2. Test Course

The proposed framework has been tested in a critical environment to emphasize the
robustness and reliability against the GIR system. Tunnels are very efficient environments
to test any proposed SLAM method because they have no surrounding environmental
features that may differ according to the vehicle positions or the driving lane, i.e., the road
surface is identical in the two trials, and deviations can easily be observed on the painted
landmarks. Yamate Tunnel is an 18.2-km highway road in Tokyo and ends at Ohashii
Junction with a 30-m underground depth. It is the world’s longest tunnel and consists of
two tubes. Each tube enables a single driving direction and contains two lanes. In order
to extend the course length and increase the size of the map data, we started to drive the
vehicle from Yono Junction as shown in Figure 8a. Therefore, the course length becomes
34 km, including a considerable open-sky area before entering the tunnel. As driving
inside a tube is in one direction, we scanned the first tube two times and drove at different
velocities for each scan. This increases the node number and makes the optimization of
relationships between nodes very challenging as detailed in the next section.
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Figure 8. Yamate Tunnel in Tokyo. (a) Two-times scanned course starting at Yono Junction and ending with the Yamate
Tunnel. (b) Top-left corners of course nodes showing loop-closure lines (green) and the first node in the tunnel. (c–g)
Three loop-closure events along the course demonstrating in rows: open-sky area, Yamate Tunnel entrance and end of the
tunnel. (c) Camera image. (d) Patch of a node image in first scan. (e) Same area in second scan. (f) Merging scans based on
GNSS/INS-RTK. (g) Merging scans based on phase correlation.
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5. Results and Discussion
5.1. Graph SLAM in the XY Plane

The node strategy has led to a unique design of GS framework that reduces the
map data size and decreases the processing time of the optimization process. This allows
researchers to maintain a simple and easy arrangement of intensity and elevation values
of the road-surface in the real world. The decomposition of the map into these two
components facilitates the constitution of the relationships between nodes by the cost
function. The test course was scanned by 283 nodes (16,041 point clouds) in the first scan
and by 285 nodes (15,473 point clouds) in the second scan. The difference in the node
numbers is intentionally created by a slight change of the starting point, and the difference
in the point cloud number indicates different velocities of the vehicle during the two scans.
Obviously, loop-closure events of the two scans are existent continuously along the course
as illustrated in Figure 8b. Figure 8c–g show three loop-closure edges with the merged
images based on PhC and GIR. The nodes of the two maps in open-sky areas are accurately
combined in ACS using GIR in Figure 8f. On the other hand, the two scans are considerably
deviated by GIR at the entrance of Yamate Tunnel until its end. The relative-position Ximg

is precisely estimated using PhC by extracting the coordinates of the common areas in
the corresponding nodes’ images as shown in Figure 8g. In order to provide a holistic
assessment of PhC against GIR results, Figure 9a illustrates the loop-closure edges along
the two scans. Each edge represents the difference in x and y directions of the top-left
coordinates of the detected common areas between a pair of nodes. The difference should
be small because a common area represents the same road segment in the real world as
can be observed in Figure 8. GIR is massively affected inside the tunnel and the two scans
have large deviations up to 4 m. This indicates the low map quality and the risky ghosting
effects in representing the road surface. Moreover, it refers to different locations of the road
segments in ACS.
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obtained by GNSS/INS-RTK system and phase correlation on the node images. (b) The proposed GS-XY’s Y-offsets to
top-left corners of nodes in the first and second scans. (c) X-offsets to two scans.
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PhC has sufficiently compensated the relative position errors based on matching
the static environmental features in the node images. The cost function significantly
assigns these compensations to the graph with the sequential and anchoring edges. The
graph is then optimized, and a set of translation offsets of the top-left corners is obtained.
Figure 9b–c show the GS offsets of the nodes in Y and X directions. The offsets are small
in the open-sky areas, i.e., the nodes have same positions of GIR in ACS. This proves the
robustness of the proposed framework to generate the same map quality of GIR in such
environments because GIR maps can be considered as ground-truth. The offset profiles
demonstrate a continuous change of the nodes’ positions inside the tunnel. This implies
the reliability of the proposed framework to detect the low accurate areas and fix the
relative-position errors accordingly. In addition, the offsets differ between the two maps at
the same area.

This implicitly illustrates the influences of the anchoring edges to determine the global
position of the combined map based on the correct integration of the relevant covariance
errors in ACS. Figure 10 shows images of GIR and GS-XY maps at different places inside
Yamate Tunnel. The GIR map images demonstrate different ghosting patterns, whereas the
GS map provides accurate road-surface representations. This indicates the robustness of
the framework to constitute and optimize the node positions significantly regardless of the
road structure and environment types.
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5.2. Graph SLAM in the Z Plane

Figure 9a contains spiking peaks inside the open-sky area. The bridge and tunnel
road segments are almost identical in the two scans because of the surrounding walls
and barriers. Therefore, it is difficult for PhC to accurately recover the relative-position
errors in the longitudinal direction. Figure 11a–d show the two scans’ nodes of the highest
peak in Figure 9a (open-sky) with the combined results using PhC and the GIR system,
respectively. PhC provides an inaccurate estimation of the longitudinal relative-position,
whereas a true combination is obtained in the GIR combined map image. Figure 11e shows
the corresponding GS map image with the same quality of GIR map. Thus, GS-XY can be
considered as a filtration process of wrong results of PhC for applying GS-Z as observed by
applying our previous work [21]. This increases the number of correct altitudinal edges
between nodes. Moreover, decomposing GS-XYZ into two phases in the XY plane and then
the Z plane makes the calculation of altitudinal edges very simple and easy. This is because
the covariance estimation of Zimg can be set to a constant scalar for the entire altitudinal
edges in the map.
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Figure 11. Robustness of GS-XY against wrong loop-closure edges. (a) First scan. (b) Second scan. (c) Wrong matching of
the two images using phase correlation. (d) Accurate combination of two maps by the GNSS/INS-RTK system. (e) Accurate
combination of the two images using GS-XY to recover the wrong result in (c) based on optimizing the entire relationships
between scans’ nodes by the designed cost function. It can be observed that the map images in (d,c) are denser than those in
(a,b) to indicate the importance to safely combine and update maps in such highway environments.

Figure 12a shows the accuracy profiles of the GIR system in the Z-direction of the two
scans. Obviously, the profiles demonstrate higher satellite signal quality in the open-sky
area with different accuracies in some segments because of changing the traffic flow and
driving scenarios along the two scans. The profiles considerably and gradually become
inaccurate inside the Yamate Tunnel. Figure 12b in the red profile illustrates the altitudinal
relative errors in the common areas between nodes of the two scans according to the GIR
elevation map. The profile indicates huge altitudinal errors inside the tunnel because of
representing same road segments in the real world. Figure 12b in the green profile shows
the altitudinal error after applying GS-Z and distributing the obtained z-offsets on the
nodes in the two scans. GS-Z has perfectly reduced the altitudinal error, significantly
recovering the damaged and critical areas compared to the GIR elevation map.
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Figure 12. (a) Standard deviation of the GIR system in the Z plane showing unstable accuracy along elevation images inside
the Yamate Tunnel. (b) Large altitudinal differences between common areas in GIR elevation images (red profile) and the
significant small differences after applying GS-Z (green profile). The dotted lines refer to edges in Figure 13.
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the XYZ plane at once and guarantee precise generation of the intensity maps in the XY 

Figure 13. (a) Two nodes of the loop-closure edge with ID 340 in Figure 12a. (b) Two nodes of the loop-closure edge with ID
433 in Figure 12a. The common area in the reference node (first scan) is projected onto the target node (second scan) based
on GS-XY. The vehicle trajectory in the first scan in the common area is then used to calculate the altitudinal error in the
elevation images. (c,d) GS-Z and GIR elevation trajectories in the two scans in the common areas. A large elevation error
was produced by GIR between the two scans, whereas GS-Z minimized the error and brought the node into same Z-level
because of representing the same road segment in the real world. (e) The map elevation error between the two scans along
the entire map (the first scan’s trajectory was used as reference).

As an edge represents a loop-closure between two nodes and in order to highlight
the reliability of GS-XYZ to publish the elevation map in ACS, two particular edges/loop-
closures are shown in Figure 13a,b. The first edge represents the maximum altitudinal error
inside the Yamate Tunnel (1.2 m in Figure 12a), whereas the second edge is closer to the end
of the tunnel. For more precise evaluation, the trajectory of the vehicle in nodej (reference)
is projected onto nodej (target), accurately based on the resultant common areas by GS-XY
as indicated by the dotted lines in Figure 13c,d. The altitudinal error is then calculated at
each vehicle position by subtracting the corresponding values in the elevation images of
GIR and GS-XYZ. It can be observed that the GIR profiles have considerable and different
distances in Z-direction in both edges. This indicates the altitudinal relative position errors
between the two scans as well as the global position errors of the elevation map in these two
local road segments. The GS profiles are perfectly aligned to make the altitudinal relative
errors as small as possible and bring the common areas in the loop-closure events into
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the same Z-level. One can observe that GS-XYZ has aligned the two scans at the middle
distance in the first edge and closer to the first scan in the second edge. The two scans in
the first edge (at 1.2 m error) has almost the same accuracy in the real world as indicated
in Figure 12a (nodes 225 and 227), whereas the first scan possesses better accuracy at the
end of the tunnel. This indicates the flexibility and robustness of the GS-Z cost function to
publish the elevation map at the most accurate global positions in ACS. In order to prove
that the global position of each road segment is determined with respect to the entire nodes
in the map with preserving smooth road context in the Z-direction, Figure 13e shows the
altitudinal errors of the GS-XYZ elevation map using the entire vehicle trajectory/positions
of the first scan compared to the GIR elevation map. This figure indicates that the GS-XYZ
map is very accurate and can be used to localize autonomous vehicles precisely as well
as sufficiently enable other applications, such as object distance estimation and roll/pitch
angle calibration. This indicates the robustness of the designed cost function to compensate
the altitudinal error locally between every two nodes of a loop-closure event and globally
with respect to the other events in the entire map in ACS.

6. Conclusions

We proposed a relatively simple Graph SLAM framework to generate accurate LIDAR
intensity and elevation maps. The framework operates in the node level and image
domain instead of the conventional strategies of operating in the vehicle position level
and point cloud domain. This reduced the data size in the optimization process, allowing
researchers to utilize phase correlation to efficiently compensate the xy relative position
errors based on road surface representations, and facilitated constitution of the relationships
between nodes regardless of the vehicle trajectory. Moreover, the optimization process
is decomposed into two phases to apply Graph SLAM in the XY plane and accordingly
optimize the elevation position in the Z plane. This unique tactic has been proved to
significantly reduce the influences of changing the high environmental features by traffic
flow or driving scenarios compared to the conventional strategies of applying SLAM in
the XYZ plane at once and guarantee precise generation of the intensity maps in the XY
plane. In addition, this tactic enabled accurate determination of the elevation errors and
facilitated the edge calculation and covariance estimation of the relationships between
nodes in the Z plane. The experimental results have verified the robustness and reliability
of the proposed framework to generate very accurate and coherent 2.5D maps in the
world’s longest tunnel at 30 m depth underground compared to an accurate and expensive
GNSS/INS-RTK system. Therefore, the proposed framework increases the scalability of
the mapping module to represent the real world precisely and enable safe autonomous
driving.

7. Patents

This work was patented in Japan in 2020 with the global number: 2020-090099.
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Abbreviation

GS Graph SLAM
DR Dead Reckoning
GIR GNSS/INS-RTK
PhC Phase Correlation
ICP Iterative Closest Point
ACS Absolute Coordinate System
LIDAR Light Detection and Ranging
SLAM Simultaneous Localization and Mapping
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