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Abstract: Semi-autonomous learning for object detection has attracted more and more attention in
recent years, which usually tends to find only one object instance with the highest score in each
image. However, this strategy usually highlights the most representative part of the object instead of
the whole object, which may lead to the loss of a lot of important information. To solve this problem,
a novel end-to-end aggregate-guided semi-autonomous learning residual network is proposed to
perform object detection. Firstly, a progressive modified residual network (MRN) is applied to the
backbone network to make the detector more sensitive to the boundary features of the object. Then,
an aggregate-based region-merging strategy (ARMS) is designed to select high-quality instances by
selecting aggregation areas and merging these regions. The ARMS selects the aggregation areas that
are highly related to the object through association coefficient, and then evaluates the aggregation
areas through a similarity coefficient and fuses them to obtain high-quality object instance areas.
Finally, a regression-locating branch is further developed to refine the location of the object, which
can be optimized jointly with regional classification. Extensive experiments demonstrate that the
proposed method is superior to state-of-the-art methods.

Keywords: semi-autonomous learning; aggregation area; residual network; object detection; remote
sensing image

1. Introduction

With the rapid development of modern remote sensing technology, remote sensing
image processing has been widely used in various fields, such as object detection [1–3],
road mapping [4–6], agricultural planning [7–9], semantic analysis [10–12] and urban
planning [13–15]. Recently, thanks to the stronger feature representation ability of Convolu-
tional Neural Networks (CNNs) [16,17] and the availability of rich datasets with case-level
annotations, the object detection of remote sensing images has achieved breakthrough
performance. However, collecting such accurate annotations is labor-intensive and time-
consuming. In contrast, scene-level tags can be easily obtained. This paper mainly studies
the application of weakly supervised scene-level tags to realize semi-autonomous learning
of object detections in remote sensing images.

In the existing remote sensing image object detection methods, the data used for the
training network usually have object-level markers, which include the specific number,
location, size or direction of all objects in the scene. However, the label at the scene level
only records the category type of the main objects in each scene, and does not contain the
specific object information in the scene. In addition, scenes with the same label usually
contain different numbers of objects with different positions, sizes and orientations. The
lack of this object information brings great challenges to the learning process.
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With the aid of multiple instance learning, researchers [16,18–27] have shown that
deep networks trained with only image-level/scene-level tags can generate pseudo ground
truth, thus effectively predicting object location information. Most semi-autonomous
learning object detection methods are divided into two stages [22,28–30]. In the first stage,
a series of candidate boxes are generated by the object proposal method [31,32], and in
the second stage, the features obtained from each proposal are regarded as instance-level
classification problems. The core of these methods is to treat each image as a bag of potential
object instance, and then train the instance classifier under the constraint of multi-instance
learning. Promising results have been reported in the aforementioned methods. In [23],
Ren et al. proposed an unpacking algorithm which iteratively removes negative instances
from positive bags; this algorithm can effectively reduce the ambiguity of positive bags.
However, the method ignores the accuracy of positive bags and may result in less accurate
positive bags. Bilen et al. [22] proposed an effective multi-instance learning method, namely,
the weakly supervised deep detection network (WSDDN), which can operate at the image
region level and perform region selection and classification at the same time. Nevertheless,
this method lacks displayed labels to classify instances. Later, Tang et al. [28] proposed a
new online instance classifier refinement (OICR) algorithm, which integrates the multiple
instance learning and instance classifier optimization process into a single deep network,
and at the same time, it proposes to optimize instance classifier online by using a spatial
relationship. This method can learn more distinguished instance classifiers by assigning
binary labels on display. However, this method makes the network pay more attention to
part of objects and ignores the complete objects. Thereafter, a proposal cluster learning
(PCL) is presented to [29], to realize a refined instance classifier by learning the generated
proposal clusters. As the proposals in the same cluster are associated with the same object,
this can make the network focus more on the whole object instead of the parts of objects.
In [30], Feng et al. designed a dual contextual refinement strategy to shift the focus of the
detection network from locally different parts to the whole object by using local and global
context information.

Although these studies have achieved good results, the development of semi-autonomous
learning in remote sensing images still faces two major challenges. The first challenge is that
deep residual networks, such as ResNet [33] and DenseNet [34], have become the standard
backbones of many computer vision tasks, while the advanced semi-autonomous learning
methods for object detection still rely on common networks, such as VGG [35]. The funda-
mental problem is unstable for the header of semi-autonomous learning, and is particularly
sensitive to model initialization. This may propagate uncertain and wrong gradients back to
the backbone, thus deteriorating visual representation learning. Especially in remote sensing
image, the background is complex, the features are chaotic and the object size is small. The
large kernel convolution kernel and non-maximum down-sampling in traditional ResNet will
lead to the loss of highly informative features in the original image [36].

The second challenge is that most methods of semi-autonomous learning tend to select
only the candidate frames with the highest scores to train the corresponding detectors.
However, the suggestions with the highest scores and their associated suggestions usually
cover only a part of the object instead of the whole object, especially in the large-scale
and chaotic remote sensing image. Therefore, the above methods may not be enough to
extract the complete object features. In addition, remote sensing images usually contain
multiple instances of the same kind. If the highest score and its associated suggestions are
simply selected as pseudo GT, other instances of the same kind may be missed, resulting in
suboptimal object detectors [29].

For the first challenge, we designed a modified residual network (MRN) to solve
the problem of losing highly informative features in the original image. Specifically, this
paper replaces large convolution kernel and non-maximum down-sampling in a traditional
residual network with a small kernel convolution and maximum down-sampling. It could
enhance the robustness of network information flow by extracting finer object boundary
features from the original image and keeping the information of instances. In the process
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of inputting remote sensing images into the deep neural network, continuous convolution
and pooling will reduce the image size and increase the receptive field, which will lose
some resolution and make some image details unable to be reconstructed. To solve this
problem, the hole convolution is used in ResNet to increase the receptive field without the
loss of feature information by the pooling operation. Each convolution output contains a
wider range of feature information than an ordinary convolution, which is beneficial in
obtaining the global information of the object features in remote sensing images.

In order to address the second challenge, this paper proposes an end-to-end aggregation-
based region-merging strategy (ARMS), which combines similar regions in the cluster and
deletes redundant regions in the cluster to select high-quality regions. In the process of
network refinement, this strategy shifts the focus of network detection from part of the
object to the whole object, and reduces the influence of background area on the network.
More specifically, this paper does not directly select the suggestion with the highest score as
pseudo-supervision, but selects other areas related to the suggestion with the highest score,
and merges these related areas to form a complete object area, generating a new confidence
level according to the merged form.

In this paper, MRN and ARMS are combined to form a progressive aggregation area
instance refinement network. The MRN solve the problem of losing highly informative
features in the original image. It extracts finer object boundary features in image processing,
and preserves the information of instances. The ARMS is designed to select high-quality
instances by selecting aggregation areas and merging these regions. ARMS selects the
aggregation areas that are highly related to the object information through the association
coefficient, and then evaluates the aggregation areas through the similarity coefficient and
fuses them to obtain high-quality object instance areas. Moreover, a regression-locating
branch is further developed to refine the location of the object, which can be optimized
jointly with regional classification. Experiments on augmented NWPU VHR-10 and LEVIR
datasets clearly demonstrate that the proposed method significantly outperforms previ-
ous state-of-the-art semi-autonomous learning object detection approaches on LEVIR and
augmented NWPU datasets. In summary, the main contributions of this paper can be sum-
marized as follows: (1) An end-to-end framework is proposed to realize semi-autonomous
learning object detection based on image level annotations, which can jointly optimize the
region classification and regression to improve the accuracy of object location. (2) The MRN
is applied as the backbone to implement a lightweight network structure, which provides
finer object boundaries and preserves the information of small instances, enhancing the
robustness of information flow in the network. (3) A novel ARMS algorithm is proposed
to utilize the cluster information of the region to obtain high-quality object features, and
further suppress the interference of messy background information.

2. Materials and Methods

The overall architecture of the proposed framework is illustrated in Figure 1. The
core goal of this method is to mine more accurate positive instances by making full use of
aggregation areas under a weak supervision setting. For this reason, an instance refinement
framework of the aggregation area based on a modified residual network is designed.
Specifically, for each input image, the selective search method [32] is applied to generate
about 2000 suggestions, MRN is used to extract the features of the image, and then the
data enter the multiple instance learning (MIL) branch to generate instance-level supervi-
sion. Then, the AMSR further refines the instances, and finally uses the classification and
regression branch to process the features at the same time to get the final result.

2.1. Modified Residual Network for Semi-Autonomous Learning

The residual network is a variant network proposed by Mike et al. in 2015, which has
achieved excellent results in the field of image recognition and object detection [37,38]. The
residual network has less computation and can solve the problems of network degradation
and gradient dispersion. Deep residual networks, such as ResNet and DenseNet, have
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become the standard backbone of many computer vision tasks [39–41], but the advanced
semi-autonomous learning methods still rely on common networks, such as VGG. The
fundamental problem is that the header of the semi-autonomous learning network is
particularly sensitive to model initialization. This may propagate uncertain and wrong
gradients back to the backbone and deteriorate visual representation learning. Training the
semi-autonomous learning network with ResNet backbone will reduce the identification
of the proposed features, and will be weak in localizing object instances. Discovered
by [36], the proposed semi-autonomous learning algorithm in this paper takes MRN as the
backbone network.
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Figure 1. The overall architecture of the proposed framework. 
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Figure 1. The overall architecture of the proposed framework.

In the traditional plain network, the data source of the network can only come from
the previous layer; as shown in Figure 2a, the data flow down layer by layer. In the
convolutional network, the data will flow into the next layer after down sampling, and
data will be compressed in this process. In the residual structure, a design similar to the
“short circuit” is introduced, in which the data output from the previous layer will directly
skip over several layers and be introduced into the input part of the following data layer,
as shown in the Figure 2b. Simply put, the uncompressed vector data of the previous
layer and the further compressed data of the later layer will be used as the later input data
together. More abundant dimension characteristic values are introduced into the network,
so that the network can learn more abundant features. The residual convolution block is
composed of several residual convolution submodules, as shown in Figure 2b. Assuming
that the input of layer l is xl , then the input of layer l + 1 is

xl+1 = H
(

xl , w f

)
= xl + F(xl , wl) (1)

where wl =
{

wl,k|1 ≤ k ≤ K
}

is the parameter of layer l, and K represents the number of
residual unit layers. Sequential cycle analogy is denoted as

xl+2 = xl+1 + F(xl+1, wl+1) = xl + F(xl , wl) + F(xl+1, wl+1) (2)

xL = xl +
L−1

∑
i=1

H(xi, wi) (3)
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In Formula (3), it can be seen that the feature xL in layer L can be divided into two
parts—the first part is shallow network representation xl , and the second part is the
mapping of residual function ∑L−1

i=1 H(xi, wi)L, which indicates that the model is a residual
form in any unit. Different from the plain network, the feature in layer L is the product of a
series of vectors, that is, ∏ L−1

i=0 Wixi. In addition, a network often has the best network level;
therefore, many deep networks have many redundant network layers. At this time, it is
hoped that these redundant layers can complete identity mapping to ensure that the input
and output through this identity layer are identical. As shown in Formula (3), in forward
propagation, the input can be propagated directly from any lower level to higher level,
which is equivalent to containing a natural identity mapping. This characteristic can solve
the problem of network degradation to a certain extent. This also explains why the output
in Figure 2b is H(x) = F(x) + x. In the residual network, for features with any depth, the
result is the sum of all the previous residual modules, which increases the diversity of
features. Similarly, the residual network also has good back propagation characteristics.
Assuming that the loss is E, according to the chain derivation rule, we can get

∂E
∂xl

=
∂E
∂xL
· ∂xL

∂xl
=

∂E
∂xL

(
1 +

∂

∂xl

L−1

∑
i=1

H(xi, wi)

)
(4)

It can be seen from the Formula (4) that the gradient consists of two parts—one is the
information flow without any weight, another one is the weighted information flow. The
linear characteristics of the connection between the two parts ensure that the information
can be transmitted back to the shallow layer. At the same time, the formula also shows that
for a small batch-size, the possibility of gradient disappearance becomes smaller.

Although the residual network has powerful advantages for visual tasks, it cannot
be directly applied to semi-autonomous learning. This is because semi-autonomous learn-
ing is particularly sensitive to model initialization. Firstly, the large kernel convolution
weakens the information of the object boundary, which leads to the uncertainty around
the object boundary. Secondly, non-maximum down-sampling may also damage the flow
of information, which makes small instances difficult to be perceived. This is because
non-maximum down-sampling may not retain the activation and gradient of the infor-
mation flowing through the network under weak supervision. Inspired by [36], a MRN
is proposed in this paper, and the small kernel convolution and max-pooling are used
to improve the robustness of information flow, which makes the object boundary more
detailed. Specifically, the original stem block is replaced by three conservative 3 × 3 convo-
lutions, and the first and third convolutions are followed by the max-pooling layer. For
down-sampling, max-pooling is applied to change the average-pooling operation. The
general depth residual network usually uses five stages to extract the whole image feature
map. In the process of inputting remote sensing images into the deep neural network,
continuous convolution and pooling operations will be carried out on the images, and this
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operate will lose some resolution and make some image details unable to be reconstructed.
To solve this problem, this paper uses hole convolution to increase the receptive field when
extracting the high-resolution weakly supervised feature so that each output of convolution
contains a wider range of feature information than ordinary convolution, and it is beneficial
to obtain the global information of object features. Specifically, the size of the space is
fixed after the third stage, and the expansion convolution with a rate of 2 is added in the
subsequent stage. Table 1 displays some parameters of MRN. Figure 3 visualizes the feature
map of the VGG backbone network and MRN. The first column is the original image, the
second column is the feature map extracted by VGG-16 backbone network and the third
column is the feature map extracted by MRN; all these feature maps are come from one
specific CNN layer. It can be seen that the MRN can obtain clearer boundary features,
especially for the small object in the complex scene. For the scene with multiple objects, the
MRN can obtain more complete global information.

Table 1. The design details of MRN.

Layer Name Convolution Kernels Rate of Dilated Convolutions

Conv1

3× 3, conv
2× 2, maxpool

3× 3, conv
3× 3, conv

2× 2, maxpool

−

Conv2
[

3× 3, 64
3× 3, 64

]
× 2 −

Conv3
[

3× 3, 128
3× 3, 128

]
× 2 −

Conv4
[

3× 3, 256
3× 3, 256

]
× 2 2

Conv5
[

3× 3, 512
3× 3, 512

]
× 2 2

2× 2, maxpool, stride2

2.2. Multiple Instance Learning Branch (MIL Branch)

The image only contains the image-level label indicating whether the object category
appears or not. In order to train a standard object detector, it is necessary to mine instance-
level supervision, such as the bounding-box annotation. Therefore, this paper needs to
introduce a MIL branch to initialize the pseudo ground truth (GT) annotations, such
as [22,28]. The OICR network based on WSDDN is chosen in this paper because it is
effective and can realize end-to-end training. WSDNN adopts a dual-stream network:
classification stream xcls and detecting data stream xdet. Instance-level prediction can be
achieved by aggregating these two streams. The scores of region proposal can be defined as

xcr = xcls � xdet (5)

xcls =
exc

ij

∑C
k=1exc

ij
, xdet =

exd
ij

∑|R|
r=1exd

ir
(6)

where xc
ij comes from a matrix of data xc ∈ RC×|R| and xd

ij comes from a matrix of scores

xd ∈ RC×|R|;�means element-wise operation, C represents the number of image categories
and R denotes the number of object proposals. Suppose the image label is denoted as
Y = [y1, y2, . . . , yC]

T ∈ RC×1, yC = 0 indicates that there is no object in the image and
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yC = 1 indicates that one or more objects exist in the image. Then, the image-level class
prediction score can be generated by summing up the scores over all proposals.

Sc =
|R|

∑
r=1

xcr (7)Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 23 
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The two-stream network of multiple instance can be trained as:

losswsddn = −
C

∑
c=1
{yC log Sc + (1− yC) log(1− Sc)} (8)

A preliminary classification result about the object instance can be obtained by instan-
tiating the branch, but the result at this time is a very rough initial result. In order to get a
finer classification result, similar to [29], this paper designs a refinement branch to be added
after the instantiation branch. Different from OICR, our refinement branch contains two
sub-branches, namely, the classification branch and location branch. In each refinement
branch, the proposed ARMS strategy is introduced to obtain the most representative object
area by using the information of the aggregation area; further, to discover instances with
more complete characteristics by merging aggregation areas.

2.3. Aggregate-Based Region Merging Strategy (ARMS)

This section will explain how to mine trusted instances to achieve semi-autonomous
object detection when only image-level tags are available. Firstly, the aggregation area is
generated to shift the focus of the detection network from local different areas to the whole
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object area. Then, the aggregated local information is merged and the tag information is
propagated to other possible instances.

2.3.1. Identification and Selection of Aggregation Regions

It is needed to select an aggregation center before selecting an aggregation area. As
the top region can always detect a part of the object, the proposal with the higher score is
selected as the clustering center, and then the aggregation region is obtained according to
the degree of spatial overlap with the aggregation center after obtaining the proposal score.
Although the proposal with the high score may not be the most complete, it can at least
cover a part of the objects. The gathering area formed by taking it as the center will contain
some objects or even the whole object, on the assumption that the R object proposals have
boxes B = (b1, b2, . . . , bR) and a score S = (s1, s2, . . . , sR). Suppose the object category c
exists in the image—that is yc = 1. Firstly, a series of the highest-scores are selected by

rc
0 = argmax(sc

r) (9)

Then, this proposal is chosen as the nth center of the aggregation area, i.e.,
Rc

0 = (bn, yn, sn) = (brc
0
, c, src

0
), where brc

0
denotes the box of rc

0th proposal region. To
take advantage of aggregated information in the aggregation area, an association coefficient
σ
(

Rc
0, Rc

n
)

is introduced to describe the closeness between the center of the aggregation
area and other proposals. The composition of the nth aggregation region corresponding to
category c can be expressed as

Rc
n = {Rc

0|σ(Rc
0, Ri

c) > λ} (10)

σ(Rc
0, Rc

i ) =
area(bc

0 ∩ bc
i )

area
(
bc

0
) (11)

area =
(

xi
max − x0

min + 1
)
∗
(

yi
max − y0

max + 1
)

(12)

where b = (xmin, ymin, xmax, ymax) denotes the coordinates of proposals. xmin and ymin
represent the coordinates of the upper left corner, xmax and ymax represent the coordinates
in the lower right corner and λ is a threshold that is applied to select areas close to the
central area to form the aggregation area.

2.3.2. Aggregation Region Merging

The selected aggregation area set Rc
n can provide supplementary information to the

object, which is helpful to obtain complete object features. Although the area with the
highest score is not the most complete object region, it can cover at least a part of the object.
Then, taking this region as the clustering center and gradually merging the adjacent areas,
a nearly complete region can be obtained. However, one of the main problems is that the
number of these regions is not fixed and may contain useless background information.
Merging arbitrary regions may lead to negative effects. In order to solve this problem,
a graph is designed to evaluate the similarity of these aggregation areas, and then the
aggregation areas with high similarities are merged by the greedy strategy, so as to obtain
the object areas with more complete features. The concept of the similarity coefficient
SMmn( fmn, gmn) is introduced to evaluate the similarity between areas. The similarity
coefficient is divided into two parts—feature similarity and geometric similarity. It is well
known that regions with similar features will have close detection scores. At the same
time, the regions with large overlapping areas are more closely related. Therefore, the
label information of local instances through a similarity coefficient measurement can be
propagated to the global instance. The similarity measure can be expressed as:

SMmn( fmn, gmn) =

{
fmn = |sm/sn − 1|
gmn = σ(Rm, Rn)

(13)
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where Rm, Rn ∈ Rc
n. fmn and gmn represent the feature similarity and geometric similarity

between the region m and region n, respectively. The regions in the aggregation area Rc
n

are sorted according to the score. A graph G = (V, E) is established based on the similarity
measure. The node V in the graph denotes the aggregation area. Edge E = e(Vm, Vn)
represents the connection between nodes and it is determined by the similarity between
two nodes.

e(Vm, Vn) =

{
1 if fmn < τs and gmn > τR
0 otherwise

(14)

where τs denotes the feature metric threshold and τR is the geometric metric threshold.
Therefore, when the similarity between two nodes is high, they will be connected together.
Then, the greedy merging strategy will be adopted to merge these two regions with high
enough similarity to obtain a new region. Since regions with similar features have similar
detection scores, redefining the merged regions can shift the focus of the detection network
from partial object information to complete object information. The score and coordinates
of the merged area are defined as:

sA = sm + sn (15)

A(xmin, ymin, ymin, ymax) =
{

xmin=max(xm
min,xn

min),ymin=max(ym
min,yn

min)

xmax=min(xm
max,xn

max), ymax=min(ym
max,yn

max)

}
(16)

As the aggregation regions are all closely related to the regions with the highest score,
these regions contain at least a part of the features of the object, and further merging these
parts of the features can obtain nearly complete features of the object. The ARMS mines
more accurate instance information to a certain extent and obtains higher region scores, and
provides more accurate monitoring information for subsequent object feature extraction.
Figure 4 shows the process of aggregation region merging in ARMS. The Algorithm 1
summarizes the whole process of ARMS. In the first row, the relationship between region A
and region C satisfies the description in Formula (14) according to the SMAC, then region
A and region C are merged. The same is done between region A and region B. In the last
row, all regions do not meet the consolidation conditions in Formula (14), so there are no
merge operations between regions.

Algorithm 1 Aggregate-Based Region Merging Strategy

Input: Image-level label Y = [y1, y2, . . . , yC]
T ; proposal boxes B = (b1, b2, . . . , bR); proposal score

matrix S = (s1, s2, . . . , sR).
Output: merge region score sA; bounding box A(xmin, ymin, ymin, ymax)
1: for c = 1 to C do;
2: if yc = 1 then;
3: Choose the highest-score proposal Rc

0 by Equation (9);
4: Find aggregation region Rc

i by Equations (10)–(12);
5: Build a graph between aggregation areas;
6: Compute similarity between Rm and Rn by Equation (13);
7: Merge aggregation region by Equation (14);
8: Generates the instance-level score and coordinate by Equations (15) and (16);
9: End if;
10: End for.

2.3.3. Multi-Task Classification and Regression Branch

After executing the above process, the pseudo GT can be obtained, and the subsequent
classification task can be carried out in a fully supervised way. Between WSDDN and OICR,
the subsequent classification only includes one branch of classification. Inspired by [42],
this paper uses a multi-task classification and regression branch to perform detection
tasks at the same time, similarly to Faster-RCNN [43], in which the classification branch
outputs the discrete probability distribution, which is calculated by a softmax on the C + 1
outputs of FC layer. The regression branch predicts a bounding-box regression of each
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C object classes. Suppose the output of the classification branch and regression branch
are pc ∈ R(C+1)×1 and bc =

(
bc

x, bc
y, bc

w, bc
h

)
, respectively. Suppose lossdet is used for the

classification and bounding-box regression. The loss function of the network is defined as

loss = losswsddn + lossdet (17)

lossdet = losscls(yc, pc) + λlossreg(tc, bc) (18)

where losscls and lossreg represent classification loss and regression loss, respectively. λ is
the balance parameter that controls the balance between these two losses. losscls and lossreg
can be calculated as:

losscls(yc, pc) = − 1
|R|

|R|

∑
r=1

C+1

∑
c

ωryc
r log pc

r (19)

lossreg(tc, bc) = ∑
i∈(x,y,w,h)

smoothL1(t
c
i − bc

i ) (20)

smoothL1(x) =
{

0.5x2 if|x| < 1
|x| − 0.5 otherwise

(21)

where tc =
(

tc
x, tc

y, tc
w, tc

h

)
denote the pseudo GT bounding box and yc represents the real

label. ωr denotes the loss weight and can be calculated following the weights calculation
method in [28]. R is the number of region proposals.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

( ) ( ) ( )
( ) ( ){ }min min min min min min

max max max max max max

max , ,  max ,
min min min max min , , min ,

,  ,  ,
m n m n

m n m n

x x x y y y

x x x y y y
A x y y y = =

= =
=  (16)

As the aggregation regions are all closely related to the regions with the highest score, 
these regions contain at least a part of the features of the object, and further merging these 
parts of the features can obtain nearly complete features of the object. The ARMS mines 
more accurate instance information to a certain extent and obtains higher region scores, 
and provides more accurate monitoring information for subsequent object feature extrac-
tion. Figure 4 shows the process of aggregation region merging in ARMS. The Algorithm 
1 summarizes the whole process of ARMS. In the first row, the relationship between re-
gion A and region C satisfies the description in Formula (14) according to the ACSM , then 
region A and region C are merged. The same is done between region A and region B. In 
the last row, all regions do not meet the consolidation conditions in Formula (14), so there 
are no merge operations between regions. 

 
Figure 4. Illustration of the process of aggregation region merging in ARMS. (1) The relationship between region A and 
region C satisfies the description in Formula (14) according to the ACSM , then region A and region C are merged. The 
same is done be-tween region A and region B. (2) All regions do not meet the consolidation conditions in Formula (14), so 
there are no merge operations between regions. 

Algorithm 1. Aggregate-Based Region Merging Strategy. 
Input: Image-level label [ ]1 2, , , T

Cy y y=Y  ; proposal boxes ( )1 2, , , RB b b b=  ; proposal score 
matrix ( )1 2, , , RS s s s=  . 

Output: merge region score As ; bounding box ( )min min min max,  ,  ,A x y y y  
1: for c=1 to C  do; 
2:   if cy =1 then; 
3:     Choose the highest-score proposal 0

cR  by Eq. (9);  
4:     Find aggregation region c

iR  by Eq. (10)-(12); 

5:     Build a graph between aggregation areas; 
6:     Compute similarity between mR  and nR  by Eq. (13); 

7:     Merge aggregation region by Eq. (14); 

Figure 4. Illustration of the process of aggregation region merging in ARMS. (1) The relationship between region A and
region C satisfies the description in Formula (14) according to the SMAC, then region A and region C are merged. The same
is done be-tween region A and region B. (2) All regions do not meet the consolidation conditions in Formula (14), so there
are no merge operations between regions.

3. Results
3.1. Dataset and Evaluation Metrics

The proposed method is evaluated on the augmented NWPU VHR-10 [44] and
LEVIR [45] datasets. The NWPU VHR consists of 650 images (400 × 400 pixels) from
ten object categories. This dataset is composed of three groups: the train, test and valuation
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set. In this experiment, 650 images were expanded to 1950 images by rotating the images
90 degrees, 180 degrees and 270 degrees, respectively. Half of the images are used for
training data and half for testing. All of the 1950 images were scrambled, and the training
data and test data were randomly selected from these images in proportion to ensure the
balance and randomness of the training and test data. In the test, two standard metrics
are used to evaluate the performance of the proposed method. Average precision (AP) is
measured to evaluate the proposed model on the test set, and the correct position (CorLoc)
is applied to evaluate the positioning accuracy of the proposed model.

3.2. Comparisons with State-of-the-Art Methods

In order to evaluate the robustness and effectiveness of the proposed method, several
widely used semi-autonomous learning methods are taken for performance comparison.
These semi-autonomous learning methods have made breakthrough achievements in the
field of object detection, including CSC [46], WSDDN [22], OICR [28] and PCL [29]. CSC
is a weak supervision method that designs a new change segmentation and classification
module based on image-level semantic tags. WSDDN initiated the transformation of the
weak supervision problem into an architecture of the implicitly learning object detector.
OICR and PCL add new online instance classifier optimization branches on the basis
of WSDDN. In addition, the results of the proposed method are compared with fully
supervised object detection methods, such as Faster-RCNN [43], YOLOv4 [47], DCIFF-
CNN [1], YOLOv4-CSP [48] and YOLOv5 (https://github.com/ultralytics/yolov5.git,
accessed on 1 December 2021). Among them, Faster-RCNN and YOLOv4 are representative
of CNN object detection methods, while DCIFF-CNN is a deep learning method for remote
sensing images.

3.2.1. Detection Results on Augmented NWPU VHR-10 Dataset

Table 2 shows the AP detection results of the different methods for the augmented
NWPU-VHR 10 dataset. It can be observed that the proposed method achieves the highest
mean average precision (mAP) value, and the mAP value obtained by WSDDN is slightly
lower. Compared with other methods, WSDDN lacks a multi-instance refinement branch,
while OICR and PCL combine the multi-instance learning and multi-stage instance classifier.
The refinement branch makes the ability of the instance classifier iteratively enhanced and
improves the detection performance. The difference is that in the process of refinement,
ARMS combines the regions with the highest scores and the aggregation regions closely
related to it, so as to obtain more complete object features, while OICR simply selects a series
of regions with the highest scores as corresponding categories. For objects of storage tanks
and vehicles that are small in size and crowded, the proposed method obtains outstanding
performance. This is because ARMS can distinguish multiple instances in dense areas
more effectively while extracting the complete features of the object. At the same time,
the added positioning branches can locate the object more accurately and eliminate the
redundant bounding box. For objects of the ground-track-field and bridge, WSDDN gets
better AP values. However, this method is unstable in detecting small objects. In addition,
the method in this paper further narrows the gap between the semi-autonomous learning
method and the fully supervised learning method. The dataset in the semi-autonomous
learning method is based on the image level label, while the data in the full supervision
method are based on the object level label, and the results of the two methods are quite
different. The particularity of the dataset brings many challenges and difficulties to the
detection of semi-autonomous learning methods. We strive to make the detection accuracy
under the semi-autonomous learning condition close to that under a fully supervised
condition. In particular, for the object categories such as the ship, storage tank, baseball
diamond, ground-track-field, vehicles, etc., the proposed method has achieved equivalent
or even better results than the fully supervised method. Therefore, the results in Table 2
show that the proposed method is robust and effective in multi-task remote sensing image
object detection.

https://github.com/ultralytics/yolov5.git


Remote Sens. 2021, 13, 5065 12 of 22

Table 2. AP detection results of different methods for augmented NWPU-VHR 10 dataset (Bold indicates the best result).

Fully Supervised Methods Semi-Autonomous Learning Methods

Objects
Methods

Faster-RCNN YOLOv4 DCIFF-CNN YOLOv4-CSP YOLOv5 WSDDN OICR PCL Ours

Airplane 89.41 94.60 89.65 97.61 96.81 12.90 22.54 30.28 38.03

Ship 76.73 67.58 74.82 67.01 79.87 50.62 70.00 70.00 71.25

Storage tank 57.20 83.78 77.62 94.15 92.31 31.43 58.00 56.00 82.00

Baseball diamond 88.74 94.30 89.84 92.92 95.76 90.91 94.07 94.92 96.19

Tennis court 64.39 74.09 79.66 86.23 92.43 5.96 1.23 2.45 22.09

Basketball court 69.37 57.93 89.87 90.09 89.50 39.20 29.49 16.10 33.05

Ground-track-field 89.67 91.42 90.41 92.63 95.00 98.05 99.57 99.11 99.13

Harbor 78.97 74.13 88.76 91.68 95.62 5.32 9.09 20.45 18.18

Bridge 72.75 56.42 78.99 67.50 80.67 1.21 3.61 3.35 8.64

Vehicle 57.80 69.06 76.14 82.42 85.01 9.30 19.23 20.41 61.54

mAP 74.50 76.33 83.58 86.22 90.30 34.49 40.68 41.31 53.01

Table 3 shows the performance of the augmented NWPU VHR-10 dataset measured
by CorLoc. For the fully supervised method, the training data all have specific positioning
labels. Since CorLoc is the evaluation criterion for positioning accuracy, it is only applicable
to the semi-autonomous learning method with image-level labels. Compared with WSDDN,
OICR and PCL, the proposed method gets 19.12%, 12.33% and 11.70% improvement,
respectively. For the object of harbor, PCL gets a better CorLoc value. However, for the
object of tennis court and basketball court, which are similar in shape and size, PCL gets a
poor result. This is because the background is complex, and for objects with high similarity,
choosing only the proposal with the highest score as a positive example will lead to the loss
of a large amount of object information. Because ARMS combines the area with the highest
score and the gathering area closely related to it, it can mine even more complete positive
instance information, which will be of great improvement to the positioning results.

Table 3. CorLoc detection results of different methods for augmented NWPU-VHR 10 dataset (Bold
indicates the best result).

Objects
Methods

OICR WSDDN PCL Ours

Airplane 22.54 12.9 30.28 38.03

Ship 70.00 50.62 70 71.25

Storage tank 58.00 31.43 56 82

Baseball diamond 94.07 90.91 94.92 96.19

Tennis court 1.23 5.96 2.45 22.09

Basketball court 29.49 39.2 16.1 33.05

Ground-track-field 99.57 98.05 99.11 99.13

Harbor 9.09 5.32 20.45 18.18

Bridge 3.61 1.21 3.35 8.64

Vehicle 19.23 9.3 20.41 61.54

mCorLoc 40.68 34.49 41.31 53.01

The precision-recall curves (PRCs) of several semi-autonomous learning methods
are displayed in Figure 5. In general, the precision will decrease with the increase of
recall. Therefore, the performance of a model cannot be comprehensively measured by
only the precision and recall corresponding to a certain point, and it should be measured
by the overall performance of the PRCs. It can be observed that the proposed method
can achieve better performance than other methods in most object categories. For the
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object of ground-track-field, all methods can achieve stable PRCs. This is because this
object is large in size and has special features compared with other objects, which is of
great help to object detection. For the object of tennis courts and basketball courts, which
have similar characteristics and similar environments, the proposed method obviously has
more outstanding precision and recall. It can not only accurately identify the object, but
also obtain a high-precision detection rate. It is indicated that the proposed aggregation
region instance refinement framework can effectively mine multi-task positive instances
to accurately identify different objects. For the object of storage tank and vehicle, they
are both object categories that are small in size. Moreover, there are a lot of instances in
the image they appear, and the instances are relatively crowded. The proposed method
can obtain more prominent PRCs for this kind of object. This benefits from the proposed
ARMS, which utilizes the aggregation region to form a more complete object feature to
solve the problem of missing object information in multiple instances. For the object of
bridge, the proposed method obtains the suboptimal PRCs. This is due to the irregular
shape of the bridge leading to some difficulties in object detection. However, the proposed
method is still superior to most methods. Generally speaking, these results show that
the proposed framework, based on aggregation region instance refinement, can mine
richer positive instance features and generate more accurate object information by merging
aggregation regions.

From the above results, it can be observed that the semi-autonomous learning method
proposed in this paper can achieve better performance than other semi-autonomous learn-
ing methods in most object categories. WSDDN proposes an implicit learning object
detector based on weak supervision, which can simultaneously select and classify regions
at the level of image regions. However, compared with other methods, it is difficult and
challenging to train classifiers because of the lack of multi-instance refinement branches.
OICR proposes a novel online case classifier refinement algorithm, which integrates MIL
and the instance classifier refinement procedure into a single depth network. However,
OICR tends to select only the most confident candidate box to train the corresponding
detector. However, the proposal with the highest score often covers only a part of the object
rather than the whole object, which will affect the performance of the algorithm. PCL
generates a proposed cluster, and learns the refined instance classifier through an iterative
process. It spatially associates the proposals in the same cluster. This can prevent the
network from paying too much attention to part of the object instead of the whole object.
However, there are usually many similar examples in remote sensing images. Simply
selecting the highest score and its related suggestions as pseudo GT may miss other similar
examples, resulting in suboptimal object detectors. This paper proposes an end-to-end
aggregation-based region merging strategy. By selecting other regions related to the pro-
posal with the highest score and merging these related regions, a complete object region
is formed, and a new confidence level is generated according to the merging form. In the
iterative process, similar areas in the cluster are merged and redundant areas in the cluster
are deleted to select high-quality areas. In the process of network refinement, this strategy
shifts the focus of the detection network from part of the object to the whole object; at
the same time, it reduces the influence of the background area on the network, and can
generate its own cluster areas for many similar instances.

3.2.2. Detection Results on LEVIR Dataset

The LEVIR dataset contains three types of objects, namely, airplane, ship (including
offshore and open sea) and oil port. Although it contains few kinds of objects, the data
structure of this dataset is allocated reasonably. What is more, the image environment of
the dataset is diverse and contains most types of ground features, such as a city, village,
mountain and ocean. Table 4 shows the AP detection results of different methods for
the LEVIR dataset. It can be observed that the proposed method is far superior to other
semi-autonomous learning methods. Compared with other methods, the results obtained
by CSC are slightly insufficient. This is because CSC does not add instance refinement
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branch and lacks effective supervision information in the subsequent classification. As CSC
is also one of the typical semi-autonomous learning methods, it is compared with the semi-
autonomous learning method proposed in this paper despite its poor results. As shown in
the table, the proposed method outperforms other methods by about 6% in the mAP metric.
Especially for the airplane class, it is about 12% higher than that of PCL. In addition, the
proposed method further narrows the gap between the semi-autonomous learning method
and the full supervision method. The above results prove that the proposed method is
robust to various background images.

Table 4. AP detection results of different methods for LEVIR dataset (Bold indicates the best result).

Methods
Objects

Airplane Ship Oil Port mAP

Fully supervised methods

Faster-RCNN 77.60 70.21 65.34 71.10

YOLOv4 79.81 73.34 70.40 74.52

DCIFF-CNN 80.62 77.34 70.73 76.23

YOLOv4-CSP 93.68 86.79 87.79 89.42

YOLOv5 95.63 88.62 88.90 91.05

Semi-autonomous learning methods

CSC 0.81 0.13 10.76 3.90

WSDDN 16.02 0.54 16.10 10.88

OICR 22.06 0.41 33.93 18.80

PCL 39.92 13.65 39.92 29.93

Ours 52.41 14.57 40.06 35.68

The comparisons of the CorLoc metric on the LEVIR dataset are reported in Table 5. It
is clear that, on average, the proposed method outperforms the previous state-of-the-art
methods by a large margin. The proposed method outperforms other methods by about
12% in the mCorLoc metric, especially for the airplane class. Because the dataset contains
not only ships far from the coast but also ships close to the coast, with the coast being a
complex existence for ships, the environment information of ships is extremely complex
and changeable. As shown in Table 5, there is a big deviation between WSDDN and PCL
in positioning ship objects. However, the proposed method can overcome these difficulties.
This is because the proposed framework can obtain more complete object features in the
process of mining more positive examples, which provides more accurate supervision
information for the subsequent refinement process. This shows that the proposed method
is robust in complex and changeable environments.

The PRCs of several semi-autonomous learning methods for the LEVIR dataset are
displayed in Figure 6. It can be observed that the proposed method is superior to other
methods. Especially for the objects that have complex background environments, such as
the airplane, the proposed method obtains prominent and stable PRC. For the object of the
ship, the PRC obtained by OICR is obviously a little worse; this is because the background
of the ship is changeable, which include both the offshore scene and open sea scene. Even
so, the proposed method still performs well and gets stable PRC. This is a benefit from the
modified residual network proposed in this paper, which can extract highly informative
features from the original image. Generally speaking, the proposed environment is robust
in complex and changeable scenes.
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Figure 5. The PRCs of several semi-autonomous learning methods for augmented NWPU-VHR 10 dataset. (a) The PRC of airplane. (b) The PRC of ship. (c) The PRC of storage tank.
(d) The PRC of baseball diamond. (e) The PRC of tennis court. (f) The PRC of basketball court. (g) The PRC of ground track field. (h) The PRC of harbor. (i) The PRC of bridge. (j) The PRC
of vehicle.
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Table 5. CorLoc detection results of different methods for LEVIR dataset (Bold indicates the
best result).

Methods
Objects

Airplane Ship Oil Port mCorLoc

CSC 0.00 0.57 13.64 4.74

WSDDN 37.55 0.00 36.36 24.64

OICR 36.80 1.14 65.91 34.62

PCL 49.44 0.00 54.55 34.66

Ours 72.12 24.00 75.00 57.04
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3.3. Qualitative Results

Some detection results on the augmented NWPU VHR-10 are displayed in Figure 7.
It can be observed that for most objects, the proposed method can obtain accurate and
tight bounding boxes. Figure 7(b(1),b(5)) show the detection result of the harbor. For
this crowded object with large-scale change, the proposed method can still obtain a more
accurate positioning frame. However, it can be observed in Figure 7(b(1)) that there are still
some shortcomings. The detection ability in the irregular scene of the crowded harbor still
needs to be improved. The detection of the storage tank is displayed in Figure 7(a(5),b(3));
the object is small in size and crowded in image. It can be observed that for this small
object, the proposed method has a certain rate of missing inspection. This is because the
proportion of the storage tank is especially small, which causes some difficulties to the
detection. Figure 7(c(1),c(2)) show the detection results of vehicle, whose environment is
complex. It can be observed from the figures that there is a certain error detection rate.
However, for the ship, ground-track-field and other objects with obvious features or simple
scenes, the proposed method can obtain excellent detection performance.

Figure 8 shows the detection results of some methods for LEVIR. The first row denotes
the PCL method, and the second row is the method proposed in this paper. It can be
observed from the figure that the proposed method is superior to PCL. For the airplane,
PCL has some error detection results. For the ship, especially those near the coast, the
results obtained by the two methods are not good enough, but in comparison, the error
detection rate of the proposed method is less. This is because the coastal scene has certain
influence on object detection. For the oil port object, it is obvious that the proposed method
has a less missed detection rate. Generally speaking, these show that the proposed method
is robust to complex and changeable environments.
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(a(4)) Detection results of ground track field and tennis court. (a(5)) Detection results of storage tank. (b(1)) Detection
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(b(5)) Detection results of harbor. (c(1)) Detection results of vehicle. (c(2)) Detection results of vehicle. (c(3)) Detection
results of basketball court. (c(4)) Detection results of ship. (c(5)) Detection results of airplane.
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The runtime comparisons between the proposed method and other semi-autonomous
learning methods are shown in Table 6, where the runtime of the proposal generation is
not considered. It can be observed that with the improvement of the method, the algorithm
takes more and more time. The method of CSC is efficient due to the lack of MIL. Although
the proposed method is more competitive than other methods, the proposed method takes
almost the same testing time as PCL. This is because the proposed approach is an end-
to-end network. Although a small number of additional test computations are required
compared to WSDDN and OICR, the proposed method obtains much better detection
results than other methods.
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Table 6. Computation times for different methods in terms of LEVIR dataset.

Methods CSC WSDDN OICR PCL Ours

Testing time (second/image) 0.55 1.64 1.69 2.12 2.14

4. Discussion

To evaluate the effectiveness of the proposed approach, ablation experiments are
constructed to analyze the effects of the key components of ARMS, such as the modified
residual network, ARMS and regression branches.

4.1. MRN

In order to verify the effectiveness of the improved residual network, experiments
were carried out on different backbone networks, including VGG-16, RESNET-18 and the
MRN, as shown in Figure 9. In this experiment, except for the different backbone networks,
the other settings are the same. It can be observed that the performance of mAP decreased
from 34.78% to 33.90% by directly replacing VGG-16 with resnet-18, especially for the
objects with high similarity and indistinguishability, such as the tennis court and basketball
court. For a vehicle with a small size and complex scene, the AP value drops from 23.23%
to 7.02%. Therefore, it may be counterproductive to simply and rudely replace VGG-16
with resnet-18. On the contrary, it can be observed that the mAP value steadily increased
from 34.78% to 38.72% after replacing VGG-16 with the modified residual network. For the
small-sized object such as the harbor and vehicle, the AP value can be kept stable or even
increased, which further confirms that the proposed method is effective and stable in the
multi-task object detection under semi-autonomous learning.
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4.2. ARMS

In this section, the proposed ARMS is compared to a training strategy similar to
OICR, which only selected the candidates with the highest credibility to refine the next
classifier. In this experiment, the way of instance refinement is different and other settings
are the same. As shown in Figure 10, it can be observed that ARMS greatly improves
the detection performance of the network, and the value of mAP increases from 31.9%
to 38.72%. Interestingly, the proposed ARMS is more effective for small objects with
particularly complex backgrounds and object classes with multiple instances in the image,
such as the vehicle and airplane. Moreover, it can clearly distinguish the similar objects,
such as tennis courts and basketball courts. Therefore, the proposed ARMS can mine more
positive examples and classify more accurately. The main reason is that in the refinement
process, OICR only chooses the suggestions with the highest scores as the supervision
information in the next stage, which makes it easy to confuse the background with the
positive instance, as well as with the different types of positive instances, while ignoring
other similar goals in the scene. However, ARMS makes use of the suggestions with the
highest scores and the aggregation areas closely related to them, which can fully mine the
correct examples and classify them accurately.
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4.3. Regression Branches

Figure 11 shows the contribution of the regression branch to the whole framework. In
this experiment, the way of regression is different and other settings are the same. It can be
observed from the table that the performance is obviously improved after the regression
branch is added, and the mAP is improved from 34.7% to 38.72%. Especially for small
objects with multiple instances and close distance, such as oil tanks and airplanes, the
positioning branch can accurately find its exact position. This is due to the combination of
the regression branch and classification branch, which can effectively solve the over-fitting
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problem caused by the weak detector when distinguishing parts, and at the same time, it
can locate the object more accurately.
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5. Conclusions

A novel end-to-end aggregate-guided semi-autonomous learning residual network is
presented in this paper to handle the object detection problem in remote sensing images.
Specially, ARMS is designed to select high-quality regions by merging similar regions
in the cluster and deleting redundant regions in the cluster. Moreover, a progressive
residual network is applied to the backbone network to make the detector more sensitive
to small objects. Meanwhile, a regression locating branch is further developed to refine
the location of the object, which can be optimized jointly with regional classification.
Extensive experiments demonstrate that the proposed method outperforms state-of-the-art
object detection of the remote sensing image. For the NWPU dataset with a large number
of object categories, the semi-autonomous learning methods WSDDN, OICR and PCL
achieved 34.49%, 40.68% and 41.31% AP values, respectively, while the semi-autonomous
learning method proposed in this paper achieved a 53.01% AP value. This indicates that
the proposed method is obviously superior to other methods. For the LEVIR dataset with a
relatively balanced number of objects, the semi-autonomous learning methods WSDDN,
OICR and PCL have achieved 10.88%, 18.80% and 29.93% AP values, respectively, while
the semi-autonomous learning method proposed in this paper has achieved a 35.68% AP
value. It can be proved that the proposed method outperforms the state-of-the-art methods.
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