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Abstract: SAR tomography (TomoSAR) is an important technology for three-dimensional (3D)
reconstruction of buildings through multiple coherent SAR images. In order to obtain sufficient
signal-to-noise ratio (SNR), typical TomoSAR applications often require dozens of scenes of SAR
images. However, limited by time and cost, the available SAR images are often only 3–5 scenes in
practice, which makes the traditional TomoSAR technique unable to produce satisfactory SNR and
elevation resolution. To tackle this problem, the conditional generative adversarial network (CGAN)
is proposed to improve the TomoSAR 3D reconstruction by learning the prior information of building.
Moreover, the number of tracks required can be reduced to three. Firstly, a TomoSAR 3D super-
resolution dataset is constructed using high-quality data from the airborne array and low-quality
data obtained from a small amount of tracks sampled from all observations. Then, the CGAN model
is trained to estimate the corresponding high-quality result from the low-quality input. Airborne data
experiments prove that the reconstruction results are improved in areas with and without overlap,
both qualitatively and quantitatively. Furthermore, the network pretrained on the airborne dataset
is directly used to process the spaceborne dataset without any tuning, and generates satisfactory
results, proving the effectiveness and robustness of our method. The comparative experiment with
nonlocal algorithm also shows that the proposed method has better height estimation and higher
time efficiency.

Keywords: TomoSAR; conditional generative adversarial network; very few tracks; building 3D
reconstruction

1. Introduction

The capability of inverting the spatial distribution in the elevation direction in each
SAR azimuth-range imaging unit through multiple coherent SAR images makes TomoSAR
an important technique in 3D information reconstruction of target objects [1,2]. Generally,
numerous coherent SAR images (more than 20) [3] are required to obtain sufficient 3D recon-
struction results. However, under realistic situations, only 3–5 practical tracks are available
because of the constraints of cost and time. According to previous research, the accuracy
of elevation inversion is proportional to the number of observation orbits and SNR [4].
Therefore, the accuracy of elevation inversion will decrease severely, which degrades the
height estimation of buildings and damages the 3D architectural structures. Appropriate
methods are needed in TomoSAR research under the condition of very few tracks.

Estimating the number of scatterers and their corresponding elevation are the essential
steps in a TomoSAR procedure. The more accurate the elevation inversion is, the more
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refined information of buildings will be reconstructed, such as the overall architectural
structure and the plane surface. However, the large errors in the elevation inversion with
very few tracks severely damage these potential characteristics. As shown in Figure 1, the
surface of a building is not a plane anymore and cannot be conjectured from the damaged
blue points, the overall structure of building becomes fuzzy, and the height of the building
will be estimated incorrectly.

Figure 1. Diagram of TomoSAR result using very few tracks for building. The blue points represent
the estimated scatterers using three tracks, and the orange line indicates the ideal surface. There will
inevitably be large errors in elevation inversion, resulting in the fuzzy structure of the building and
inaccuracy in estimation of height.

Some traditional research of TomoSAR 3D reconstruction for buildings using a few
tracks have been carried out. In 2015, XiaoXiang Zhu et al. used six-track coherent data
to conduct research on building height estimation [5]. The geometric structures of the
target buildings are obtained through the public optical building structure database to
calculate the contour lines of buildings in SAR images. Then, the joint sparse estimation
of the points on the contour lines are used to obtain the heights of contour lines. In 2020,
HongLiang Lu et al. obtained the contour lines of the building directly from the SAR image
through the contour line extraction algorithm (CLE) rather than other public databases [6].
However, the above methods need to be carried out by obtaining the geometry structures of
the buildings, which is inconvenient and complicated. In 2020, Yilei Shi et al. proposed the
nonlocal algorithm to deal with the building height estimation task with 3–5 tracks [4]. This
algorithm performs patch-wise weighted filtering on the interferometric images, which
effectively increases the SNR and obtains large-scale urban building 3D reconstruction
results. However, the track configuration is specially set, so that the equivalent baseline
length is long enough to maintain the elevation resolution. There is no research about the
decrease of elevation resolution caused by the reduction of equivalent baseline length. In
general, these studies lack automatic learning of the architectural structural characteristics
and high-dimensional features of building.

There are also some studies on SAR 3D imaging using deep learning algorithms, which
can automatically learn high-dimensional features of targets from data. In 2019, Siyan
Zhou et al. proposed a deep fully connected network to denoise the 3D point cloud data of
a single independent building to obtain a relatively flat surface [7]; however, this method
cannot handle buildings with overlap and finds it hard to process the point cloud data
of a large-scale scene. In 2021, Shihong Wang et al. proposed a 3D autoencoder network
to filter the low-resolution 3D voxel data generated from three-track circular SAR data to
approach the high-resolution results of all tracks [8]. However, this method requires a lot
of computation and memory resources to process 3D voxel data, which is of low efficiency.
In general, the deep learning algorithm has indeed brought new ideas into the research of
SAR 3D reconstruction, enlightening the potential of deep learning algorithm in TomoSAR
3D information reconstruction for buildings with very few tracks.
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The generation and development of generative adversarial network (GAN) has
brought a major revolution into deep learning research. In 2014, Goodfellow first proposed
the GAN principle and its network model [9], which gave rise to the research of generative
networks. However, the native GAN is difficult to train and hard to converge. To deal with
these problems, in 2015, Alec Radford et al. combined the GAN network structure with the
deep convolutional network and proposed the Deep Convolutional GAN (DCGAN) [10].
The network structure of DCGAN solves the problems of unstable training and mode
collapse, making it the main application of GAN network structures. Unfortunately, the
DCGAN did not explain the problems of GAN theoretically. In order to fundamentally
solve the problems, in 2017, Martin Arjovsky et al. analyzed the original loss function
in depth and theoretically explained the problem of GAN nonconvergence, proposing
WGAN [11]. Based on previous work, the GAN has important applications in image
generation, style transfer, image synthesis, anti-spoofing, image deblurring, etc. [12–16].
However, the traditional GAN takes random noise as input. Generating a specific result
based on the input content is called conditional GAN(CGAN), such as medical image
segmentation and image deblurring tasks[17–19]. However, to our best knowledge, there
is no research on the application of GAN in terms of SAR 3D reconstruction. This article
will explore a method of applying a GAN network in SAR 3D imaging to generate refined
and high-quality 3D results.

Traditional research of TomoSAR 3D reconstruction for buildings focuses on improv-
ing the solution of sparse equation by group sparsity based on contour lines or nonlocal
algorithm increasing SNR. These methods are short of the automatic application of higher-
dimensional features of buildings. In contrast, the deep learning algorithms show great
potential in applying the high-dimensional features. The GAN network has a signifi-
cant application in generating refined image results, which is very suitable for the task
of 3D reconstruction of architectural targets. The code of our network is available here
(https://gitee.com/WshongCola/cgan_for_few_tracks accessed on 15 May 2021).

In summary, the key contributions of our work are as follows:

(1) The Conditional generative adversarial network (CGAN) is originally applied to
generate high-quality TomoSAR 3D reconstruction for buildings using very few tracks
by learning the high-dimensional features of architectural structures.

(2) Instead of directly processing large 3D data, the range-elevation 2D slices are processed
to reduce network parameters and computational complexity, which makes it possible
to deal with large-scale scenes. In order to solve the problem of possible misalignment
among generations, the content loss between the input and generation is considered,
so that the architectural structure can be reconstructed at the correct position.

(3) The overlap of buildings in TomoSAR images makes buildings seem fused together
and makes it hard to identify them from each other. The proposed method is able to
distinguish the overlapped buildings correctly and estimate the heights of buildings.
Compared with the widely used nonlocal algorithm, our method can estimate the
height of buildings more accurately, and it is of higher time efficiency.

2. Materials and Methods

As shown in Figure 2, the proposed method is divided into two connected modules:
data generation module and CGAN module.

Data Generation module:
Input: All coherent SAR images.
Output:

• Low-quality slice set: The low-resolution and low-SNR range-elevation slices
generated using three tracks by TomoSAR procedure.

• High-quality slice set: The high-resolution and high-SNR range-elevation slices
generated using all tracks.

The TomoSAR procedure is described in detail in Section 2.1.2

https://gitee.com/WshongCola/cgan_for_few_tracks
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Figure 2. Flowchart of proposed method. The proposed method is composed of two main modules.
The data generation module explains the generation of the super-resolution dataset that contains
the paired low-quality and high-quality slice sets. The CGAN module illustrates the dominant
compositions of the CGAN model and the data flowpath.

CGAN module:
Input data is the paired low-quality and high-quality slices generated by the data

generation module. The network parameters are iteratively updated for learning the
features between two pairs, obtaining the mapping relationship from low-quality slices to
high-quality slices.

2.1. Data Generation Module
2.1.1. TomoSAR Principle

As shown in Figure 3, traditional synthetic aperture radars project the three-dimensional
spatial distribution of scatterers along the elevation direction to the two-dimensional
azimuth-range plane, which causes the elevation distribution of scatterers to be lost. To-
moSAR expands the observing capabilities by multiple coherent tracks, making it possible
to retrieve the elevation distribution information from coherent SAR images [20–22].

Figure 3. Diagram of TomoSAR imaging geometry. TomoSAR expands the spatial resolution in the
elevation direction by coherent antenna phase centers (APCs), represented as a series of black points.
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Assuming there are N tracks in total, according to previous research, the typical
TomoSAR 3D imaging model can be formulated as follows[23]:

yn =
∫ smax

smin

σ(s) exp[−j
4π

λ
Rn(s)]ds (1)

In the above equation, yn represents the complex-value observation data of the nth
antenna phase center (APC), expressed as the integral of the scatterer spatial distribution
σ(s) along the elevation direction s. Taking a certain APC as the reference, the baseline
length of the ith APC is bi. Discretizing the elevation range into M samples and considering
noise, the continuous integral model can be approximated as

y = Φ · σ + n (2)

where y is the complex-value observation data vector in each azimuth-range unit of
corresponding APCs. Φ is the observation matrix, which bridges the observation vector

and elevation distribution. The element of matrix is Φi,j = exp(−j
4πbisj

λR ), where sj is the
jth elevation discretized resolution cell, and R is the distance between the scatterers and
APC. Based on Equation (2), the elevation distribution σ(s) in each azimuth-range unit can
be inverted from y.

According to the Fourier analysis principle [24], assuming the maximum baseline
length is B, the Rayleigh resolution in the elevation direction is ρs = λR

2B , and the obser-
vation matrix can be expressed as exp(−j2πξisj), where ξi =

2bi
2B is the spatial frequency.

Equation (2) can be regarded as the Fourier transform of σ. The sampling interval of spatial
frequency is ∆ξ = 2∆b

λR , where ∆b is the interval length between two neighboring APCs.
Based on the theory of space–time analysis, the maximum unambiguity range of the eleva-
tion direction is sua = λR

2∆b . According to the above theoretical analysis and the research
in [4], the less the number of available track is, the shorter the maximum baseline length
will be, leading to a decrease in the elevation spatial resolution.

Based on the theory of linear algebra, when the number of samples M in the elevation
direction is much larger than the practical number of coherent tracks, Equation (2) becomes
an underdetermined equation with a nonunique solution space. The general solution is to
use the compressed sensing (CS) method [25–27]. The objective function with the sparse
constraint item is as follows:

σ̂ = arg min
x
{‖Φ · σ− y‖2

2 + λ‖σ‖1} (3)

In the above equation, λ represents the sparse coefficient. The larger the value is, the
sparser the solution will be. ‖σ‖1 is the sparse constraint item to limit the solution space.

2.1.2. TomoSAR Procedure

As shown in Figure 4, firstly, the azimuth-range units in different SAR images should
be related to the same scatterers after registration [28]. Secondly, channel phase errors,
which are caused by positioning or system errors, are compensated to focus the inversion
results in the elevation direction. The minimum entropy method is applied to estimate the
phase errors. Thirdly, the sparse recovery methods are used to estimate the elevation posi-
tions of scatterers in each azimuth-range unit. Finally, the coordinate system is transformed
from radar system into geodetic system.
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Figure 4. Flowchart of TomoSAR imaging procedure. The procedure contains a series of operations.
Firstly, the image registration ensures the azimuth-range units in different coherent SAR images
related to the same scatterers. Secondly, the channel imbalance calibration compensates the phase
errors among channels. Thirdly, sparse recovery methods are applied to invert the elevation position
of scatterers. Finally, the coordinate system is transformed from radar system to the geodetic system.

2.1.3. Data Generation

Figure 5 illustrates the procedure of data generation.

Figure 5. Flowchart of data generation. The final output is the paired super-resolution dataset
composed of low-quality and high-quality slice sets. The low-quality set of low-SNR and low-
resolution contains range-elevation 2D binary slices, which is generated from three tracks. In contrast,
the high-quality set uses all tracks, and has high SNR and resolution. The binary operation means that
the value set is 1 if a scatterer is estimated in this position. All slices are in radar coordinate system.

Paired super-resolution dataset: The paired dataset contains the low-quality and
high-quality slice sets. Slices of different sets in the same azimuth position are paired to be
input and corresponding ground truth.

Low-quality slice set: The low-quality slice set is composed of binarized 2D range-
elevation slices generated using three adjacent tracks through algorithms in TomoSAR
procedure, which is of low SNR and low elevation spatial resolution. The equivalent
baseline length of three adjacent tracks is much shorter than that of full tracks, which will
severely decrease the elevation resolution. This low-quality set is the input data of the
network. The binary operation means that the value set is 1 if a scatterer is estimated in
this position.

High-quality slice set: The high-quality slice set shares the same procedure as the
low-quality set, but uses all SAR images to generate high-SNR and high-elevation spatial
resolution data.

All slices are in radar coordinate system.
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2.2. CGAN Module

The CGAN consists of two models, the generator and the discriminator, as shown in
Figure 6. The generator produces a fake result as similar as possible to the high-quality
ground truth based on the low-quality input. The role of the discriminator is to distinguish
the fake result and the ground truth. Through iterative optimization, the generator needs
to produce a result as similar as possible to make the discriminator believe it is the truth,
and the discriminator needs to distinguish the fake result from ground truth as much
as possible.

Figure 6. Flowchart of the CGAN module. The CGAN consists of two models named generator (G)
and discriminator (D). The generator produces a fake result as similar as possible to the ground truth
to make the discriminator believe the generation is the truth. On the contrary, the discriminator is
used to distinguish the fake result and ground truth. After iterations, the generator will be able to
generate a refined result which is hard to tell from the corresponding ground truth. Besides this, the
content loss between the generated result and ground truth is also considered avoiding position bias.

2.2.1. Generator

The generator network structure based on the autoencoder[19] is shown in Figure 7,
which can be roughly divided into three main parts: downsampling compression, fea-
ture extraction, and upsampling reconstruction. In the downsampling compression part,
four times downsampling is achieved through two convolution networks with step of two,
and the feature dimension is expanded from 64 to 256, which is indicated by the number on
the left side of blocks, such as n64. The feature extraction part digs out high-dimensional
features from the downsampled data by stacking nine layers of deep convolution blocks.
The upsampling reconstruction part uses two deconvolution (TransposedConv) layers with
step of two to achieve four times upsampling and decrease the feature dimension to one.

In order to accelerate the convergence of the network, the generator adopts the resid-
ual network structure, which adds the input data straight into the output, learning the
difference between the input and output. In addition, an InstanceNorm module has
been applied to accelerate the network convergence by normalizing each channel in the
convolution layers.
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Figure 7. Network structure of the generator. The generator is composed of three dominant parts:
downsampling compression, feature extraction, and upsampling reconstruction. The downsampling
compression part compresses the data dimension and expands the feature dimension from 64 to 256.
The feature dimension is indicated by the number on the left side of blocks, such as n128. The feature
extraction part is composed of nine stacked blocks based on res-net structure, which has capability of
digging out high-dimensional features of data. The upsampling part decreases the feature dimension
and reconstructs the data dimension by deconvolution (TransposedConv) layers.

2.2.2. Discriminator

A Markovian discriminator [29] is applied in the proposed method, which is different
from other discriminators that generate one real number based on the network input to
indicate the probability that the input is truth. In contrast, the Markovian discriminator
generates a matrix. Each element of the matrix represents the truth probability of a small
area in the receptive field. Finally, the average of matrix is regraded as the probability that
the entire picture is the truth. The discriminator structure is shown in Figure 8.

The discriminator network is composed of four convolutional layers, which contain
convolution model, BatchNorm model, and LeakyReLU model in each layer, and the last
layer is only a convolutional model with one filter to generate the truth possibility map. The
BatchNorm model is used to accelerate the convergence of network and the LeakyReLU is
used as activation function.

Figure 8. Network structure of the discriminator. The network contains four convolutional layers
increasing the feature dimension from 64 to 512, and finally becomes 1 to indicate the truth possibility
of a small area in the receptive field. In the first four layers, the BatchNorm model is inserted into
layers to accelerate the convergence and the LeakyReLU model is used as the activation function.
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2.2.3. Loss Function

The total loss is formulated as follows:

L = LGAN + λ · Lx (4)

In Equation (4), the total loss is the sum of adversarial loss LGAN and content loss Lx,
which is balanced by parameter λ. The adversarial loss is formulated as follows:

LGAN
D = −Ex∼Phigh_res [D(x)] + Ez∼Plow_res [D(G(z))] (5)

LGAN
G = −Ez∼Plow_res [D(G(z))] (6)

In Equation (5), the loss function of the discriminator is formulated as two parts. The
first part is −Ex∼Phigh_res [D(x)], x is sampled from the high- resolution dataset, and it is
processed by the discriminator D(). The second part is Ez∼Plow_res [D(G(z))], where z is
sampled from the high-resolution dataset correspondingly. The input data z is processed
by the generator G() to produce a fake result G(z), then the fake result is processed by
the discriminator D(). The discriminator D() will give a score to indicate the truth of
input data. The higher the score, the more the judge believes that the data entered is true.
Therefore, the discriminator tries to give high score to the high-res input and low score
to the low-res input to minimize the loss function. In Equation (6), the generator tries to
produce fake results similar to high-res input, so that the discriminator will give high score
to the fake result.

In order to make the generated results relevant to the content of the input data, the
content loss is applied. However, minimizing the L1 or L2 distance between the generated
result and the ground truth in pixel-wise will lead to blurry artifacts in generated results.
Therefore, in this paper, the feature extraction network is adopted to measure the distance
in perceptual domain, which is expressed as follows:

Lx =
1

Wi,j Hi,j
∑
x=1

∑
y=1

(φi,j(IGT)x,y − φi,j(GθG (I IN))x,y)
2

(7)

In Equation (7), φi,j represents the result of the feature layer between the jth maximum
pooling after the ith convolutional layer after activation. By constraining features in
different levels, such as high semantic feature level and low detail level, the generated
result will be refined and fit the ground truth much better.

3. Results and Discussion
3.1. Network Training

Data augmentation: Training of CGAN requires an amount of data. However, the
number of slices of a building in a TomoSAR scene is insufficient; only hundreds of slices
are available. The network will try to memorize these slices rather than learning the deep
features. To solve this problem, the data augmentations, including random combination,
flipping, and translation, are applied on the input slices. The application of random
combination tries to simulate the condition of many buildings by placing slices of one
isolated building at different azimuth positions together into one fabricated slice. Besides
this, the additional noise is used to improve the robustness of network.

Training configurations: The network is trained on AMD Ryzen 5 2600 Six-Core CPU
and 1 NVIDIA GeForce GTX 1080Ti GPU. The optimizer is Adam. In a total of 150 epochs,
the learning rate in the first 100 epochs is 0.0001 and is linearly reduced to 0 in the last
50 epochs. According to GPU memory limitation, the input size is set as 1200 * 256, while
the batchsize is 14. The network converges after 100 epochs in our experiments. The
critic function of GAN is Wasserstein GAN with Gradient Penalty (wgan-gp) [11], which
can solve the problem of gradient disappearance and explosion. The perceptual network
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named VGG19 [30] pretrained on ImageNet is adopted to calculate the difference between
the feature maps of fake result and ground truth.

3.2. Airborne Dataset

The YunCheng airborne data is used in the experiment. The parameters are listed in
Table 1.

There are nine buildings in Figure 9, which are indicated with rectangles and num-
bered in both the optical and intensity SAR images correspondingly. The buildings #1
and #2, marked with red color, are selected as training set, and the other buildings with
white color are the testing set. Obviously, in the SAR image, three (#3, #4, #5) buildings are
overlapped. Meanwhile, the four (#6, #7, #8, #9) buildings are nonoverlapped. Both the
overlapped objects and nonoverlapped objects are indicated with white dotted rectangles.
In order to explain the reconstruction results of overlapped and nonoverlapped objects
more intuitively, two slices are selected at the positions of slice 1 and slice 2 in Figure 9b.
Slice 1 is the elevation-range image of buildings #6, #7, #8, and #9, while slice 2 is the corre-
sponding view of buildings #1, #2, #3, and #4. Building #5 shared the same characteristics
as building #4 and is not listed here.

(a) (b)

Figure 9. Optical and intensity SAR images of YunCheng data. Panel (a) is the optical image of
target scene including nine buildings in total. Each of the buildings is indicated using rectangles and
numbered in the top-left corner. Panel (b) is the SAR image covering the same scene. The buildings
in the SAR image are indicated with rectangles and are numbered correspondingly. Besides, two
buildings marked with red rectangles at the bottom-right of the images are selected as training set.
The other buildings with white rectangles are the testing set. Moreover, buildings #3, #4, and #5 are
strongly overlapped in the SAR image and buildings #6, #7, #8, and #9 are nonoverlapped buildings.
Slice 1 and slice 2 are selected at two azimuth positions to explain the results by different methods of
overlapped and nonoverlapped buildings.

Table 1. Parameters of YunCheng airborne dataset.

All-Track Three-Track

Number of tracks 8 3
Maximal elevation aperture 0.588 m 0.168 m

Distance from the scene center 1308 m
Wavelength 2.1 cm

Incidence angle at scene center 58°

In Figure 10, the 3D height and strength distribution of both all-track and three-track
TomoSAR results are shown. Figure 10b,d show the normalized strength distributions.
Compared with the three-track result, the dominant scatterers mainly locate at the surface
of buildings and the structures are much more refined. In Figure 10a,c, it is obvious that
the quality of the three-track TomoSAR 3D result is much lower than that of the all-track
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TomoSAR. According to the previous analysis, it is proved that the three-track TomoSAR
of low SNR and resolution will definitely introduce large errors in the elevation inversion,
resulting in fuzzy architectural structures.

(a) (b)

(c) (d)

Figure 10. 3D reconstruction results of all-track and three-track TomoSAR. Panel (a) is the 3D
height distribution of all-track TomoSAR scatterers. The buildings can be easily distinguished. The
structures of buildings are refined. Panel (b) is the normalized strength distribution of all-track
TomoSAR. The dominant scatterers mainly locate at the surface of buildings. Panel (c) is the height
distribution of three-track TomoSAR. The structures of buildings are fuzzy. Besides, there are also lots
of artifacts and outliers. Panel (d) is the normalized strength distribution of three-track TomoSAR.
Compared with all-track results, the strength distribution is worse with lots of powerful artifacts
and outliers, which makes the height distribution of buildings fuzzy and declines the quality of
reconstruction.

In order to explore the ability of the network in dealing with both overlapped and
nonoverlapped situations, the total buildings are divided into two testing sets.

In this experiment, the configurations of nonlocal algorithm [31–35] are set as follows
in Table 2, according to the recommendations in [32].

Table 2. Configurations of nonlocal algorithm.

Parameter Value

search window size 9× 9
patch size 3× 3
iterations 10

posterior similarity coefficient (h) 5.3
sparse prior KL similarity 0.2× 9× 9

minimum number of similar blocks (Lmin) 10
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3.2.1. Nonoverlapped Buildings

Figure 11a,c are the height maps of all-track and three-track TomoSAR results of
nonoverlapped buildings #6, #7, #8, and #9, while Figure 11b,d are normalized strength
maps. Compared with all-track TomoSAR results, the results of three-track TomoSAR
are much worse with lots of artifacts and outliers. Besides, there is inevitable powerful
multipath scattering [36] marked with red circles that affects the structures. In addition,
the heights of buildings are estimated and labeled with orange lines in strength maps.

(a) (b)

(c) (d)

Figure 11. Results of nonoverlapped buildings #6, #7, #8, and #9 reconstructed by all-track and
three-track TomoSAR at slice 1 position. Panel (a) is height map of all-track TomoSAR. The identity
numbers of buildings are placed near the corresponding ones. Panel (b) is the normalized strength
map of all-track TomoSAR. Panel (c) is the height map of three-track TomoSAR and (d) is the
normalized strength map of three-track TomoSAR. The heights of four buildings are estimated from
the strength maps and indicated by orange lines at the top of buildings. Compared with all-track
TomoSAR results, the results of three-track TomoSAR have more artifacts and outliers with stronger
power. The structures become blurry and are affected by the powerful multipath scattering (marked
with red circles).

In Figure 12, the results of nonlocal algorithm and proposed CGAN method are shown
and compared. From the normalized strength maps in Figure 12b,d, the nonlocal algorithm
can indeed remove the artifacts and outliers by increasing the SNR. However, there are
still some artifacts and outliers remaining. In contrast, the results of the proposed CGAN
method are of higher quality with fewer artifacts and outliers. Meanwhile, the multipath
scattering marked by red circles is also well suppressed, which affected the structures in
nonlocal results.
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(a) (b)

(c) (d)

Figure 12. Results of nonoverlapped buildings #6, #7, #8, and #9 reconstructed by CGAN and
nonlocal methods using three tracks at slice 1. Panel (a) is the height map of CGAN. Panel (b) is the
normalized strength map of CGAN. Panel (c) is the height map of the nonlocal algorithm. Panel (d)
is the normalized strength map of the nonlocal algorithm. The nonlocal algorithm can remove the
artifacts and outliers by increasing the SNR. However, it is still affected by the multipath scattering,
marked with red circles. In contrast, the proposed CGAN method generates a higher quality result by
suppressing more artifacts and outliers. In addition, the multipath scattering is also well suppressed
so that the structures are much clearer. The height estimations are also labeled with orange lines.

3.2.2. Overlapped Buildings

Figure 13a shows the height and strength maps of buildings #3 and #4 reconstructed
using all and three tracks. In Figure 13a, the structures of two overlapped buildings
can be clearly recognized. In Figure 13b, the dominant scatterers mainly locate at the
surface of buildings. There is a large interval between two buildings. However, it is found
in Figure 13c that the two buildings are difficult to distinguish from each other without
obvious boundaries. The strength map in Figure 13d also shows that the scatterers of two
buildings almost merge together, which severely damages the structures of two buildings.
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(a) (b)

(c) (d)

Figure 13. Results of overlapped buildings #3 and #4 reconstructed using three and all tracks at slice
2 position. Panel (a) is the height map of all-track TomoSAR. The identity number of buildings is
placed near the corresponding ones. Panel (b) is the normalized strength map of all-track TomoSAR.
Panel (c) is the height map of three-track TomoSAR. Panel (d) is the normalized strength map of
three-track TomoSAR. The buildings #3 and #4 are overlapped in the SAR image. From results of
three-track TomoSAR, the overlapped two buildings cannot be distinguished from each other; the
structure of building #3 is too blurry to tell it apart from building #4. Moreover, the top of building
#3 is hard to determine, and it is impossible to estimate its height. The height estimation is labeled
with orange lines.

In Figure 14, the results of the proposed CGAN method and nonlocal algorithm
are shown. Figure 14a is the height map of nonlocal algorithm, and Figure 14d is the
normalized strength map. The nonlocal algorithm can greatly distinguish between two
overlapped buildings with an obvious interval in between. Meanwhile, Figure 14c,d are the
results of proposed CGAN method. Similarly, the proposed method can also distinguish
between two overlapped buildings with a large interval in between. However, it becomes
worse when it comes to the height estimation of building #3. The height estimated by the
nonlocal algorithm is severely different from that of the all-track results. In contrast, the
height estimated by the proposed CGAN method is closer to that of the all-track results.
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(a) (b)

(c) (d)

Figure 14. Results of overlapped buildings reconstructed by nonlocal algorithm and proposed CGAN
methods. Panel (a) is the height map of the nonlocal algorithm. Panel (b) is the normalized strength
map of the nonlocal algorithm. Panel (c) is the height map of the proposed CGAN method. Panel
(d) is the normalized strength map of the proposed method. Generally, the nonlocal algorithm can
divide two overlapped buildings with an obvious interval. However, there are still some artifacts
and outliers. In contrast, the results of the proposed method can greatly distinguish between two
buildings with a large interval. Additionally, the roofs of two buildings are clear. The height of
building #3 estimated in the height map of the proposed method is closer to ground truth. The
height estimation of building #3 in the nonlocal result is severely different from that of all-track
results, which is probably affected by the multipath scattering. The height estimation is labeled with
orange lines.

In Figure 15, it should be noted that although the nonlocal algorithm can effectively
improve the overall 3D imaging quality, the structures of buildings are still blurry compared
to CGAN results. In other words, the imaging results of the proposed CGAN method are
much clearer, and it has stronger ability to suppress the artifacts, outliers, and multipath
scattering.
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(a) (b)

Figure 15. Comparison of entire scene 3D reconstruction between the nonlocal algorithm and
proposed CGAN method. Panel (a) is the reconstruction result of the nonlocal algorithm. Panel (b) is
the reconstruction result of the proposed CGAN method. Comparatively, the quality of the CGAN
method is higher with fewer artifacts and outliers. In addition, the structures of buildings are much
clearer, and are closer to the results of all-track TomoSAR.

The heights of buildings are mainly considered when building the 3D reconstruction
task. Therefore, buildings #3, #4, #6, #7, #8, and #9 are estimated according to the strength
maps by different methods. The results are as follows:

Table 3 is the comparison of building height estimations by different methods. Limited
by the resolution and error of subjective judgment, the errors under 2 meters are negligible.
The main focus is on the height estimation results of building #3, #4, and #7, whose errors
cannot be ignored. For building #3, there are large errors in the three-track and nonlocal
estimations, compared to all-track result. It may be caused by the powerful multipath
scattering under the condition of three tracks, which damages the roof structure of building.
For building #4, it is difficult to judge the height because the interval between buildings #3
and #4 are too small to separate them. Furthermore, the roof of building #4 merges with the
surface of building #3, which makes it harder to identify the roof. For building #7, it can
be seen that both the three-track TomoSAR and the nonlocal algorithm estimated results
have large errors. From the respective intensity distribution maps, it can be seen that the
dominant influence is the multipath scattering of the nearby building, which damages the
roof of the target building severely.

Table 3. Height estimation results by different methods.

Building_Index All Tracks 3 Tracks\Error Nonlocal\Error Proposed\Error

#3 75 89\14 90\15 75\0
#4 40 Hard to recognize 42\2 42\2
#6 81 82\1 82\1 81\0
#7 74 87\13 87\13 73\1
#8 90 90\0 91\1 90\0
#9 93 93\0 93\0 93\0

Table 4 compares the time consumption of the nonlocal algorithm and the proposed
CGAN method in reconstructing the entire scene. The nonlocal algorithm is accelerated
using the vector parallel acceleration calculation technique, which occupies lots of memory
and consumes about 4 h. In contrast, the noniterative parallel calculation of the proposed
CGAN network consumes about 10 s to process the entire scene. It is obvious that the
proposed CGAN method has much higher time efficiency than the iterative nonlocal
algorithm.
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Table 4. Time consumption of different methods.

Method Time Consumption (s)

Nonlocal (10 iterations) 14,492
Proposed GAN 10

3.3. Spaceborne Dataset

We use the spaceborne dataset from TerraSAR-X in Barcelona to demonstrate the
effectiveness and robustness of our method. The parameters are listed in Table 5. Figure 16
shows the optical image of target building and corresponding SAR intensity image.

Table 5. Parameters of TerraSAR-X spaceborne dataset.

All-Track Three-Track

Number of tracks 19 3
Maximal elevation aperture 215 m 42 m

Distance from the scene center 617 km
Wavelength 3.1 cm

Incidence angle at scene center 66°

(a) (b)

Figure 16. Optical and SAR intensity images of spaceborne data. Panel (a) is the SAR intensity image
of the building. The red line is the slice selected to show details. Panel (b) is the corresponding
optical image.

In Figure 17, the 3D views of the CS method using all tracks and only three tracks are
shown. While using only three tracks, the CS method introduces lots of outliers. On the
contrary, the all-track reconstruction shows few outliers and refined building surface.

(a) (b)

Figure 17. 3D views of reconstruction by CS method using all tracks and three tracks. Panel (a) is
the 3D view of reconstruction using three tracks. There are lots of outliers. Panel (b) is the 3D view
of reconstruction using all tracks. There are few outliers and the surface of the building is clean
and refined.



Remote Sens. 2021, 13, 5055 18 of 22

In Figure 18, the CS method is applied to reconstruct building surface using three and
all tracks. While using three tracks, there are lots of outliers marked by orange circles, which
has strong intensity. In contrast, there are fewer outliers in the all-track reconstruction
result; however, the building surfaces of all results are not smooth.

(a) (b)

(c) (d)

Figure 18. Reconstruction results of CS method using three and all tracks at the position indicated
by the red line in the SAR intensity image. Panel (a) is the height map of three-track TomoSAR.
Panel (b) is the normalized strength map of all-track TomoSAR. The orange circles indicate the
outliers. Panel (c) is the height map of all-track TomoSAR. Panel (d) is the normalized strength map
of all-track TomoSAR. The orange lines mark the height of the building. There are lots of outliers in
the three-track reconstruction result.

In Figure 19, the comparison of reconstruction results of the nonlocal algorithm and the
CGAN method while using only three tracks is shown. Generally, the nonlocal algorithm
can compress the outliers. In contrast, the proposed CGAN method can not only greatly
compress the outliers, but also generate refined building surface.

(a) (b)

Figure 19. Cont.
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(c) (d)

Figure 19. Reconstruction results of the nonlocal algorithm and the proposed CGAN methods. Panel
(a) is the height map of the nonlocal algorithm. Panel (b) is the normalized strength map of the
nonlocal algorithm. Panel (c) is the height map of the proposed CGAN method. Panel (d) is the
normalized strength map of the proposed CGAN method. Generally, the nonlocal algorithm can
compress the outliers. In contrast, the proposed CGAN method can further compress the outliers
and generate more refined surface. The orange lines mark the height of the building.

In order to estimate the effectiveness and robustness of the proposed CGAN method,
we directly use the network trained on the airborne dataset to process the spaceborne
dataset. Surprisingly, the pretrained network, without any tuning on the spaceborne
dataset, also shows reasonable results.

The heights of buildings using several methods are labeled in strength maps using
orange lines. There is no significant difference among these estimations, proving that the
proposed CGAN method can correctly reconstruct the height of buildings in the spaceborne
dataset.

In Figure 20, 3D views of the nonlocal algorithm and the proposed CGAN method
are compared. There are many outliers in the results of the nonlocal algorithm using three
tracks. However, compared with the CS method, it slightly compresses the outliers. In
contrast, the number of outliers is significantly lower in the CGAN method. Furthermore,
the surface of buildings generated by our method is smooth and refined.

(a) (b)

Figure 20. 3D views of reconstruction results of the nonlocal algorithm and the proposed CGAN
method. Panel (a) is the 3D result of the nonlocal algorithm using three tracks. There are also lots of
outliers and the reconstructed surface is not smooth. Panel (b) is the 3D result of the proposed CGAN
method using three tracks. There are few outliers and the surface of buildings is clean and refined.
The CGAN, which is just trained on the airborne dataset, can effectively and robustly process the
spaceborne dataset without any tuning.
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Importantly, instead of tuning on the spaceborne dataset, the network directly uses
the network pretrained on the airborne dataset to process the spaceborne dataset. In terms
of results, the CGAN approach has also yielded satisfactory reconstruction results, which
proves the effectiveness and robustness of our methodology.

4. Conclusions

In this article, we propose the CGAN model to generate satisfactory TomoSAR 3D
reconstruction for buildings using three tracks.

Firstly, we introduced the principle of TomoSAR imaging and theoretically analyzed
the consequences of using very few tracks. Secondly, we proposed the CGAN model and
explained the network structures in detail. Besides this, we described the procedure of data
generation to meet the requirement of a large amount of training data.

The experiments on the YunCheng airborne dataset and TerraSAR-X spaceborne
dataset prove the capabilities of the proposed CGAN method in improving TomoSAR 3D
reconstruction using three tracks in both quality and quantity. Furthermore, to explain
the efficiency and effectiveness, we also compared it with the nonlocal algorithm used
in previous research. The comparison results indicate that the proposed CGAN method
can produce more refined structures of buildings and more accurate height estimation.
Moreover, the nonlocal algorithm takes over 4 h to finish the entire scene. In contrast, the
proposed method only takes around 10 s, proving the time efficiency of our method.

However, in this paper, only the features in the 2D elevation-range slice are considered
because of the computation complexity. It is believed that the reconstruction results will
be better with the features considered in all three dimensions (azimuth, range, elevation).
Besides this, the training dataset is also limited because the TomoSAR data of buildings
is hard to access and consumes lots of time to generate a super-resolution dataset. In the
future, more work will be carried out to explore the application of 3D features in TomoSAR
3D reconstruction for buildings.
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