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Abstract: The area comprising the Langma-Baiya fault zone (LBFZ) and the Bailongjiang fault zone
(BFZ) in the Western Qinling Mountains in China is characterized by intensive, frequent, multi-type
landslide disasters. The spatial distribution of landslides is affected by factors, such as geological
structure, landforms, climate and human activities, and the distribution of landslides in turn affects
the geomorphology, ecological environment and human activities. Here, we present the results of a
detailed landslide inventory of the area, which recorded a total of 2765 landslides. The landslides are
divided into three categories according to relative age, area, and type of movement. Sixteen factors
related to geological structure, geomorphology, materials composition and human activities were
selected and four machine learning algorithms were used to model the spatial distribution of landslides.
The aim was to quantitatively evaluate the relationship between the spatial distribution of landslides
and the contributing factors. Based on a comparison of model accuracy and the Receiver Operating
Characteristic (ROC) curve, RandomForest (RF) (accuracy of 92%, area under the ROC of 0.97) and
GradientBoosting (GB) (accuracy of 96%, area under the ROC curve of 0.97) were selected to predict
the spatial distribution of unclassified landslides and classified landslides, respectively. The evaluation
results reveal the following. The vegetation coverage index (NDVI) (correlation of 0.2, and the same
below) and distance to road (DTR) (0.13) had the highest correlations with the distribution of unclassified
landslides. NDVI (0.18) and the annual precipitation index (API) (0.14) had the highest correlations with
the distribution of landslides of different ages. API (0.16), average slope (AS) (0.14) and NDVI (0.1) had
the highest correlations with the landslide distribution on different scales. API (0.28) had the highest
correlation with the landslide distribution based on different types of landslide movement.

Keywords: landslide inventory; fault zone; machine learning; correlation analysis

1. Introduction

In the orogenic belt on the eastern margin of the Qinghai-Tibet Plateau, which experi-
ences strong tectonic uplift and intensive surface erosion, landslides are the main surface
and mass wasting process [1–4]. Landslides are the second most significant geological
disaster in the area after earthquakes. With the rapid urbanization of the region in recent
decades, the population density has increased rapidly and the infrastructure has gradually
improved. However, frequent and intensive landslide disasters are causing increasing
damage to human life and property [5,6]. In recent years, extreme disasters, such as the
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bursting of barrier lakes formed by landslides and the burial of villages by large landslides,
have occurred frequently [7–11]. The landforms in the area are complex and there is a lack
of detailed landslide inventory data in previous studies. Moreover, we lack a comprehen-
sive understanding of the correlation between the spatial distribution of landslides and the
various contributing factors.

The orogenic belt and the plateau margin, characterized by intense crustal collision
and uplift, have the densest distribution of surface landslides [12,13]. The formation mech-
anism, spatial distribution, and factors influencing landslides in these areas have long been
of concern to geomorphologists [14–18]. With the intensifying environmental impacts of
human activities and the increasing frequency of extreme climatic events, determining
the factors affecting the formation and distribution of landslides is becoming increasingly
difficult [19,20]. At the same time, landslides have a profound impact on the geomorphol-
ogy, ecological environment and human activities in the region [21,22]. Previous studies
of landslides mainly used statistical relationships to address the relationship between
structure, geomorphology, human activities and the spatial distribution of regional land-
slides. For example, Břežný et al. [23] conducted a statistical study of the slope direction,
altitude, slope angle, local topography, and the relationship between topographic/bedding-
plane intersection angle (TOBIA) and landslide distribution, with the aim of determining
whether geomorphology or geology was the dominant control on landslide distribution.
Pánek et al. [24] conducted a statistical analysis of the nuclear density distribution of deep-
seated gravitational slope deformations (DSGSD), rock slides and flow-type landslides,
and of the relationship between landslide type and altitude, local variability, slope and
aspect. Malamud et al. [25] studied the spatial distribution of landslides in different regions
by analyzing the relationship between landslide area and frequency. However, the main
weakness of statistical analysis lies in its qualitative evaluation of the relationship between
landslide distribution and different factors, and the strength of the relationship between
landslide distribution and the contributing factors cannot be determined. Hence, there is
a need to develop a quantitative approach to this problem, which can be combined with
statistical analysis in order to provide a deeper understanding of the relationship between
landslide distribution and the contributing factors. A landslide is a surface process with
diverse movement processes and complex controlling and influencing factors. Different
types of landslides often have different causal and control factors. In previous studies, the
spatial distribution of landslide types was often evaluated based on generalized landslide
types, and the susceptibility and correlation analysis of different landslide types are rarely
carried out. In this paper, machine learning is used to evaluate the correlation between
different types of landslides and the controlling factors. Machine learning has become an
important method for extracting information and instructions from an increasing number
of factors [26–31]. In this study, machine learning algorithm modeling technology was used
to quantitatively evaluate the relationship between the spatial distributions of different
landslide types and the contributing factors.

Located in the Bailongjiang Basin at the junction of the Western Qinling Mountains
(WQM) and the eastern edge of the Qinghai-Tibet Plateau, two parallel large fault zones
(the Langma-Baiya fault zone (LBFZ) and the Bailongjiang fault zone (BFZ)) are charac-
terized by strong tectonic activity and severe topographic relief (WQM, LBFZ, BFZ are on
Figure 1). This is one of the regions with the highest density of large landslides and the
most serious landslide disasters in China [32,33]. In the mountainous areas of Western
China, with frequent landslides, a dense population and scarce land resources, it is a chal-
lenging task for decision makers to comprehensively understand the spatial distribution
characteristics, influencing factors and human-environment relationship of landslides, and
to carry out science-based land management aimed to minimize the threat of geological dis-
asters. In recent years, the availability of high-resolution images has enabled considerable
progress to be made in compiling landslide inventories for many high-altitude areas with
complex geomorphic conditions [34–37]. This has greatly improved our understanding
of the mechanisms of landslide formation, the spatial distribution and the factors influ-
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encing landslides in remote mountainous areas. In this study, we used high-resolution
remote sensing images to interpret landslides and to provide a comprehensive inventory
of landslides in the fault zone, which was combined with field verification. On this basis,
by collinearity analysis, 16 evaluation factors closely related to the formation, control and
feedback effects of landslides, such as regional landforms, geological structure and human
activities, were selected. Four widely-used models were selected using a machine learning
algorithm to model the spatial distribution of unclassified landslides [38–43], and three
landslide datasets were classified according to the landslide’s relative age, area, and type
of movement. The aims of the present paper are (i) to select an optimal machine learning
algorithm using the AUC curve and standard deviation, supported by a compilation of
landslides, to quantitatively evaluate the relationship between causal factors and different
landslide types; (ii) to determine the influence of different factors on the formation and
distribution of landslides and the feedback effect of landslides on human activities; and
(iii) to provide an effective reference for decision-makers in disaster prevention planning
and land management.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 24 
 

 

and to carry out science-based land management aimed to minimize the threat of geolog-
ical disasters. In recent years, the availability of high-resolution images has enabled con-
siderable progress to be made in compiling landslide inventories for many high-altitude 
areas with complex geomorphic conditions [34–37]. This has greatly improved our under-
standing of the mechanisms of landslide formation, the spatial distribution and the factors 
influencing landslides in remote mountainous areas. In this study, we used high-resolu-
tion remote sensing images to interpret landslides and to provide a comprehensive inven-
tory of landslides in the fault zone, which was combined with field verification. On this 
basis, by collinearity analysis, 16 evaluation factors closely related to the formation, con-
trol and feedback effects of landslides, such as regional landforms, geological structure 
and human activities, were selected. Four widely-used models were selected using a ma-
chine learning algorithm to model the spatial distribution of unclassified landslides [38–
43], and three landslide datasets were classified according to the landslide’s relative age, 
area, and type of movement. The aims of the present paper are (i) to select an optimal 
machine learning algorithm using the AUC curve and standard deviation, supported by 
a compilation of landslides, to quantitatively evaluate the relationship between causal fac-
tors and different landslide types; (ii) to determine the influence of different factors on the 
formation and distribution of landslides and the feedback effect of landslides on human 
activities; and (iii) to provide an effective reference for decision-makers in disaster pre-
vention planning and land management. 
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2. Study Area
2.1. Geology and Geomorphology

The banded region comprising the LBFZ and BFZ is located in the transition zone
between the western edge of the WQM and the eastern edge of the Qinghai Tibet-Plateau
(Figure 1). The geodynamic processes of intensive orogenic uplift and the associated
erosion in the region have produced a complex geological structure and mountain-canyon
landforms. The Western Qinling Mountains–Songpan tectonic node located in the study
area is regarded as an enormous tectonic node on a crustal scale. The combined action of
the three tectonic systems of the Alps–Himalaya, Pacific Ocean, and circum-Siberia resulted
in the completion of the major amalgamation of China [44]. The LBFZ is developed on the
northern edge and is a left-lateral thrust strike slip fault zone which currently maintains
a vertical thrust rate of 0.49 ± 0.08 to 1.15 ± 0.28 mm/a, and a sinistral strike slip rate of
0.51 ± 0.13 mm/a [45,46]. The BFZ is located in the southern margin of the study area
and is also a left-lateral thrust strike slip fault zone. Current monitoring results show that
the current thrust rate of the fault zone is 0.38 ± 0.12 mm/a and the strike slip rate is
1.37 ± 0.1 mm/a [46]. A grayish black fault gouge formed by strong tectonic compression is
widely distributed along the fault zone (Figure 2a,b) [47,48]. Field observations and studies
of several typical landslides in recent years show that the water sensitivity characteristics
and microparticle accumulation of fault gouge control the formation and development
of the sliding surface, and the geometric characteristics of the fault zone are important
factors controlling the shape and process of evolution of landslides [33]. Hence, they
are the dominant controls on the geomorphic evolution of the region. The geological
structure undoubtedly plays an essential role in landslide development in the study area.
The distribution of stratigraphic units in the region is closely related to the main linear
structures. The nappe on the northern and southern sides is mainly composed of hard
marine limestone of Carboniferous to Triassic age, with a large stratum thickness and strong
lithological integrity. In the valley basin, sandwiched by the nappe, weak metamorphic
phyllite and a slate interlayer formed by the multi-stage structures of the Indosinian period
are distributed; they have a weak lithology and hence are the main material component of
slope erosion.
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Figure 2. The black fault gouge distributed along the fault zone composing the sliding surface or landslide mass.
(a) Jiangdingya landslide, (b) Yahuokou landslide.

The geomorphology of the study area is the result of the combined influence of
orogenic-scale tectonic processes, the local structural characteristics of the thrust–strike–slip
fault zone, and retrogressive erosion by the Bailong River. The altitudinal range of the area
is 991–4761 m a.s.l. In general, the regional landforms are characterized by high mountains
on the north and south sides and by river valleys. The nappes on the north and south
sides form a NW-SE striated alpine area. Altitude in the region gradually decreases from
northeast to southwest. The Diebu area to the northeast is characterized by high-altitude
mountain landforms, narrow river valleys, and large differences in geomorphology on both
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sides of the Bailong River, of which the mountains on the north side are dominant (Figure 1).
The landforms gradually change toward the southeast and develop the characteristics
of a narrow alpine area with river valley landforms. The landforms on the both sides
of the river are basically symmetrical, and river valleys have become one of the most
important landforms in this section. Intensive tectonic uplift during the Cenozoic has
caused the Bailong River to develop a widely distributed base terrace in this section,
and our investigations have revealed that the Bailong River has formed seven terraces in
this section. The unique geomorphic landscape of the area is produced by the combined
action of the weak rock mass in the fault zone and by fluvial erosion. Giant landslides
parallel to the strike of the fault zone and river are widely distributed along the fault zone.
Constrained by the geometry of the fault zone and fluvial erosion, the landslides distributed
along the fault zone are characterized by high and steep scarps which have developed
in the process of long-term geomorphic evolution. The geomorphology extending in the
southeast direction is characterized by a wide valley and planation surface.

In terms of climate type, the Bailong River Basin belongs to the transition between sub-
tropical and tropical climates in the Northern Hemisphere. The climate is controlled by the
monsoon system. The annual average temperature exceeds 14 ◦C, and the annual average
rainfall is 450–800 mm. The rainfall has a pronounced seasonality, being concentrated in
June to October, and is characterized by heavy rainfall and rainstorms. Rainfall events are
the main external factors inducing regional landslides. The vegetation coverage in the basin
is unevenly distributed, and gradually decreases from north to south. Due to the large
topographic height difference, there is a pronounced vertical climatic zonation. The land
use types in the basin comprise 10 categories, including dry land, grassland and irrigated
farmland, etc. The impact of human activities on the regional ecological environment is
very significant. Poorly-located settlements, vegetation damage and adverse land use have
caused serious soil and water loss in recent decades. From 1952 to 1990, the entire basin area
decreased by 126,500 ha, potentially increasing the frequency of geological disasters [49].

2.2. Overview of Landslide Disasters

Landslides induced by rainfalls and human activities occur every year in the study
area. The dense population, infrastructure, and cultivated land in the valley area and
in the hills of the fault zone are faced with a sudden geological disaster at any time.
With the growing awareness of geological disaster prevention and control in China, the
region is now the national focus of geological disaster research. The scale, age, type and
spatial distribution of landslides in the study area are extremely complex. There are huge
ancient landslides with areas of several square kilometers (Figure 3a,b), and landslides
that are hundreds of years old, together with many recent landslides. The landslides are
concentrated in fault zones and on both banks of the river valley. Our research group has
participated in several rescue and relief responses to several large landslides in recent years.
For example, on 12 July 2018, the Jiangdingya large accumulation landslide in Nanyu
Township, Zhouqu County (Figure 3d), was reactivated, with a volume of 5 × 106 m3,
the landslide blocked most of the Bailong River channel, forming a weir plug backwater
and raising the level of the Bailong River by 8 m within a short time, inundating bridges,
roads, hydropower stations, and most of the residential buildings in Nanyu township
(Figure 3e) [9]. The Yahuokou landslide in Zhouqu County on 19 July 2019 is a typical old
landslide in the fault zone (Figure 3c); the last episode of violent landslide activity blocked
the Min River in 1989, forming a barrier lake. It is a long strip landslide formed along the
groove of the fault zone, with a length of 2 km and an average width of less than 100 m.
After the landslide, the village highway and the factory buildings on the lower edge of
the slope were destroyed [10]. On 16 August 2020, a continuous rainstorm in the Bailong
River Basin induced a large number of shallow landslides, resulting in serious economic
losses. On 18 January 2021, the Lijie landslide, in Beishan, Lijie Town, Zhouqu County,
was reactivated (Figure 3f). The landslide had a volume of ~4.1 × 106 m3 and directly
threatened the lives of thousands of people in the town. The available space in the Bailong
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River Basin is extremely limited, and the topography of high mountains and valleys forces
many of the inhabitants to focus their residential living, agriculture and infrastructure
construction on the gentle slope formed by the accumulation of old landslides, especially on
the large accumulation areas formed by large landslides in the fault zone during their long
process of evolution, which has become the location of major cities and towns. In addition,
human impacts on the ecological environment, together with engineering construction, are
increasingly important factors inducing landslides. Unsuitable forms of land use are one of
the main reasons for the intensification of the effects of landslide disasters.
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ertou landslide; (c) Yahuokou landslide; (d) Jiangdingya landslide; (e) barrier lake formed by the
Jiangdingya landslide; (f) Lijie landslide.

3. Data and Methods
3.1. Landslide Inventory

The existing landslide inventory data in the study area are relatively limited, in-
cluding the location of landslide concentrations and an inventory map of selected large
landslides [50–52]. We have collated existing landslide data for recent landslides, and with
this as a foundation we used the 1-m resolution optical image data provided by Google
Earth for interpretation, and then produced a landslide map of the study area which was
verified in the field. Landslide interpretation is based on the common landslide charac-
teristics of arcuate scarps with adjacent hummocky topography, tension cracks, grabens,
undrained depressions, bulges and lobes. According to the type of landslide inventory, a
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landslide map provides a list of geomorphic and historical landslides in the area [53]. In
this study, three types of landslides were classified according to the type of movement,
degree of preservation, and spatial scale. According to the landslide classification proposed
by Varnes [54] and Hungr et al. [55], we classified the landslides based on the type of
movement. Additionally, according to the geomorphic characteristics interpreted from
remote sensing images, the degree of preservation of landslide mass, visual characteristics,
and the degree of human activity, the landslides were categorized as ancient, old, and
recent landslides. It should be noted that due to the large number of landslides in the study
area, the absolute age of landslides cannot be obtained by dating method. Therefore, the
age obtained according to the characteristics of landform, image and human activities is
divided into relative ages. According to area, the landslides were categorized as follows:
giant (>1.0 km2), large (1–0.1 km2) and small and medium-sized (<0.1 km2). The integrity
and quality of the landslide inventory data directly affect the results of any correlation
analysis. For quality evaluation, we selected a representative area for on-site verification
(Figure 1). The selected area was a 10 km × 36 km rectangle with the densest landslide
distribution in the Zhouqu section, and 418 landslides were recorded. In the process of
field verification, except for 71 cases that could not be verified due to traffic restrictions,
336 landslides were verified to exist on site and 11 were not interpreted.

3.2. Predictor Variables

The Western Qinling fault zone has experienced strong orogenic uplift and compression
in the geological past, forming a widely distributed fault fracture zone and triggering fluvial
incision, forming a complex topographic landscape. Extreme rainfall events are the main
external factors inducing landslides. In recent years, intensive human activities have had
a profound impact on the formation and development of landslides in the study area.
Therefore, we selected 18 factors related to geology, landforms, rainfall and human activities
to analyze their correlation with the spatial distribution of landslides (Table 1 and Figure 4).
The extraction of geomorphic factors is based on the spatial resolution of the DEM data
(12.5 m × 12.5 m); geological factors are derived from the 1:100,000 geological map of China;
and soil data is from the Nanjing Soil Institute and land use is from the GLC-FCS30-2020
global 30 m fine surface cover products. The 18 factors are described below.

Table 1. Raster thematic maps of input dataset.

Data Types Field Source, Scale/Resolution

Elevation EL DEM, 12.5 m
Average slope AS DEM, 12.5 m
Slope aspect SA DEM, 12.5 m
Local relief LR DEM, 12.5 m
Surface roughness SR DEM, 12.5 m
Planar curvature PLC DEM, 12.5 m
Profile curvature PRC DEM, 12.5 m
Topographic wetness index TWI DEM, 12.5 m
Vegetation coverage index NDVI Gaofen-1 satellite, 8 m
Formation lithological index FLI Geo-map, 1:100,000
Soil types ST HWSD, 1 km
Land use LU GLC_FCS30-2020, 30 m
Distance to river DR DEM, 12.5 m
Distance to road DTR Google Earth image, 1 m
Distance to fault DF Geo-map, 1:50,000
Annual precipitation index API 2000–2010, year
Stream power index SPI DEM, 12.5 m
Topographic/bedding-plane
intersection angle TOBIA Geo-map, 1:100,000

Elevation (EL): alpine-canyon areas have significant zonation characteristics with
decreasing altitudinal range, and the main factor responsible is climate. There are large
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differences in rainfall, thickness of the accumulated weathered material, and plant com-
munities according to altitude. The higher the altitude, the less the rainfall, the smaller
the depth of the accumulated clastic materials, and the greater the degree of bedrock
exposure [56].

Average Slope (AS): in a slope environment with the same material composition and
hydrological conditions, the slope angle directly determines the slope stability. A landslide
is more likely to occur in a slope unit whose angle is close to the critical value [57].

Slope aspect (SA): systematic research has shown that the microclimate varies accord-
ing to slope aspect, which affects the weathering rate, nature of the soil layer, vegetation
type, and evapotranspiration processes [58]. Qi et al. [31] studied a group of landslides
induced by heavy rainfall in the Tianshui area in 2013 and found that slope aspect was the
primary factor affecting the development of shallow landslides.

Local relief (LR): statistical analysis of many regions has revealed significant differ-
ences in the quantity of landslides with topography. Generally, the greater the topographic
relief, the larger the number of landslides, which may be related to differences in potential
energy and the conditions of the slope materials. The extraction radius of local topographic
relief data used in this study is 1 km.

Surface roughness (SR): refers to the roughness of the surface, which is related to the
erosion rate of the surface [59].

Planar curvature (PLC): is defined as the rate of change of slope or slope direction in a
specific direction [60]. Planar curvature refers to the curvature of contour lines formed by
the intersection of a horizontal plane and the surface, with positive values representing
a convex slope curvature and negative values a concave slope curvature. The impact of
PLC on slope erosion processes is via the convergence or divergence of water flow, and
PLC also affects the rainfall infiltration rate. Profile curvature (PRC) is the curvature of the
vertical plane parallel to the slope direction and is a measure of the rate of change of slope.
It directly controls the flow velocity and slope erosion.

Topographical wetness index (TWI): differences in surface morphology will lead to
differences in the transport, convergence and infiltration of surface water and groundwater.
The TWI is widely used to describe the impact of topography on the location and the
magnitude of the runoff saturation source area. The following formula has been pro-
posed to calculate TWI under the assumption of steady-state conditions and mean soil
properties [61]:

TWI = ln(AS/tanβ) (1)

where the specific catchment area (m2 m−1), AS, is a measure of the surface of shallow
subsurface runoff at a given point on the landscape, and is integrating the effects of the
upslope contributing area and catchment convergence and divergence on runoff; and β is
the slope.

Vegetation coverage index (NDVI): the influence of vegetation on slope stability is
closely related to the depth of the slope failure surface. The network formed by plant roots
plays an important role in maintaining soil stability and inhibiting shallow landslides. The
NDVI used in this study is calculated from the 8-m resolution multispectral image obtained
by China’s Gaofen-1 satellite. It is calculated as:

NDVI = (IR − R)/(IR + R) (2)

where the IR-value is the infrared portion of the electromagnetic spectrum, and the R-value
is the red portion of the electromagnetic spectrum.
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Formation lithological index (FLI): internal and external differences, such as mineral
composition and the mechanical fatigue of the rock mass, may result in substantial differ-
ences in the strength of different rock mass types, which may affect the spatial distribution
of landslides. According to lithologic characteristics, rock mass strength is divided into
five levels: very hard, hard, alternating soft and hard, soft, and very soft. The correspond-
ing rock mass types are granite, limestone, phyllite or slate interlayers, clastic rocks, and
Quaternary sediments.

Soil type (ST): the particle grade, clay content and permeability of different soil types
determine the degree of soil cohesion and the internal friction angle, thus affecting the
spatial distribution of landslides.

Land use (LU): according to existing spatial statistical principles the development of
landslides in different types of land use shows a clustering effect, because different land
use types directly affect surface hydrological processes, such as evapotranspiration and
rainfall infiltration.

Distance to river (DR): rivers in orogenic belts are the main agent of material erosion
and its removal. Fluvial erosion includes vertical erosion and lateral erosion. Irrespective
of which erosional process determines whether the slope is close to the river, it is likely to
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be eroded to form a through failure surface. Therefore, in statistical analysis, rivers are
often regarded as one of the most important factors affecting landslide distribution.

Distance to road (DTR): in recent years, there has been increased infrastructure de-
velopment in the western mountainous areas and surfaced roads have been constructed
that are accessible for almost all of the inhabitants. The associated excavation work may
alter the local stress environment of the slope and affect the slope stability. Hence, we
downloaded the Google Earth image for 2020 and interpreted all of the roads that are now
distributed within the study area.

Distance to fault (DF): densely distributed faults, joints, cleavage and other structural
planes formed by strong tectonic activity can damage the integrity of the rock mass [62], and
the degree of damage generally decreases with the distance from structural lineations. The
formation of a failure surface or composite failure surface in a slope is generally developed
along the structural foliation or along a densely distributed plane structure, which will
reduce the strength of the rock mass, potentially producing a failure surface [63,64].

Annual prediction index (API): rainfall is one of the most important factors inducing
landslides. The rainfall data used in this study is the average annual rainfall from 2000 to 2010.

Stream power index (SPI): is a measure of the erosive power of flow, assuming that
the flow is proportional to a specific ponding area. It is one of the main factors controlling
the slope erosion process [61], and is expressed as:

SPI = AStanβ (3)

where AS is the specific watershed area (m2 m−1) representing a measure of surface of
shallow subsurface runoff at a given point on the landscape and β is the slope (degrees).

Topographic/bedding-plane intersection angle (TOBIA): this is the spatial distribution
field that produces a geometric alignment between the direction of the terrain and a geo-
logical layer. Previously, there was limited evaluation of landslide susceptibility. However,
an increasing number of studies have found that the TOBIA index significantly affects the
spatial distribution of landslides in an orogenic belt. Therefore, in this study we attempted
to consider TOBIA as a factor related to structure. The stratum occurrence data used are
from the 1:100,000 geological map, and the index is expressed by the following formula:

TOBIA = cosθcosS + sinθsinScos(α − A) (4)

where θ is the embedded dip (0–90◦), S is the topographical slope (0–90◦), and the α index
values range from +1 to −1. High values indicate a conformity between the slope, slope
aspect, dip, and dip aspect; and low values indicate unaligned orientations [65].

3.3. Parameter Preprocessing and Resampling

Many parameters are often included in this type of study and several may be strongly
correlated. Such strongly correlated parameters introduce a degree of redundancy and
also affect the stability of the model. In order to overcome the multicollinearity problem,
we preprocessed the selected parameters. Specifically, we calculated a heat map of the
parameter correlation matrix (Figure 5), which is based on Seaborn Python visual calculation
(https://seaborn.pydata.org/generated/seaborn.heatmap.html#seaborn.heatmap, accessed
on 10 November 2020). According to the matrix heat map, we removed the parameters with
a correlation coefficient > 0.7, as proposed by Dormann et al. [66]. As a result, LR and SR
were excluded and the remaining 16 parameters were selected for spatial modeling.

The ratio of non-landslides (NLS) to landslides (LS) of the grid samples in the study
area is about 5:1, which results in machine learning paying more attention to the classifica-
tion of NLS. In order to maintain a balance of the number of samples, SMOTE (synthetic
mineral oversampling technology) was used to increase the number of LS samples. After
resampling, the sample ratio of LS and NLS was 1:1, which achieved a balance.

https://seaborn.pydata.org/generated/seaborn.heatmap.html#seaborn.heatmap
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3.4. Model Algorithm

We selected four machine learning algorithms: Random Forest (RF), GradientBoosting
classifier (GB), AdaBoost classifier (Ada), and Logistic Regression CV (LRCV). The four
models were used with typical configurations for most applications. The first three models
are integration models. In many recent studies, an integrated model combining multiple
algorithms has shown great potential for the susceptibility evaluation of landslide disasters
and has strong regional adaptability [29]. In this paper we selected three integrated models
that had performed well in the past for evaluation. As a widely-used traditional model
algorithm, logistic regression can be compared with an integrated model.

The concept of the ensemble method is to combine multiple classifiers (or to combine
the various parameters of an algorithm) to improve the effect of each classifier. Classifiers
can be divided into two categories: average method and boosting method. RF uses many
classification trees (a “forest”) to stabilize model prediction. These trees are suitable for
resampling randomly selected observations with bootstrap resampling. Each decision of
the tree is based on randomly selected predictors, and the prediction of category allocation
is determined by the majority vote of all trees. The proportion of trees predicting a landslide
in the set can be used as an indicator of landslide susceptibility [27]. Schapipe et al. [67]
refined the boosting algorithm and obtained the AdaBoost classification algorithm; using
the concept of iteration in the process of using the sample training set, they selected the
key classification features, increased the weight of the samples incorrectly classified in the
previous round, reduced the weight of the correctly classified samples, repeated the process
many times, and by this method gradually trained each weak classifier. The weighted
majority voting method is used to adjust the weight of each weak classifier. Finally, the
weak classifier with the lowest weight coefficient is selected to construct a strong classifier.
The AdaBoost algorithm has high adaptability and flexibility. Boosting is an ML technique
that can be used for regression and classification problems. It produces a weak prediction
model (such as a decision tree) at each step, and weights it into a total model. If weak
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model prediction at each step generates a unanimous gradient direction of loss function,
then it is termed Gradient Boosting [68].

LRCV is a classical classification method in statistical learning. Estimating the proba-
bility of an event by logistic regression is a fitting method for classifying records based on
the values of conditional variables. It is somewhat similar to linear regression, but uses
category target variables instead of a data range. The advantage of logistic regression is
the ease of calculation, and when dealing with classification problems the fitting process is
very simple and rapid, but there is usually the problem of insufficient fitting.

3.5. Fitting, Optimization and Evaluation of Models

We selected the training data in the cross-validation dataset to train the selected initial
model, and then sorted the models according to the average accuracy score (Acc) of the
test data in the cross-validation dataset. Acc represents the correct allocation rate of all
samples participating in the modeling. The parameter grid method and network search
cross validation method are used to fit the model, and the AUC (area under the curve of
ROC) scoring method is used to find the best super parameters. The model is cross-verified
10 times according to the optimal super parameters, and the model reordered according
to the average accuracy score of the test data. Evaluation uses the average accuracy of
the validation dataset, the area under the ROC curve and the standard deviation (Std) to
evaluate model performance.

4. Results
4.1. Landslide Inventory and Classification

A total of 2765 landslides within the fault zone (with an area of 5924 km2) were
recorded (Figure 1). Visually, the landslides in the area show a significant degree of spatial
clustering. The spatial aggregation density and disaster effect of large landslides and giant
landslides in the study area are rare in China. The cumulative area affected by all landslides
in the entire area is 548.7 km2, accounting for 9.2% of the total study area. There are 80 giant
landslides with an area of more than 1 km2, 1111 large landslides with areas from 1 km2 to
0.1 km2, accounting for 40% of total landslides, and medium and small landslides account
for 57% of the total (Figure 6a). According to the surface morphological characteristics
(preservation degree of landslide scarp, development degree of gully of landslide mass,
preservation degree of landslide accumulation mass, etc.), vegetation coverage, indicators
of human activity (farmland reclamation and housing construction), and chronological
information, the landslides were divided into three age categories: ancient landslides,
old landslides, and recent landslides, accounting for 47.5%, 24.2% and 28.3% of total
landslides, respectively (Figure 6b). According to the landslide classification method of
Varnes [53] and Hungr et al. [54], landslide types include fall, slide, flow, topple and
complex landslide, accounting for 16.8%, 69.3%, 11.9%, 1% and 1% of total landslides,
respectively (Figure 6c). Many large landslides have undergone repeated dormancy and
reactivation in their process of evolution. For example, the Xieliupo landslide has caused
eight barrier lake-blocking events since 1900 [69]. Generally, the development of a landslide
is controlled by long-timescale factors, such as tectonic uplift or climate change. Based on
the surface deformation and frequency of landslide events in recent years, the area remains
in an active period of landslide development, and future extreme rainfall events are very
likely to cause unpredictable casualties and property losses.
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Figure 6. Proportional distribution of the three landslide types. (a) LS landslide size, (b) LA landslide
age, (c) LT landslide type.

4.2. Model Evaluation and Predicting the Spatial Distribution of Landslides

The unclassified landslide inventory dataset and the classified landslide dataset were
evaluated using a spatial distribution model. Preliminary model operation results were
obtained using model training (70% of training samples) and verification (30% of verifi-
cation samples) of the cross validation set. The performance ranking of the unclassified
landslide dataset model evaluation using the Acc1 of the validation set showed that the RF
model performed the best, with the prediction accuracy for the test dataset reaching 90.3%,
followed by GB (77.2%), Ada (72%) and LRCV (68%) (Table 2). We chose to use a parameter
grid and grid search cross validation (https://scikit-learn.org/stable/modules/generated/
sklearn.model_Selection.Gridsearchcv.HTML (accessed on 10 November 2020)) to optimize
the super parameters. The average accuracy (Acc2) of the optimization results of the model
after searching for best parameters is listed in Table 1. It can be seen that the accuracy of
the four models has been improved, with the RF model still performing the best, with an
accuracy of 92%, the average AUC of the 10-times cross validation was 0.97 (Figure 7a),
and GB showed the largest improvement, with the optimized accuracy reaching 90.5%;
however, the performance improvement after LRCV optimization was very small.
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Table 2. Model evaluation of unclassified landslides, standard deviation, preliminary test accuracy,
optimized test accuracy, and AUC score.

Model Name Std1 Std2 Acc1 Acc2 AUC

RandomForestClassifier 0.0013 0.0011 0.903 0.920 0.97
GradientBoostingClassifier 0.0029 0.0013 0.772 0.905 0.97
AdaBoostClassifier 0.0024 0.0015 0.727 0.747 0.83
LogisticRegressionCV 0.0015 0.0014 0.684 0.684 0.74

Through the model training and verification of ten cross validation sets, a preliminary
spatial distribution model evaluation of landslide inventory datasets, classified by landslide
type, relative age and scale, was performed, and the prediction accuracies (Acc1) of the
obtained initial model were used to sort them (Table 3). The prediction results of the three
classification-based models show that the RF prediction accuracy was the highest, reaching
96.4%, 94.9% and 94.8%, respectively. Ada and LRCV performed poorly, with a prediction
accuracy of only ~50%. By optimizing the super parameters, the model was re-evaluated
with the best parameters searched and the average accuracy (Acc2) is listed in Table 3. The
most significant finding is that the performance of GB after optimization exceeded that
of RF. In the three types of evaluation, the average accuracy exceeded 96%, becoming the
optimal prediction model. The average AUC of 10-times cross validation was 0.83, 0.74,
and 0.97, respectively (Figure 7b–d). The Ada and LRCV models did not perform well in
this evaluation. The GB model was selected as the final model for evaluation of the spatial
distribution of the three classified landslide datasets.

Table 3. Model evaluation of three classified landslide datasets, standard deviation, preliminary test
accuracy, optimized test accuracy, and AUC score.

Model Std1 Std2 Acc1 Acc2

Type

RandomForestClassifier 0.0006 0.0005 0.965 0.965
GradientBoostingClassifier 0.0011 0.0004 0.733 0.975

AdaBoostClassifier 0.0090 0.0021 0.528 0.573
LogisticRegressionCV 0.0010 0.0011 0.479 0.479

Fresh

RandomForestClassifier 0.0008 0.0005 0.949 0.951
GradientBoostingClassifier 0.0014 0.0010 0.611 0.967

AdaBoostClassifier 0.0031 0.0017 0.496 0.525
LogisticRegressionCV 0.0008 0.0008 0.462 0.462

Size

RandomForestClassifier 0.0009 0.0006 0.948 0.951
GradientBoostingClassifier 0.0023 0.0009 0.611 0.967

AdaBoostClassifier 0.0014 0.0008 0.516 0.545
LogisticRegressionCV 0.0014 0.0014 0.483 0.483

4.3. Correlation Analysis of Factors

Machine learning is helpful for quantitatively evaluating the potential relationship be-
tween landslide spatial distribution and various influencing factors through the interpretabil-
ity of the model [70,71]. Correlation and statistical analysis between the landslide distribution
and the influencing factors were conducted on the four datasets, including the unclassified
landslides and landslide classification based on relative age, area, and type of movement.

The correlation results show that in the overall landslide distribution prediction
without classification, NDVI had the closest relationship with the spatial distribution of
landslides, with the correlation index reaching 0.2 (Figure 8a). Reference to the boxplots
shows that the vegetation coverage in non-landslide areas is higher, and landslides are
mainly distributed in areas with vegetation coverage of less than 50% (Figure 9). Previous
studies have shown that plant roots can significantly increase slope stability and reduce
the probability of a landslide; hence, ecological treatment may be the main method of
landslide control in the study area [72–74]. The relationship between roads and landslide
distribution is second only to NDVI, with the correlation index of 0.13. This correlation
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is affected by two factors: one is the effect of engineering activities on landslides; and
the other is that the available space in the region is very limited, and many villages and
engineering construction works are, by necessity, built and conducted on large landslides.
The distribution of ancient landslides and old landslides in the study area shows that
landslides have profoundly affected economic activity. Geological structure and average
annual rainfall also have an important impact on the landslide distribution in the study
area with the correlation index of TOBIA and API reaching 0.1. The structure controls the
formation mechanism of landslides, and rainfall is the main factor inducing landslides.
There is a low correlation between geomorphic factors and material conditions (soil type
and lithology) and the overall distribution of landslides. Altitude and slope are the
two most important geomorphic factors affecting landslide distribution, with correlation
indexes of 0.07 and 0.06, respectively.
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In the relative chronological classification of ancient landslides, old landslides and
fresh landslides, NDVI is still the most closely related to the distribution of landslides
in different years, with the correlation index reaching 0.18 (Figure 8b). Fresh landslides
have a lower vegetation coverage (Figure 10a). The formation of a landslide will damage
the surface vegetation and reduce the vegetation coverage, and low vegetation coverage
is also conducive to the development of landslides. The correlation between API and
landslide distribution is second only to NDVI. The rainfall in areas of ancient landslides
and old landslides is higher than in the area of fresh landslides. The occupancy rates of
large landslides in the first two age categories are 70% and 32%, respectively, while that of
large landslides in recent landslide areas is only 7% (Figure 11). Landslide area is generally
positively correlated with depth. Therefore, the formation of ancient and old landslides
requires a higher rainfall threshold. The correlations between EL, DF, DTR and DR and
landslide distribution are consistent, in all cases being 0.1. It is worth noting that, compared
with ancient and old landslides, the distance between new landslides and roads is greater
(Figure 10a), which also indirectly shows that the correlation between landslides and roads
is mainly because landslides affect road construction.
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Figure 10. Box plots of correlation factors for the three classification datasets. (a) Classification by relative age. NLS non-
landslides, A ancient landslide, O old landslide, R recent landslide. (b) Classification by size. NLS non-landslides, G giant
landslide, L large landslide, M-S mid-small landslide. (c) Classification by type of movement. NLS non-landslides,
C complex landslide, Fa fall, Fl flow, S slide.
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Different from the foregoing two landslide distributions, API has the closest relation-
ship with the distribution of different landslide scales, with the correlation index reaching
0.16. The sliding surface of large-area landslides is deeper and therefore the critical rainfall
threshold is higher. The statistics also show that the landslide area is positively correlated
with rainfall (Figure 10b). The correlation between AS and the landslide area is second,
but the relationship between the landslide area and slope is negative. If the critical slopes
of all landslides are assumed to be the same, large landslides can reduce the slope more
effectively. The correlation index between NDVI and the landslide area reaches 0.13, mainly
because most of the large landslides are old and ancient and hence there is sufficient time
for the vegetation coverage to be restored. Most of the small landslides are new landslides,
and insufficient time has elapsed for the vegetation coverage to be restored.

Interestingly, the correlation between the average annual rainfall and the spatial distri-
bution of landslide types is the highest, reaching 0.28, far higher than for the other factors
(Figure 8d). The spatial variation of annual average rainfall in the study area shows a gra-
dient of medium-high to low values from northwest to southeast (Figure 4n), which is spa-
tially consistent with the uplift strike slip and compression strike slip structural framework
of the LBFZ. The area of medium rainfall in the high-altitude mountainous northwestern
region mainly has ancient slides and rockfalls formed by thrust fault extrusion, while the
strong tectonic activity in the central region has resulted in widely-distributed fine-grained
fault gouge. Under high rainfall, the geometric characteristics of the fault zone and the
distribution of fault gouge together influence the development of earthflows and complex
giant landslides in the region. In the low-altitude parts of the study area, lower rainfall
intensity can induce shallow debris slides in the area where phyllite is developed. The
correlation between vegetation coverage and the distribution of different landslide types
is the second highest, and the distance to fault and the altitude also have high correla-
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tions with the distribution of landslide types. Different from the distribution of previous
landslide types, rock mass strength has a very important influence on the distribution
of landslide types (Figure 8d). The hard rock mass in the study area is mainly nappe in
the high mountain area on both sides. Tectonic compression leads to the development of
a large number of rockfalls in the front of the nappe, while the fine-grained fault gouge
formed in the fault zone contributes to the formation of earthflows. Slides are the main
landslide types in the area of weak phyllite distributed in the river valley.

5. Discussion

There are many large-scale ancient and old landslides in the landslide inventory
results for the West Qinling fault zone (Figure 11a). Combined with chronological data,
it can be determined that the historical landslides in the area were formed during the
Holocene, or on an even longer time scale [48,75]. In the spatial distribution of the four
types of landslide data, there is a very high spatial correlation between the distribution
of landslides and vegetation coverage, average annual rainfall, and roads. The close
relationship between vegetation coverage and landslides has three main aspects. First,
the plant root system can increase the slope stability and preventing the development of
landslides, so there are relatively few landslides in areas with a high vegetation coverage.
Second, from 1952 to 1990, the ecological environment of the Bailong River Basin was
seriously damaged, with the area of forest decreasing by 126,500 ha, and accounting for
~7% of the basin area [49]. This land use practice has greatly promoted the development
of shallow landslides. The spatial distribution and types of recent landslides indicate that
small landslides that developed in areas of low vegetation coverage accounted for the
vast majority (Figures 1 and 11b). Third, in areas with a high vegetation coverage, remote
sensing image interpretation is very difficult. The correlation between landslide distribution
and vegetation coverage is important for polices for preventing and controlling future
landslides. Based on the findings of this paper, ecological restoration, ecological prevention
and control technology should be used as an important means of preventing landslide
disasters and to alleviate the conflicts between regional socioeconomic development human
and the maintenance of the ecological environment.

Distance from the road is the only factor related to human activities selected in this pa-
per. The proximity to the landslide distribution to roads is greater than expected. Although
engineering works do affect landslide development, their impact is often overestimated.
The analysis results show that the correlation between landslides and roads is related to
the impact of landslides on engineering activities. The close relationship between ancient
and old landslides and roads shows that the surface processes dominated by landslides
have a profound impact on economic activity in the area. Landslides provide space for
human settlement in high mountain areas. However, there have been many cases of the
reactivation of old landslides in recent years [9,10]; rational land use planning is essential
and siting industrial production on large landslides should be avoided as far as possible.

There is a relatively low correlation between structural and geomorphic factors and
the spatial distribution of landslides; nevertheless, the influence of structure and geomor-
phology on the formation and distribution of landslides is undeniable, and strong tectonic
uplift and compression are undoubtedly important in the formation of landslides [33]. The
structure of the Western Qinling fault zone is extremely complex, characterized by rapid
uplift and complex anticlines and synclines formed by compression. The strong uplift
may cause the mountain slopes to reach the threshold angle needed to trigger landslides.
Unfortunately, the weak fault gouge formed in the fault zone is difficult to identify on the
surface, and therefore the influence of structure on the spatial distribution of landslides
is likely to be underestimated. Among geomorphic factors, slope and altitude have a
significant impact on landslide distribution. This is because landslides generally occur
in areas with a large slope, low altitude and thick weathering and collapse accumulation
layers. Many studies have shown that large landslides are the main mechanism for limiting
mountain uplift [3,56], and this relationship is helpful for understanding the role of large
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landslides in the geomorphic evolution of the study area. The age and area of landslides
decrease with decreasing altitude (Figure 10a,b). On the one hand, this phenomenon is
related to the impact of fluvial erosion on the distribution of landslides, and on the other
hand the impact of human activities on new landslides is mainly concentrated on both
sides of low-altitude river valleys. Among recent landslides, the proportion of fall and
flow is relatively high (Figure 11c), and the fall with the highest proportion is mainly small
landslides (Figure 11d), which shows that the probability of large landslides driven by
tectonic uplift is decreasing, while small landslides under the action of human engineering
activities, ecological damage and earthquakes begin to prevail in this area.

6. Conclusions

Landslides in WQM have a complex genetic mechanism and spatial distribution. The
factors affecting landslide distribution have not been well explained for a long time. Corre-
lation analysis of the relationship between landslide distribution and potential influencing
factors is helpful for understanding their spatial distribution and impacts on geomorphology
and human activities. We have produced a detailed inventory of geomorphic and historical
landslides in the LBFZ and BFZ. The landslide data are divided into three categories accord-
ing to freshness, area, and type of movement. The spatial distribution of various landslides
was modeled by machine learning, and the relationship between landslide distribution and
influencing factors was evaluated. The main conclusions are as follows.

(1) In the machine learning modeling, the performances of different models were very
different. The RF and GB models performed well in the modeling of the spatial distribution
of landslides in this complex tectonic and geomorphic environment.

(2) NDVI was the factor most closely related to the spatial distribution of unclassified
landslides. Ecological damage is an important reason for the frequent occurrence of new
landslides, and therefore ecological restoration should be considered as the main means
for landslide prevention and control. The relationship between the distribution of roads
and landslides is second only to NDVI. The relationship is dominated by the impact of
landslide activity on engineering construction.

(3) There is a low correlation between structure, landform and the spatial distribution
of landslides. Considering the complexity of the structure in the study area and time scale
of geomorphic evolution, simple factors are unable to fully reflect the influence of structure
and landform. Therefore, the correlation between structure, landforms and the spatial
distribution of landslides is likely to be underestimated in our analysis.

(4) Several defects still exist in factor correlation evaluation through machine learning
modeling. Correlation analysis cannot completely determine the relationship between
active control and the passive influence of factors and the spatial distribution of landslides.
Therefore, further research is needed on the genetic mechanisms of regional landslides.
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17. Baroň, I.; Plan, L.; Grasemann, B.; Mitroviċ, I.; Lenhardt, W.; Hausmann, H.; Stemberk, J. Can deep seated gravitational slope

deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern
Alps. Geomorphology 2016, 259, 81–89. [CrossRef]

18. Carlini, M.; Chelli, A.; Vescovi, P.; Artoni, A.; Clemenzi, L.; Tellini, C.; Torelli, L. Tectonic control on the development and
distribution of large landslides in the Northern Apennines (Italy). Geomorphology 2016, 253, 425–437. [CrossRef]

19. Mather, A.E.; Hartley, A.J.; Griffiths, J.S. The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a
classic convergent plate margin. Earth Planet. Sci. Lett. 2014, 388, 249–256. [CrossRef]

20. Sanchez, G.; Rolland, Y.; Corsini, M.; Braucher, R.; Bourlès, D.; Arnold, M.; Aumaître, G. Relationships between tectonics, slope
instability and climate change: Cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps.
Geomorphology 2010, 117, 1–13. [CrossRef]

21. Geertsema, M.; Highland, L.; Vaugeouis, L. Environmental Impact of Landslides; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 589–607.

22. Li, Y.; Zhou, R.; Zhao, G.; Li, H.; Su, D.; Ding, H.; Yan, Z.; Yan, L.; Yun, K.; Ma, C. Tectonic uplift and landslides triggered by the
Wenchuan earthquake and constraints on orogenic growth: A case study from Hongchun Gully, Longmen Mountains, Sichuan,
China. Quat. Int. 2014, 349, 142–152. [CrossRef]
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