
remote sensing  

Article

Improvement of the Soil Moisture Retrieval Procedure Based
on the Integration of UAV Photogrammetry and Satellite
Remote Sensing Information

Amal Chakhar * , David Hernández-López , Rocío Ballesteros and Miguel A. Moreno

����������
�������

Citation: Chakhar, A.;

Hernández-López, D.; Ballesteros, R.;

Moreno, M.A. Improvement of the

Soil Moisture Retrieval Procedure

Based on the Integration of UAV

Photogrammetry and Satellite

Remote Sensing Information. Remote

Sens. 2021, 13, 4968. https://doi.org/

10.3390/rs13244968

Academic Editors: John J. Qu,

Xianjun Hao, Luca Brocca, Andreas

Colliander and Michael H. Cosh

Received: 27 October 2021

Accepted: 1 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Regional Development, University of Castilla-La Mancha, 02071 Albacete, Spain;
David.Hernandez@uclm.es (D.H.-L.); Rocio.Ballesteros@uclm.es (R.B.); MiguelAngel.Moreno@uclm.es (M.A.M.)
* Correspondence: Amal.Chakhar@uclm.es

Abstract: In countries characterized by arid and semi-arid climates, a precise determination of soil
moisture conditions on the field scale is critically important, especially in the first crop growth stages,
to schedule irrigation and to avoid wasting water. The objective of this study was to apply the
operative methodology that allowed surface soil moisture (SSM) content in a semi-arid environment
to be estimated. SSM retrieval was carried out by combining two scattering models (IEM and WCM),
supplied by backscattering coefficients at the VV polarization obtained from the C-band Synthetic
Aperture Radar (SAR), a vegetation descriptor NDVI obtained from the optical sensor, among
other essential parameters. The inversion of these models was performed by Neural Networks
(NN). The combined models were calibrated by the Sentinel 1 and Sentinel 2 data collected on
bare soil, and in cereal, pea and onion crop fields. To retrieve SSM, these scattering models need
accurate measurements of the roughness surface parameters, standard deviation of the surface height
(hrms) and correlation length (L). This work used a photogrammetric acquisition system carried on
Unmanned Aerial Vehicles (UAV) to reconstruct digital surface models (DSM), which allowed these
soil roughness parameters to be acquired in a large portion of the studied fields. The obtained results
showed that the applied improved methodology effectively estimated SSM on bare and cultivated
soils in the principal early growth stages. The bare soil experimentation yielded an R2 = 0.74 between
the estimated and observed SSMs. For the cereal field, the relation between the estimated and
measured SSMs yielded R2 = 0.71. In the experimental pea fields, the relation between the estimated
and measured SSMs revealed R2 = 0.72 and 0.78, respectively, for peas 1 and peas 2. For the onion
experimentation, the highest R2 equaled 0.5 in the principal growth stage (leaf development), but the
crop R2 drastically decreased to 0.08 in the completed growth phase. The acquired results showed
that the applied improved methodology proves to be an effective tool for estimating the SSM on bare
and cultivated soils in the principal early growth stages.

Keywords: soil moisture; Sentinel 1; Sentinel 2; IEM; WCM; roughness parameters; photogrammetric
acquisition; UAV

1. Introduction

Soil surface moisture (SSM) is the main factor of water and heat fluxes in the soil-
plant-atmosphere continuum that plays a key role in determining crop water supply,
which is crucial for the vegetation health [1]. Many applications [2], such as agricultural,
environmental and socio-economic ones, need precise determinations of SSM dynamics.

The sensitivity of the radar backscattering coefficient, σ0, to SSM leads to significant
interest in exploiting radar remote sensing data to retrieve SSM information. Nevertheless,
radar measurements are associated with moisture and roughness characteristics of soil
surface [3]. Many electromagnetic models, such as the Kirchoff Approximations [4], the
small perturbation model (SPM) [5] and the integral equation model (IEM) [6], have been
created to study backscattering and to simulate radar backscattering coefficient, σ0, data
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on bare soils as a function of roughness and moisture. As the Kirchoff and SPM models
are applicable to limited conditions (particularly roughness conditions) [3], many attempts
have been made to extend their validity domain, which has resulted in the development
of the IEM. This developed model (IEM) combines Kirchhoff and SPM models to create a
method that can be used for a more extensive range of roughness conditions and applied
to any location [7]. The challenge of these soil scattering models’ calibration lies in the soil
surface description [8]. Thus, the hardest point of developing soil moisture retrieval models
is to determine the surface roughness parameters: the standard deviation of the surface
height variation (hrms) and the correlation length (L). These parameters significantly affect
the relations between radar backscatter and soil moisture [9].

Quite a high degree of uncertainty exists in the parameterization of soil surface rough-
ness, which leads to major soil moisture retrieval errors [10]. Baghdadi et al. [11] reviewed
the difficulties of accurately measuring those parameters. One of them is the difficulty to
measure the correlation length, L, because of the substantial instability of agricultural soil.
According to several studies, the backscattering coefficient varies considerably depending
on the correlation function shape [12]. L is calculated from the correlation function and is
always extremely variable, even on plots with homogenous soil [13]. This variability can
lead to significant errors in the simulated radar signal [11]. It is reported in [14] that when
the IEM fails to provide good results when applied to natural soil, this can be attributed to
an inadequate description of this surface rather than a malfunction of the model.

As reported in [15], there are several methods for soil roughness assessment techniques
that involve different soil height sampling techniques and data analysis strategies. Classic
roughness sampling techniques are pin and mesh-board profilers, which collect individual
soil roughness profiles with a length ranging from 0.5 to 4 m, and a regular sampling
distance ranging from 5 to 10 mm along the profile direction [16]. Laser profilers are a
non-destructive alternative. An example of this category is a laser profiler constructed by
the CESBIO (the Center of the study of the Biosphere from Space, Toulouse, France) and
the ESA (European Space Agency, Paris, France). This profiler can regularly sample heights
at every 5 mm and collect up to 25 m long profiles [9]. In the bibliography, the description
of soil surface roughness patterns includes soil surface roughness measurements taken by
photogrammetric acquisition systems [3,17,18], and recently by terrestrial laser scanners
(TLS) [15].

Roughness measurements are usually taken with a pin profiler [19–24]. In most
cases, this tool is restrained to a one-dimension profile that can hardly lead to a 3D soil
structure characterization. However, to obtain precise statistical parameters, it is crucial
to consider many profiles for each studied field [17]. Consequently, new technologies
based on photogrammetric techniques can produce a 3D model of any surface from digital
photographs to make more precise estimations of roughness indices. The studies achieved
in [14,18] reported an efficient general methodology of the photogrammetric process to
acquire an estimation of roughness indices. Thus, terrestrial laser scanners (TLS) were used.
The study performed in [15] demonstrated that TLS are an effective tool for modeling soil
roughness on low scales. On the other hand, given the number of required stand points,
the application of the TLS tool to large areas is not practical. This is why unmanned aerial
vehicles’ (UAV) acquisition, followed by the photogrammetric process of the acquired
images, can provide a better solution [19]. Additionally, the authors of [20] investigated
the potential of the C-band at VV polarization obtained by Sentinel 1 for estimating the
soil roughness parameter hrms on bare soil. Nevertheless, they found that the obtained
accuracy of the soil roughness estimates did not meet the requirement of the operational
users of soil roughness products.

The authors of [10,21] stated that it is complicated to measure the required roughness
parameters, particularly L. Therefore, given the difficulty to determine soil roughness
parameters and, at the same time, their primordial necessity in soil moisture retrieval
models, some studies suggest methodologies that avoid the direct measurement of these
parameters. For example, the authors of [22] did not measure roughness parameters, but
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only collected information about the roughness class for each reference plot during the field
campaigns according to three classes: smooth, medium and rough. In another study [23],
the authors suggested a semi-empirical calibration of IEM backscattering to reduce the
incompatibilities between simulated and measured backscattering values. This calibration
consists in substituting the measured L in the field by a fitting parameter called Lopt, which
depends on hrms, incidence angle, polarization and radar wavelength.

According to the bibliographic review, practically all the works have retrieved SSM
using backscatter models employing in situ measurements limited to small areas to es-
timate soil roughness parameters or indirect methods. As photogrammetric acquisition
systems have already been used to describe soil surface roughness patterns, their com-
bination with remote sensing techniques, such as UAV, can cover larger areas [24]. The
present study aimed to apply an operational methodology that has been previously tested
for soil moisture estimates to agricultural fields [22]. To further improve these results,
roughness parameters were measured by a photogrammetric acquisition system carried
on a UAV to reconstruct digital surface models (DSM). The acquisition of DSM allowed
the procurement of these parameters over a large portion of our experimental agricultural
fields. Our improved methodology started by accurately measuring the roughness param-
eters of these fields. This step required meticulous fieldwork (preparing the flight and
equipment, choice of flight period to coincide with plowing dates, among others), as well as
a photogrammetry process to obtain DSM and an efficient approach to acquire both L and
hrms. After determining soil roughness parameters, their implications on the σ0 estimation
were studied. To retrieve soil moisture, backscattering models were applied (the IEM and
the Water Cloud Model (WCM)). Then, the main study objective was to retrieve SSM using
Sentinel 1 and 2 data and to follow an operative approach, improved by integrating the
accurate roughness parameters measured by photogrammetric processes.

2. Materials and Methods
2.1. Test Site 1: Bare Soil Plot

Research was carried out at two experimental sites (Figure 1): the first on a small
bare soil plot located at the experimental farm of the University of Castilla-La Mancha
in Albacete province, Spain (27.5 m wide, 32 m long). Its soil has a silty-clay texture
(21.2% clay, 52.3% sand and 26.5% silt). The soil depth of the soil particle analysis was
between 5 and 10 cm deep. The soil roughness parameters were taken when soil had been
recently plowed.

2.2. Test Site 2: Open Field Crops

The second test site was an irrigable area in Tarazona de La Mancha, Spain (Figure 1).
Experimentation was carried out on four different crop fields: one cereal plot with an area
equal to 2 ha, two pea plots (peas 1 and peas 2) covering 2.2 and 2.28 ha, respectively, and
one onion plot whose area covered 2.8 ha (Figure 1). Tarazona de la Mancha (39.7 N–38.6 N
and 2.53 W–0.9 W) is located in the Castilla-La Mancha region of Spain. Its climate is
semi-arid with annual precipitation below 350 mm. The spatial distribution of the reference
evapotranspiration (ETo) varies from 1151 mm year-1 to more than 1300 mm year-1 in the
northwest and southeast portions of the aquifer, respectively. The average temperatures
range from 3.97 ◦C in January, the coldest month, to 24.37◦ in July, the warmest month. The
dominant crops are wheat, barley, vine, alfalfa, onion, garlic, poppy and legumes. The soil
analysis results for each plot show that soil has a silty-clay texture (Table 1).
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Table 1. The soil texture of the experimental fields.

Field or Plot Sand (%) Clay (%)

Test site 1: Bare soil 52.3 21.2
Test site 2: Cereal 60 20
Test site 2: Peas 1 63.3 19
Test site 2: Peas 2 60 22.4
Test site 2: Onion 53 23

2.3. Soil Roughness Characterization and the Photogrammetry Process

For modeling objectives, a given surface is defined statistically by two variables,
determined from the surface height profiles: L and hrms [25]. Information was obtained
using a conventional SONY ILCE-5100 RGB digital camera (Sony Corporation, Tokyo,
Japan) mounted on a drone to determine soil surface roughness. Flights were planned at
20 m above the ground level, with a 40% side overlap and an 80% front overlap, which
resulted in a ground sample distance (GSD) of 4 mm. For all the flight events (Table 2),
illumination was optimal with no clouds.

Table 2. Tillage class of the experimental fields on the different flight dates.

Experimental Fields Tillage Class Flight Dates

Test site 1: Bare soil Mouldboard Plough 19/10/2020
Test site 2: Cereal Seedbed 17/12/2020

Test site 2: Peas 1 and Peas 2 Seedbed 17/12/2020

Test site 2: Onion Seedbed: Flat planks
separated by channels 05/03/2021

In this study, an Icom3D–Carabo S3 drone was utilized. It is a vertical take-off and
landing (VTOL) quadcopter aircraft with a high payload/MTOW rate (up to 1 kg of payload
in 2.6 kg of MTOW). It offers multiple customizable payload options with a compact design.
UAV can follow a pre-programmed flight plan to determine the route and camera shooting
events (Figure 2). In addition, six ground control points (GCP), measured with a GNSS-RTK
device (accuracy over 0.02 m in altitude), were placed for each flight to geo-reference the
final geomatic product and to perform camera calibration.
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DSM were obtained using the structure from motion (SfM) software, the Agisoft
Metashape Professional version 1.6.1 software (Agisoft LLC, St. Petersburg, Russia), to
determine soil surface roughness parameters. The photogrammetric process steps are
summarized below.

The first step extracts features from each single image that can be matched to their
corresponding feature in other images, followed by an approximate alignment of the
images with a sufficient number of features.

The second step determines the camera’s intrinsic (focal length, principal point and
lens distortion) and extrinsic (projection center location and the six exterior orientation
parameters defining the image) orientation parameters by determining optimal camera
positions, and later ameliorating their positions with a bundle-adjustment algorithm. A
sparse point cloud with the location and position of every supplied image is the result of
following the first two steps.

The third step exploits the previously determined intrinsic and extrinsic camera
locations, a dense Multi-View Stereo (MVS) reconstruction and every pixel of the provided
images to produce a dense point cloud.

The resulting dense point cloud is generated in an arbitrary coordinate system. How-
ever, Agisoft Photoscancan transforms the model into the absolute coordinate system
provided by a minimum of three ground control points (GCP) or camera coordinates that
have been recorded. This is why GCP are introduced in this step to enable the processing
software to know the real-world coordinates of a number of visibly identifiable locations
on the imagery [26].

2.4. Acquisition Methodology Considering the Spatial Variability of Soil Roughness

One of the main constraints for determining roughness parameters is that they show
little or no spatial dependency [27]. Alternatively, the surface measurements and L taken
at one position often do not, or only poorly, represent their surrounding area, which makes
this information physically meaningless. Therefore, we propose following a methodology
based on obtaining massive 2 m long profiles to calculate these surface roughness indices,
and to then perform a statistical analysis with the set of indices calculated for each profile.
For this purpose, the DSM of the experimental field was converted into an XYZ matrix.
The surface roughness indices were estimated using virtual profiles of a 2 m length, which
moved all over the DSM from the lower left corner to the lower right corner (Figure 3), and
always maintained the azimuth direction perpendicular to the row. Next, and as in [27],
the hrms values were obtained as the arithmetic mean of all the individual hrms values. The
average L values were derived from the average autocorrelation function (ACF), calculated
using the ACFs of the individual profiles.
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In agricultural fields, soil roughness is affected by tillage characteristics [9,28]. Ac-
cording to [18], roughness should be measured in perpendicular and parallel directions
to seedbed rows because the soil surface can be considered anisotropic [29]. However,
the authors of [30,31] revealed a significant impact on the backscattered signal scale from
the periodical roughness component. Hence, we focused only on the perpendicular mea-
surements to row directions, which are mainly influenced by the periodical component.
The authors of [18] found that the roughness measurement taken perpendicularly to row
directions indicated two significant issues: first, the studied surface showed a clear trend
that had to be corrected; second, the perpendicular profiles to the row direction showed
a two-scale process that had to be separately quantified. Therefore, in this work, we ap-
plied the two major corrections proposed in [27]: detrending and decomposing data into
two scales.

The tillage induced a roughness deviation compared to the curved reference surface,
described by a single-scale process [21]. Therefore, to parameterize these single-scale
roughness deviations, it was necessary to filter out the curved reference surface. The
authors of [10,21] stated that different methodologies can be applied, such as detrending
using piecewise linear regressions, applying a high-pass filter or a moving average filter
and detrending with a higher-order polynomial. However, removing the overall first-
order trend is generally sufficient [10], although such a detrending technique may not be
sufficient for long profiles because roughness parameters increase with growing transect
length (to reveal a multiscale effect). This assumption is only valid when short profiles are
measured [21]. Based on the literature review and the characteristics of the analyzed plots,
only the removal of the first-order trend was applied. Indeed, detrending was performed
by subtracting a trend surface (Zmod) from the original surface (Z). The detrended surface
(Zres) was defined as:

Zres = Z − Zmod (1)

Zmod ∼ m X + b (2)
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where m and b represent the regression coefficients of slope and intercept, while X is the
x-coordinate of the sampled profile retrieved from DSM (this operation was repeated for
all the n profiles extracted from the DSM).

2.5. Roughness Parameters

The standard deviation of the hrms of the discrete one-dimensional case was:

hrms =

√
∑n

i=1
(
Zi − Z

)2

n − 1
(3)

where n is the number of samples and Zi is the altitude of the point at position xi.

Z =
1
n ∑n

i=1 Zi (4)

The ACF provides some information about the distribution of hills and valleys across
the surface [32] because it represents the correlation of paired-sample measurements
according to the distance between samples [14], defined as:

Ĉ(h) =
1

N(h)

N(h)

∑
i=1

Z(xi + h)− Z(xi) (5)

where N(h) is the number of pairs of points separated by a distance h.
L determination can be experimentally estimated by fitting an exponential function

(
∼
γ) to the experimental variogram (γ̂) [12], defined as:

γ̂ (h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− Z(xi)]
2 (6)

After fitting the ACF to the experimental variogram (γ̂) (Equation (6)), L can be
concluded or determined as the distance, h, at which the correlation corresponds to e−1.
This implies an exponential fit of the theoretical variogram and, therefore, of the ACF.

The fitted correlation function (Ĉ) is retrieved from the fitted variogram
(∼

γ
)

using
the following:

∼
C(h) = 1 −

∼
γ(h)
∼
γ (∞)

(7)

where
∼
γ(∞), which is the value of the fitted variogram for an infinite distance, is an

estimator of variance. It corresponds to the sill of the fitted variogram. For an exponential
fitting model, which asymptotically approaches the sill, the range is the distance at which
the function reaches approximately 95% of the maximum.

2.6. Soil Moisture Ground Measurements

At the center of each experimental field, an SSM station was installed on 8 October 2020,
for Test site 1: Bare soil, on 10 December 2020, for Test site 2: Cereal plot, and on 2 March
2021, for Test site 2: Onion plot. SSM was continuously measured every 15 min using
six sensors, TEROS 10, capacitive type, connected to METERS’ ZL6 six-channel loggers
with integrated GPS and ZENTRA application, which can be accessed from computers
or smartphones (Figure 4). The sensors and data logger came from the METER Group
manufacturer (METER Group AG, München, Germany). Five sensors were set up at 5 cm
and only one sensor at 25 cm at Test site 1. For the comparisons to the Sentinel 1 data, only
the in situ measurements of topsoil (5 cm) moisture content were used in this study. Data
were extracted whenever the C-SAR Sentinel 1 images were available. In the study region,
these images were taken only at the ascendant of the satellite flying over the study area at
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18:00 UTC. Therefore, only the average of the SSM values recorded at 18:00 UTC by the
five sensors installed at 5 cm was used.
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At Test site 2: Cereal, SSM was continuously measured every 15 min and the six sensors
were placed at 5 cm. At Test site 2: Onion, four sensors were installed at 5 cm, one at 15 cm
and the last at 20 cm. No soil moisture sensors were set up at Test site 2: Peas 1 and Peas 2.

For Test site 2: Cereal, Peas 1, Peas 2 and Onion, Sentinel 1 images were acquired
whenever the satellite flew over the study area at 18:00 UTC. Hence, the average of the
SSM values recorded at 18:00 UTC was used.

In addition to the SSM stations installed in the cereal and onion experimental fields,
other in situ soil measurements were taken by the classic gravimetric method. The ac-
quisition time of the gravimetric samples always fell within a 2 h range during the radar
overpass event. Five, seven, six and seven gravimetric samples were taken in the cereal
field, the peas 1 field, the peas 2 field and the onion field, respectively. These gravimetric
soil samples were always taken at the same location to mitigate the effects of any variation
from sampling errors and to enhance the measured SSM precision. A handheld GPS (Leica,
Zeno, Wetzlar, Germany) was used, with an average accuracy of 2 cm, to obtain the exact
coordinate of each sample point.

Every sample was transferred to a metal recipient and placed in a stove at 105 ◦C
until dry weight stabilized and stopped changing. The following formula was applied to
estimate gravimetric SSM:

V0 =
Vw − Vd

Vd
g/g (8)

where V0 is the gravimetric soil water content, Vw is wet weight and Vd is dry weight.
Volumetric SSM was expressed as:

VV =
V0

ρH2O
BD unit of volume/unit of volume (9)

where VV is volumetric soil water content, ρH2O is water density and BD is the bulk density
of the soil sample.

TEROS 10 sensors were calibrated with gravimetric acquisition. Calibration was
performed using the samples taken from Test site 1 and Test site 2: Cereal and Test site 2:
Onion. In each field, many samples were collected on different days, which were chosen
with various SSM conditions to cover a wide range of SSM values. The linear regression
established between the volumetric water content obtained by the gravimetric method,
and the volumetric water content acquired by TEROS 10 at the Test site 1 and Test site 2:
Cereal and Onion fields, are presented in Figure 5.
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Figure 5. Calibration equations for the three field sensors.

During the 2020–2021 SSM measurement field campaign, at Test site 2, the phenologi-
cal growth stage according to the BBCH (Biologische Bundesanstalt, Bundessortenamt und
CHemische Industrie) [33] scale was recorded.

2.7. Retrieving Soil Moisture

In order to invert the backscattering values obtained by the backscatter model (or
models) and to retrieve SSM, many algorithms have been used, such as NN [21,23], support
vector machine (SVM) [34] and Look-up Tables [35]. In the present study, the approach
applied to retrieve SSM was based on the methodology described in [22]. We applied
the multilayer NN algorithm to invert the VV SAR signal. We decided to use only VV
polarization because the authors of [22] confirmed that VV alone provides more accurate
SSM estimates. NN were trained using a synthetic database of the C-band backscattering
coefficients and SSM. The synthetic database was built using only the IEM for the Test
site 1 experimental field, and the WCM combined with IEM for the Test site 2 experimental
fields (Figure 6). The main steps of the methodology with the retrieving process were:
(1) simulation of radar backscattering coefficients of VV using only the IEM for Test site 1,
and both the IEM and WCM for Test site 2, respectively, (2) training and validation of NN
with the synthetic trained and validated sub-databases, respectively, and (3) application
of the trained NN to the actual database with only VV to estimate SSM. Soil texture
characteristics (sand fraction, clay fraction, BD, soil temperature) are necessary to transform
SSM values into dielectric constants.

In order to retrieve SSM, NN were employed. The structure of NN was composed of
an input and output. NN had a two-dimensional input vector. The one-dimensional output
vector contained SSM. Data were subdivided into a training and a validation dataset,
always with 70% for the training dataset and the remaining 30% for the accuracy estimation
to run the NN algorithm. These subgroups were obtained by following an iterative random
process, which ensured that the training and validation datasets had the most similar
mean and standard deviation. NN were trained with the backscattering coefficient data
generated from the backscattering models, and were validated using the radar data. In an
NN, a hidden layer is considered to be a layer in between the input and output layers. In
this study, the number of neurons utilized in the hidden layer was generally between 6 and 8.
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considered as input data during the first step, and we used only the IEM backscattering model.

2.7.1. IEM (Integral Equation Model)

The IEM is a mathematically sophisticated computational algorithm that was devel-
oped in [36] as a theoretical backscatter model. It computes the backscattering or the
bistatic scattering of a wide range of roughness scales (from smooth to rough surfaces),
and for any combination of receiver or transmitter wave polarization [37]. Therefore, given
its mathematical background and solid theoretical physical basis, it is considered the most
critical backscatter model for bare soil surfaces. It is used in inversion procedures to retrieve
SSM and/or roughness parameters [11]. The IEM takes soil status into account with input
parameters, such as soil moisture, hrms, L and the L shape or function [36]. Several studies
have been performed by applying the IEM. The authors of [38] retrieved SSM from ASAR
C-band data at several incidence angles.
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The backscattering coefficient of the surface contribution is expressed on bare soils in
agricultural areas at VV or HH polarization, as in [6]:

σ0
pp=

k2

2

∣∣ fpp
∣∣2e−4rms2 k2 cos2θ ∑+∞

n=1
(4hrms2 k2cos2 θ)

n

n! W(n)(2ksinθ, 0)

+ k2

2 Re
(

f ∗ppFpp

)
e−3rms2 k2 cos2θ ∑+∞

n=1
(4hrms2 k2cos2 θ)

n

n! W(n)(2ksinθ, 0)

+ k2

8

∣∣Fpp
∣∣2e−2rms2 k2 cos2θ ∑+∞

n=1
(hrms2 k2cos2 θ)

n

n! W(n)(2ksinθ, 0)

(10)

where:
fVV =

2Rv

cosθ
(11)

Fvv = 2
sin2θ

cosθ

[(
1 − εrcos2θ

µrεr − sin2θ

)
(1 − Rv)

2 +

(
1 − 1

εr

)
(1 + Rv)

2
]

(12)

Rv =
εrcosθ −

√
µrεr − sin2θ

εrcosθ +
√

µrεr − sin2θ
Fresnel coefficient at vertical polarization (13)

where W(n) is the Fourier transform of the nth power of the surface correlation coefficient,
εr = dielectric constant, which is obtained based on volumetric water content using the
empirical model of [39], µr = relative permitivity, θ = incidence angle, hrms = standard
deviation of surface height, L = correlation length, polarization (pp with p = V), Re = real part
of the complex number, f * pp = conjugate of the complex number fpp and ρ(x, y) = surface
correlation function.

In this study, the employed correlation functions were defined as follows [11]:

ρ(x) = e−( x
L ) (14)

2.7.2. WCM (Water Cloud Model)

The WCM was developed by Attema and Ulaby in 1978 as an approach to characterize
the scattering contribution of the canopy volume [40]. This model simplifies the complex
scattering effect between the vegetation layer and the soil layer [41], and is appropriate for
different vegetation layer types. The WCM assumes that the vegetation layer is a uniform
medium, and the canopy can be represented with one vegetation parameter or two [42].
The WCM has been widely used in different studies with various frequencies and incidence
angles [43,44].

The polarization applied in this study was VV. The WCM defined the backscattered
radar signal on a linear scale (σ0

tot) as the sum of the contribution from vegetation (σ0
veg),

oil (σ0
soil) attenuated by vegetation (T2σ0

soil) and multiple soil-vegetation scatterings:

σ0
tot.vv = σ0

veg.vv + T2σ0
soil (15)

σ0
veg.pq = AvvV1cosθ

(
1 − T2

VV

)
(16)

T2
pq = e−2BvvV2secθ (17)

where V1 and V2 are vegetation descriptors. In this study, V1 = V2 = NDVI, as in [43], θ is the
radar incidence angle, parameters AVV and BVV were estimated for VV by minimizing the
sum of the squares of the differences between the simulated and measured radar signals,
T2

VV is two-way attenuation and σ0
soil was estimated in a previous step by the IEM.

2.8. Remote Sensing Data: Sentinel 1 and Sentinel 2 Dataset
2.8.1. Sentinel 2 Dataset

Sentinel 2 products were acquired on different dates during the 2020–2021 period.
For each acquisition date, we downloaded a different Sentinel 2 tile, SWJ. The Sentinel
2 products at level 2A Bottom Of Atmosphere (BOA) were downloaded from the ESA,
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Copernicus Open Access Hub. The NDVI at the Bottom Of the Atmosphere (NDVIBOA)
was calculated by the following equation:

NDVIBOA =
Band 8 − Band 4
Band 8 + Band 4

(18)

In order to obtain the vegetation condition of each experimental field, the NDVI pixel
values in each reference plot were averaged.

2.8.2. Sentinel 1 Dataset

Sentinel 1 images were acquired during the 2020–2021 period. The incidence angle of
Sentinel 1 over the study site was about 38.5◦. The Sentinel 1 dataset comprised the level 1
Ground Range Detected (GRD) data in the interferometric wide (IW) swath mode, which
was projected to the ground range by the WGS84 Earth ellipsoid model. The dimensions
of the resulting images in dual-polarization (VH and VV) were 270 × 270 km, with a
resolution of 10 m and a temporal resolution of 6 days. All the images were processed by
SNAP using the Sentinel 1 toolbox. The main performed corrections were: (1) radiometric
calibration, (2) speckle filtering and (3) geometric correction. Finally, conversion into
decibel units was performed: backscatter coefficient, σ0, on a linear scale, was converted
into the decibel (dB) scale, σ0(db) = 10 log10 σ0, where σ0(db) represents the backscatter
coefficient value.

2.9. Statistical Evaluation of Models

The root mean square error (RMSE) was considered to estimate models’ precision, as:

RMSE =

√
∑n

i=1(At − Ft)
2

n
(19)

The RMSE is the square of the sum of squared errors, divided by the number of
observations, where n is the number of data samples, Ft is the forecasted value of sample I
and At is the observed or actual value of sample i.

3. Results
3.1. Example of Variograms of Roughness Showing a Spatial Trend and a Significant Two-Scale
Roughness Pattern

Figure 7 depicts an example of the variograms obtained from the profiles showing
a spatial trend: profiles (a) and (b) taken from the Test site 1 experimental field, profiles
(c) and (d) taken from Test site 2: Peas 1, profiles (e) and (f) taken from Test site 2: Cereal
and profiles (g) and (h) taken from Test site 2: Onion. The natural soil surface was
assumed in most cases to be isotropic, and described to be a single-scale process [14]. In
the agricultural field, tillage practices induced a systematic pattern known as oriented
roughness. This anisotropic roughness pattern can be statistically described as the sum
of two phenomena [45]: a small-scale roughness pattern (e.g., seedbed rows, soil clod
distribution) and a large scale component (e.g., wheel tracks).
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 Figure 7. Examples of the variograms obtained from the profiles showing a spatial trend: profiles
(a,b) obtained from the Test site 1 experimental field, profiles (c,d) taken from Test site 2: Peas 1,
profiles (e,f) taken from Test site 2: Cereal and profiles (g,h) taken from Test site 2: Onion.

Figure 8 illustrates examples of the variograms extracted from Test sites 1 and 2 that, in
turn, illustrate the two-scale roughness pattern observed in the tilled agricultural field. In
the study conducted in [18], the authors used a variogram to decompose and characterize
the soil surface on different scales. From the variogram, they determined the distance
within a range corresponding to wheel tracks, and they defined the distance threshold that
allowed to mask out wheel tracks. In our work, we applied the same methodology. As
Figure 8 shows, we defined these different variograms, and their corresponding surfaces
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displayed a repetitive behavior for distances within a range from 0.6 to 0.7 m, which
corresponded to wheel tracks. We intended to comprise the random appearance of soil with
the seedbed rows (as a general range, the row spacing for cereal and peas is about 10 cm,
and for onion varies between 11 and 15 cm) in one class separate from the wheel tracks. 

2 

  

  

  

  

 
Figure 8. Examples of the variograms of the obtained profiles showing a significant two-scale
roughness pattern: profiles (a,b) taken from Test site 1, profiles (c,d) taken from the peas 1 experi-
mental field, profiles (e,f) taken from the experimental cereal field and profiles (g,h) taken from the
experimental onion field.

3.2. Roughness Parameters’ Values

The application of the described methodology allowed us to obtain Table 3. For each
experimental field, the mean of both L and hrms was computed by averaging the individual
L and hrms of the obtained profiles. For Test site 1 and Test site 2: Onion, the hrms values
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were higher than 2 cm. These roughness values can be explained by the Test site 1 field
having well-plowed soil, and the onion field being prepared in flat planks of about 50 cm
wide, separated by channels to allow circulation and irrigation. For the cereal and peas
1 fields, the hrms values were lower than 1 cm because the roughness parameters were
measured immediately after sowing, and fields were smooth areas. It is worth mentioning
that no soil work was carried out after sowing. Therefore, we assumed that there were
no significant changes in hrms and L, and the roughness effect on the radar signal did
not change during the measurement campaign, but was considered the same for all the
experiment periods.

Table 3. Results showing the total number of the obtained profiles for each experimental field, and
the average of roughness parameters L and hrms after eliminating the trend effect and decomposing
the two scales.

Number of Profiles L hrms (cm)

Test site 1 182 13.5 2.1

Test site 2: Cereal 935 10.8 0.97

Test site 2: Peas 1 798 11.9 0.88

Test site 2: Onion 823 15.6 2.2

3.3. WCM Optimizations Parameters

As previously mentioned, parameterization consisted of fitting the model to the
ground measurements (Equations (14) and (15)). We processed the data weekly from when
the experimentation began, and we evaluated evolution on a weekly basis. For example,
the WCM optimization parameters (A and B) throughout the experimentation period of
Test site 2: Cereal are presented in Figure 9, respectively. Table 4 presents the A and B values
when modeling the relation between the simulated and observed backscatter coefficients at
VV polarization was optimal.
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Table 4. Fit of the WCM parameters for the Test site 2 experimental fields (optimum dates).

A B

Cereal (26/04/2021) −0.50247 0.051813
Peas 1 (26/04/2021) 0.29768 0.3772
Peas 2 (26/04/2021) 0.12306 0.69256
Onion (01/06/2021) 0.46277 −3.4985
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3.4. Results of Test Site 1: The Bare Soil Case

In this section, we present the simulation results of the backscatter coefficients of the
IEM scattering model at VV polarization at the agricultural bare soil Test site 1 by applying
the methodology described in the previous section and using the measured roughness
parameters L and hrms and the exponential distribution of the correlation function. This
experimentation lasted 8 months, from October to May, and we used 35 Sentinel 1 images,
as presented in Figure 10, which also presents the meteorological conditions during this
experiment (precipitation and temperature).
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Figure 10. Observed backscatter coefficients at the VV polarization obtained from the Sentinel
1 acquisitions, and the weather conditions during the experimentation period on bare agricultural soil.

Figure 11 shows the relation between the backscatter coefficients at VV polarization
deriving from Sentinel 1 and simulated by the IEM for two different dates: 26 April and
26 May 2021. The objective of presenting the relation for these two dates was to demonstrate
that the relation between the observed VV_S1 and the simulated VV_IEM did not change
in the last experimentation month because we processed data weekly from the time when
experiments began, and we took note of any evolution in the relation weekly. We observed
no notable variation in the last month. R2 was equal to 0.76 on 26 April and 0.75 on 26 May,
both in 2021.

The relation between the simulated and observed VV was statistically evaluated with
RMSE. According to these results, we noted only a slight difference between the compared
indicator on these two dates, which confirmed that the relation had become stable in the
last experimentation month to a certain extent. Likewise, based on this analysis, we can
clearly see that the IEM with the measured roughness parameters correctly simulated
the radar signal at VV polarization because the RMSE between VV_S1 (Sentinel 1) and
VV_IEM (simulated by the IEM) was equal to 0.52 dB on 26 April and 0.54 dB on 26 May,
both in 2021.
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3.5. Cereal Crop Results

We now present the simulation results of the backscatter coefficients of the IEM com-
bined with the WCM scattering models at VV polarization on the experimental barley field
after applying the methodology described in Figure 6 and using the measured roughness
parameters L and hrms. This experimentation lasted 6 months, from 15 December to 1 June.
We used 26 Sentinel 1 images to extract the observed VV and 26 Sentinel 2 images to extract
the NDVI, as presented in Figure 13.

Due to bad weather conditions, Sentinel 2 acquisition was sometimes covered by
cloud, which led to missing data. In January, a snowstorm named “Filomena” arrived and
lasted more than one week. Due to the cold weather, snow lasted two more weeks and we
were unable to use the Sentinel 1 data because the observed backscattering value at VV
polarization was affected by snow. As recommended in [46], snow data should be removed
from the dataset because frozen conditions, wet snow and intercepted rain can disturb
σ0 observations.
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Figure 14 displays the relation between the simulated backscatter coefficient at VV
polarization using the combined models IEM and WCM and the observed Sentinel 1 data on
four dates during the experimental period (14 April, 26 April, 26 May, 1 June). These dates
were chosen to show that backscattering coefficient modeling evolution was also related
to phenological crop cycle evolution. The optimums, which corresponded to the highest
R2 (between 0.83 and 0.79) (Figure 14) and the lowest RMSE (between 0.69 and 0.73 dB),
were obtained between mid-April and the end of April, which corresponded to the crop
heading stage (around 45 on the BBCH scale). After reaching the optimum, the modeling
results started to deteriorate. The explanation for this observed deterioration could be
due to changes in the canopy structure [47,48]. Since then, crop development has created
a kind of top layer that obstructed radar signals from passing to soil. Consequently, the
Sentinel 1 radar signal penetrated only this layer, resulting in increasing volume scattering,
while attenuation became lower [49,50]. Therefore, the difference between the observed
backscattering coefficient provided by Sentinel 1 and the simulated one provided by the
IEM combined with the WCM commenced from this stage.

Figure 15 compares the moisture retrieved with the measurement taken from the
sensor in the experimental field on four dates: 14 April, 26 April, 26 May and 1 June.
Overall, the results showed that R2 decreased slightly from 14 to 26 April, and went from
0.78 to 0.71, respectively, but drastically dropped on 1 June, with R2 being 0.26. Furthermore,
the RMSE indicated no significant difference between 14 and 26 April, nor between 26 May
and 1 June.

3.6. Peas Crop Results

In this section, we present the simulation results of the backscatter coefficients of the
IEM combined with the WCM scattering models at VV polarization over Test site 2: Peas 1
and Peas 2. Over peas 1, we measured roughness parameters L and hrms. In peas 2, we
applied the same parameters obtained in peas 1. This experimentation lasted 6 months,
from 15 December to 1 June. We used 14 Sentinel 1 images to extract the observed VV
(shown in Figure 16), and 9 Sentinel 2 images to extract the NDVI. Only gravimetric samples
were taken, which explains the gap period in the VV Sentinel 1 and NDVI dataset because
data were acquired only on working days.
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combining the IEM with the WCM on four important dates in the experimental barley field.
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Figure 15. Comparison between the estimated and measured mv soil humidity in the experimental
barley field.

Figure 17 displays the relation between the simulated backscatter coefficient at VV
polarization using the combined IEM and WCM and Sentinel 1 observed on two dates
during the experimental period (26 April and 1 June) for the two experimental fields peas 1
and 2. Over the experimental field peas 2, we applied the same roughness parameters L and
hrms that were measured over peas 1. The same number of Sentinel 1 and 2 data were used
for peas 1 and the same number of gravimetric measurements were performed. The same
observation as with the cereal field was made. For peas 1, we stress that backscattering
coefficient modeling evolution was also related to phenological crop cycle evolution: the
optimum corresponded to the highest R2 = 0.94, and the lowest RMSE at 0.62 dB was
obtained on 26 April, which corresponded to phase 6 of the BBCH scale. After reaching
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the optimum, the modeling results representing the relation between the observed and
simulated backscattering coefficient started to deteriorate until 1 June with an R2 of 0.67
and an RMSE of 0.75. For peas 2, and according to the results in Figure 17, the application
of the same roughness parameters as in peas 1 allowed us to obtain similar results. This
observation can be explained by both plots having sustained the same tillage work.
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Figure 17. Comparison between the Sentinel 1 extracted σ0 and the IEM combined with WCN
model-estimated σ0 in the peas 1 and 2 experimental fields on two important dates.

Figure 18 compares the moisture retrieved to the measurement obtained with the
gravimetry measurements taken in experimental fields peas 1 and 2 on two dates: 26 April
and 1 June. For peas 1, despite the relation between the simulated backscatter coefficient at
VV on 1 June being R2 = 0.67, the inversion of the model resulted in a poor relation as R2
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was 0.13. Unlike the model inversion of peas 1 on 1 June, peas 2 had a relatively high R2

of 0.45.
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2 experimental fields.

3.7. Onion Crop Results

As in the barley and peas 1 and 2 experimental fields, we simulated the VV backscatter
coefficient by integrating both the IEM with WCM, and by applying the same methodology
and using the measured roughness parameters L and hrms. This experimentation lasted
6 months, from 9 March to 24 August. We used 29 Sentinel 1 and Sentinel 2 images to
extract the observed VV and the NDVI, as presented in Figure 19.
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Figure 19. Observed backscatter coefficients at VV polarization obtained from the Sentinel 1 acquisi-
tions, and the extracted Sentinel 2 NDVI over the experimental onion field.

Figure 20 exhibits the relation between the observed and forecasted backscatter coeffi-
cient at VV polarization for two dates: 1 June and 24 August. We noted that backscattering
coefficient modeling evolution reached the optimum, which corresponded to the highest
R2 = 0.54 with RMSE = 0.8 dB and reached the minimum at the end of the growing cycle,
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with R2 = 0.14 and RMSE = 1.98 dB. 2 June corresponded to the leaf development stage and
the sixth leaf was clearly visible, while 23 August coincided with complete crop growth.
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Figure 20. Comparison between the Sentinel 1 extracted σ0 and the IEM combined with WCN
model-estimated σ0 on four important dates in the onion experimental field.

Figure 21 compares the moisture retrieved with the measurement obtained from
the sensor in the experimental field for two dates, 1 June and 24 August. According to
the results, R2 drastically dropped from 0.5 to 0.08, and RMSE increased from 1 June to
24 August from 0.039 to 0.08, respectively.
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4. Discussion
4.1. Analysis of the New Procedure to Obtain hrms and L

The study conducted in [51] was performed over experimental cereal (wheat) fields
for three years. Measurements were taken with a pin profiler. According to that work,
the range of hrms measurements lay between 0.83 and 1.35, with L between 5 and 7.4 cm.
In another study [52] performed over cereal plots, the hrms measurements were between
0.46 and 6.46, and L went from 2.8 to 10.11 cm. Therefore, when we compared the values
of our cereal experimental field to those of the aforementioned studies, we found that our
calculated hrms fell within the value range, but L was slightly higher than the obtained
range. This small difference could be due to many factors, such as how measurements
were taken, the calculation methodology, tillage work, the tilling field used and the soil
type. We believe that all these elements could have resulted in this small difference.

Based on their 20-year experience in collecting roughness measurements values, the
authors of [22] classified roughness values into three main classes: smooth areas (sowing)
with an hrms below 1 cm, medium roughness areas (slightly plowed soil) with an hrms
between 1 and 2 cm and rough areas (well-plowed soil) with an hrms above 2 cm. Hence,
it seems that this classification well-matches our obtained hrms because the hrms for the
pea and barley plots was lower than 1, field soil was well-plowed in the Test site 1 with
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hrms = 2.1 and the onion field was considered a rough area because it was prepared on very
flat planks (about 50 cm wide) separated by channels to allow circulation and irrigation.

The proposed methodology facilitates the procedure to obtain accurate L and hrms
values. This helps the applicability of this procedure to obtain SSM from SAR information.
It can also lead to new works being conducted, whose aim is the standardization of these
required values depending on tillage and soil type, among many other factors.

4.2. Bare Soil Results

We can generally confirm that simulating the IEM over bare agricultural plots using the
roughness parameters measured by photogrammetric techniques provided very promising
results compared to previous works, which have also used the IEM [34,53–55]. In fact, in our
case study, the RMSE and R2 obtained between the simulated and Sentinel 1 backscattering
coefficients at VV polarization on 26 May were about 0.54 and 0.75 dB, respectively. This
agrees with previous studies that have reported statistical indicators within the same range.
For instance, the authors of [34] found that RMSE was 1.7 dB and R2 was 0.7. Similarly,
the authors of [55] employed the calibrated IEM [56–58] by replacing L with Lopt. That
calibration consisted of replacing the measured correlation length with a fitting parameter
Lopt, which depends on hrms, θ, radar wavelength and polarization [23]. Those authors
reported results for the comparison between the σ0 values extracted from the Sentinel 1
and estimated data, and found that RMSE was 0.78 and R2 was 0.9. For the IEM’s potential
for the measured roughness parameters to forecast SSM from the Sentinel 1 backscattering
coefficient, we obtained satisfactory results, with RMSE of 0.023 m3/m3 and R2 of 0.72 on
26 May. In addition, these results could be further improved if L and hrms were calculated
throughout experimentation to capture all variations (rain, wind, etc.) on bare soil and to
know their influence on the roughness parameters. However, calculating these parameters
throughout experimentation would reduce the methodology’s applicability.

4.3. Field Crop Results

The observations made in [58] also confirmed that backscattering coefficient modelling
evolution was related to crop cycle evolution. They showed that the sensitivity of σ0 to SSM
decreased with the NDVI between 0.45 and 0.90. This effect appeared as vegetation (cereal
and peas) started to increase at the beginning of February, which corresponded to not
only the tillering stage until mid-April, but also to the stem elongation period. As a result
of such vegetation development, the VV backscatter signals decreased due to the rising
attenuation from the predominantly vertical structure of barley stems [59], and decreasing
the soil contribution was similar to increasing the vegetation contribution σ0, with slight
decreases with increases in the NDVI until a minimum was obtained [60]. Until the end
of April, the Test site 2 cereal results showed that the IEM-WCM combination adequately
simulated SAR observations (RMSE = 0.73 dB).

As the main objective of retrieving SSM over agricultural fields is essentially precise
irrigation management, this approach should be implemented regularly throughout the
growing season. Plants are very susceptible to damage caused by water deficiency in
vegetative and reproductive growth stages [1,60]. In [61], the authors exhibited modeling
results in the most important growth stages of cereal fields. The soil water content retrieval
results upon the harvest of winter wheat showed the best accuracy of three field experi-
ments (R2 = 0.66; RMSE = 2.24%), followed by the tillering stage (R2 = 0.56; RMSE = 2.56%)
and jointing stage (R2 = 0.36; RMSE = 2.74%). According to our results, the best accuracy
was obtained in the stem elongation stage from 14 April to 26 April (R2 = 0.78), but it
significantly diminished at harvest, with R2 = 0.26 on 1 June. In [61], the authors cali-
brated the WCM and found that calibrated parameter A first increased and then decreased,
whereas parameter B first decreased and then increased, in the growth cycle. However, in
our study, parameter A decreased in the first phases, and then decreased again to finally
remain almost constant, and continued to be almost constant until the end of April. Then,
it increased and decreased in the final stage. The differences between these two parameters’
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evolution behaviors can be explained by the fact that in [61], the vegetation descriptor
used to calibrate the WCM was the LAI (Leaf Area Index) simulated by the SAFY (Simple
Algorithm For Yield) estimate.

The simplicity of parametrizing the WCM and its ability to model the backscattering
coefficient at VV were tested in this study over barley, pea and onion crops. The experimen-
tation conducted in the cereal and pea crops showed good modeling and retrieval results
when integrating the WCM with the IEM. However, experimentation of the onion crop
showed that modeling reached an optimum (low R2 compared to other crops) in a relatively
early phenological cycle stage on around June 1, from which time it drastically dropped
until the end of the cycle. This means that either the measured roughness parameters after
the 1 June were no longer representative of the plot’s real roughness situation, or the WCM
was unable to well-represent the onion crop after reaching the leaf development stage. In
fact, for a corn crop, the authors of [42] found that, unlike the WCM assumptions, moisture
in the canopy was far from being evenly distributed, and the canopy water content distri-
bution among different scatterers (leaf, stem) also varied during the growing season. They
concluded that the WCM assumptions were very simplistic compared to the actual water
content distribution and dynamics during the growing season. In addition, it is difficult to
validate satellite SSM data with ground SSM measurements, as the satellite measures with
pixels and ground measurements with points. In fact, in [62], the obtained results showed
that there are different levels of accuracy of the retrieved SSM for different land cover types
(corn and soybean in this case study). The differences between the results were explained
by the spatial downscaling process that was used to combine the Landsat 8 and MODIS
data in order to successfully retrieve daily SSM at 120 m.

As the backscattering modeling optimum was reached at the end of April, we thought
it would be interesting to show the soil moisture profile at the 5 cm depth (Figures 22 and 23).
In these figures, we can see that SSM is slightly underestimated after the rainfall events
at the end of February, in April for the experimental cereal field and at the end of March
for the pea experimental fields. These results will improve contributions to crop models,
which need SSM in soil layers deeper than 10 cm [2]. Rootzone moisture can be used as an
index in early-warning systems (especially for drought) and for predicting crop yields [63].
Regardless of its importance, rootzone moisture is not always available for immediate
applications in fields.
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Figure 24 shows the soil moisture distribution derived from the VV Sentinel 1 and
NDVI Sentinel 2 data on the experimental fields at Test site 2 before and after rain events.
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5. Conclusions

The present study first aimed to apply an operational methodology that has been
previously tested for SSM estimates. However, for the purpose of further improving the
results of this methodology, we measured the roughness parameters by a photogrammetric
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acquisition system carried on a UAV to reconstruct a DSM that allowed these parameters to
be obtained over a large portion of the studied fields. Therefore, our improved methodology
started with accurate measurements of the roughness parameters for the experimental
fields, which requires intensive fieldwork and a photogrammetry process to obtain the
DSM, as well as an efficient approach to extract L and hrms. The proposed methodology
facilitates the procedure to obtain accurate L and hrms values, which, in turn, facilitates
applying the procedure to obtain SSM from SAR information. It can also lead to new
studies being conducted, where the aim would be the standardization of these required
values depending on tillage and soil type, among many other factors.

Second, the parametrization of the IEM only for the bare soil case, or the IEM with
the WCM for the other covered agricultural fields to generate the synthetic database
of the backscattering in VV polarization, was carried out using the obtained roughness
parameters, the measured SSM, the Sentinel 1 data and the NDVI determined from the
Sentinel 2 reflectance band. Third, the synthetic database was divided into training and
validation datasets to perform the training and validation of the NN. As the final step, the
trained NN were applied to the actual database to generate the estimated SSM.

The acquired results showed that measuring the roughness parameters with the
photogrammetric acquisition system improved the results of the operative approach and
provided an effective tool for estimating SSM over bare soil and cultivated soils in the
principal early growth stages. Hence, we believe that our results achieved our study objec-
tives in most cases, except for the onion experiment field. The cereal soil experimentation
obtained an R2 = 0.74 between the estimated and observed SSMs. For the cereal field, the
relation between the estimated and measured SSMs obtained R2 = 0.71. In the pea experi-
mental fields, the relation between the estimated and measured SSM obtained R2 = 0.72
and 0.78, respectively, for peas 1 and peas 2. However, for the onion experimentation, the
highest R2 was 0.5, which was obtained in the principal growth stage (leaf development)
and then drastically dropped to 0.08.
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