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Abstract: Monitoring traffic loads is vital for ensuring bridge safety and overload controlling. Bridge
weigh-in-motion (BWIM) technology, which uses an instrumented bridge as a scale platform, has been
proven as an efficient and durable vehicle weight identification method. However, there are still chal-
lenges with traditional BWIM methods in solving the inverse problem under certain circumstances,
such as vehicles running at a non-constant speed, or multiple vehicle presence. For conventional
BWIM systems, the velocity of a moving vehicle is usually assumed to be constant. Thus, the po-
sitions of loads, which are vital in the identification process, is predicted from the acquired speed
and axle spacing by utilizing dedicated axle detectors (installed on the bridge surface or under the
bridge soffit). In reality, vehicles may change speed. It is therefore difficult or even impossible for
axle detectors to accurately monitor the true position of a moving vehicle. If this happens, the axle
loads and bridge response cannot be properly matched, and remarkable errors can be induced to
the influence line calibration process and the axle weight identification results. To overcome this
problem, a new BWIM method was proposed in this study. This approach estimated the bridge
influence line and axle weight by associating the bridge response and axle loads with their accurate
positions. Binocular vision technology was used to continuously track the spatial position of the
vehicle while it traveled over the bridge. Based on the obtained time–spatial information of the
vehicle axles, the ordinate of influence line, axle load, and bridge response were correctly matched
in the objective function of the BWIM algorithm. The influence line of the bridge, axle, and gross
weight of the vehicle could then be reliably determined. Laboratory experiments were conducted
to evaluate the performance of the proposed method. The negative effect of non-constant velocity
on the identification result of traditional BWIM methods and the reason were also studied. Results
showed that the proposed method predicted bridge influence line and vehicle weight with a much
better accuracy than conventional methods under the considered adverse situations, and the stability
of BWIM technique also was effectively improved. The proposed method provides a competitive
alternative for future traffic load monitoring.

Keywords: moving load identification; bridge health monitoring; bridge weigh-in-motion (BWIM);
non-constant speed; multiple vehicle presence; computer vision; deep learning

1. Introduction

The overloading phenomenon has rapidly increased along with the continuously
increasing demand for highway transportation capacity [1], which has raised seriously
challenges to bridges’ bearing capacities and greatly increased the probability of bridge
defects. Therefore, to ensure the safety and improve the operation efficiency of high-
way bridges and other infrastructures, reliable traffic information needs to be monitored,
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and thus reasonable and feasible overloading countermeasures can be summed. Bridge
weigh-in-motion (BWIM) technology, which efficiently estimates the axle weight of test
vehicles from the response of instrumented bridges, is widely used nowadays [2–7]. Com-
pared to traditional pavement-based weigh-in-motion method, a BWIM system is more
durable and stable, since it uses sensors under the soffit of a bridge instead of placing
them on the road surface. Moreover, as technology advances, the bridge response required
by a BWIM system may also be provided via computer-vision-based approaches [8] or
electromagnetic techniques (such as satellite-based synthetic aperture radar (SAR) systems
and ground-based SAR systems) [9–12].

Moses proposed the first BWIM algorithm in 1979 [13]. Since then, decades of efforts
have been spent to improve the accuracy and applicability of the algorithm. Now, Moses’
algorithm and its derivatives still are the basis of the majority of recent BWIM systems.
In Moses’ algorithm, an objective function is constructed by associating the measured
bridge response and predicted response under the load of vehicle axles. The measured
response is acquired from weighing sensors installed on a bridge, and the predicted
response is theoretically convolved with the bridge influence line function and vehicle load
impulse function. The bridge influence line and axle load position thus are the prerequisites
of a BWIM algorithm for axle weight identification.

The influence line used in BWIM systems was firstly assumed as the theoretical
influence line of a perfect simply supported beam. Then, some adjustments were applied
to reduce the deviation between the used influence line and the actual bridge influence line.
However, these methods are not automatic, and can be affected by the experience of the
operators. Afterwards, O’Brien et al. [14] proposed a matrix method to directly extract the
influence line from the measured bridge response under the moving load of a calibration
vehicle with known axle weights. Ieng [15] improved the performance of this method in a
noise scene by using maximum likelihood estimation.

Regarding axle load position, in the conventional BWIM scheme, axle positions are
predicted using the speed and axle spacing information of the vehicle acquired using
dedicated external axle detectors, based on an assumption that the vehicle will pass over
the bridge at an absolute constant speed. Generally, there are two types of axle detectors:
pressure-sensitive sensors installed on a bridge deck, or strain gauges installed under the
soffit of a bridge (free-of-axle detector, FAD) [16]. The first one is not durable, and is rarely
used now. The latter one may fail in certain cases, such that axle-related peaks are not
clear in the response of the FAD sensors. Overall, these methods obtain the average speed
of the vehicle in the period from the moment the vehicle reaches the first detector to the
moment the vehicle passes the last detector. Apparently, errors may occur and cannot be
removed when the vehicle speed is not constant. To reduce the speed identification errors
caused by a varying velocity, Lansdell et al. [17] proposed a speed-correction procedure in
which the variable speed-response data with non-uniform spatial spacing was converted
into uniform spacing. Zhuo [18] also proposed a patch algorithm for non-constant speed
cases, in which the calculation procedure of speed within the range of the FAD sensor was
optimized, and the result was closer to the actual vehicle speed.

The rapidly developing computer vision technology has provided another strategy for
highway vehicle monitoring [19–21]. Recently, Ojio et al. [22] proposed a contactless BWIM
system in which the axle detectors were replaced by a surveillance camera, and the bridge
response was detected by a high-resolution camera as well. This is a brand-new method
and is not practicable yet, since the equipment requirements are excessive. Zhang et al. [23]
also proposed a method focusing on obtaining vehicle space–time information based on
computer vision technology. Dan et al. [24,25] proposed a sensor fusion method that
integrated a pavement weigh-in-motion (PWIM) system and multiple surveillance cameras
to obtain the trajectory of the vehicle together with its weight. Xia et al. [26] proposed a
method combining computer vision technology and a strain measuring instrument for
BWIM. This method performed well in complex traffic scenarios, but it could only identify
the gross vehicle weight. Zhou et al. [27] proposed a non-contact vehicle load identification
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method based on machine vision technology and deep learning. By using the neural
network classifier, the axle weight distribution interval to which the vehicle axles belong
was predicted. This method is based on statistics and is inexpensive, but only a rough
weight interval instead of an actual axle weight can be obtained.

For bridges with multiple lanes, the inverse problem of load identification is extended
to two-dimensional (2D). Quilligan [28] firstly proposed a 2D BWIM algorithm based on the
influence surface instead of the influence line. Zhao et al. [29] proposed another algorithm
for influence line calibration and vehicle weight identification while considering the lateral
distribution of wheel load. Chen et al. [30] developed a new BWIM system that identified
vehicle weight in the presence of multiple vehicles by using only long-gauge fiber Bragg
grating (LGFBG) sensors. Liu Yang [31] improved the 2D BWIM algorithm and tested the
results of identified lateral vehicle positions and vehicle weights for scenarios in which two
or three vehicles crossed the test bridge.

Although many studies have been conducted and important improvements achieved
in researching BWIM techniques, there is still difficulty in obtaining accurate influence
line (surface) and vehicle weight information if the vehicles are not running at a constant
velocity, as under this circumstance, it is difficult or even impossible for axle detectors to
accurately obtain the spatial position of each vehicle on the bridge. In addition, accurately
obtaining the position of vehicle axles for multiple vehicle presence is much more difficult
than for one single vehicle. Consequently, the ordinate value of the influence line, axle loads,
and bridge responses cannot be perfectly matched. Hence, inevitable errors will be induced
in the influence line calibration and vehicle weight identification that are difficult to remove.

To improve the accuracy and stability of the BWIM technique in vehicle tracking and
weight identification in real application scenarios, a new BWIM method, named V-BWIM,
is proposed in this study. In this method, the three-dimensional (3D) coordinates of moving
vehicles and their axles are determined using binocular camera vision, and the optimization
algorithms for influence line calibration and weight estimation are established based on
the relationship between the real load position and bridge response.

Laboratory experiments were conducted to evaluate the performance of the proposed
method under like-real and adverse scenarios. Results showed that the time–spatial posi-
tion of vehicle axles could be effectively monitored by the vision-based method. Moreover,
based on the reliable acquired load position and the proposed influence line calibration and
weight identification algorithms, the influence lines were calibrated, and the axle and gross
weight of the test vehicles were identified with very good accuracy even if the vehicle was
running at non-constant speeds. In addition, results proved that the acquired speed had
a significant impact on the accuracy of weight identification, and the proposed V-BWIM
method outperformed traditional axle-detector-based BWIM methods for both single and
multiple vehicle presence.

2. Methodology
2.1. Framework of the Proposed BWIM

In a BWIM system, the axle weights of a vehicle are obtained by using the least-squares
method by utilizing the responses of an instrumented bridge and the axle configuration
information (number of axles and axle spacing). However, it was found that the axle
detecting sensors were the most difficult and instable part of a BWIM system. To overcome
this issue, in this paper, a new approach for axle detecting and weight estimation is
proposed. Basically, there are three components of the method: binocular vision-based load
localization; actual load position-based influence line calibration; and load position-based
axle weight estimation.

The framework of the new method is illustrated in Figure 1. Firstly, dual cameras were
used to record the vehicle trajectory and the relative location of axles of the vehicle to obtain
the 3D spatial position and axle spacing of vehicles (Figure 1a). Secondly, for calibration
runs, we calibrated the influence line for the 1D BWIM method (or the influence surface
for the 2D BWIM method) by combining the obtained spatial location of the axles and the
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bridge response under the loads of the calibration vehicle (Figure 1b). Thirdly, for testing
runs, we estimated the axle and gross weight of the unknown vehicle by using the axle
load positions, the calibrated influence line (or influence surface), and the bridge response
(Figure 1c). The theoretical details of the above steps will be explained in the following
subsections.

Figure 1. Framework of the proposed BWIM: (a) binocular vision-based load localization; (b) load position-based influence
line calibration; (c) load position-based axle weight estimation.

2.2. Automatic Recognizing and Positioning Vehicles and Wheels

In the proposed method, dual cameras were used to record a video of vehicles passing
over the bridge to obtain the axle position for both the influence line calibration runs
and vehicle weight identification runs. Automatic recognizing and positioning vehicles
and axles (wheels) in three dimensions (3D) through the video was divided into three
steps: (1) apply the moving object detection algorithm to quickly classify and accurately
locate vehicles and wheels in every frame, and obtain the centroid pixel coordinates of the
objects; (2) apply binocular ranging [32] and coordinate transformation [33] technology to
obtain the 3D coordinates corresponding to each pixel of the frame; and (3) obtain the 3D
coordinates of the objects according to the corresponding relationship between the pixel
coordinate and the 3D coordinate.

2.2.1. Moving Object Detection

In this paper, a traditional computer vision (CV) algorithm and a deep learning (DL)
algorithm were proposed for moving object detection. In the CV algorithm, the background
difference method [34] was utilized for vehicle detection from video frames. After that,
a circle detection method was utilized for wheel positioning in a single frame. Similar
to former DL algorithms [35–37] which used a convolutional neural network (CNN) to
automatically distinguish and accurately locate vehicles and wheels in video frames, the DL
method in this paper was based on mask R-CNN [38].

The background difference method had four components: pre-processing, background
modeling, foreground detection, and post-processing. The most critical component was
the background modeling. In this paper, a Gaussian mixture model (GMM) [39] was used
for background modeling, and was adaptable to complex environmental backgrounds and
brightness changing. The circle detection method, a practical detection method based on
edge shape characteristics of objects [8], was combined with the background difference
method for vehicle and wheel detection.

Firstly, the background image was constructed based on all the video frames before the
current image. Secondly, the current image was “subtracted” from the background image,
and a proper thresholding was applied to the result to find the foreground image. Then,
the contour image of the foreground was obtained by edge detection and morphological
processing. Figure 2a shows one frame of a video recorded in a lab test. Figure 2b shows
the obtained contour image. Finally, the bounding rectangle of the moving object based
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on foreground contour was obtained. In order to eliminate the influence of environmental
changing on object detection, the background image was dynamically updated: the current
image and the background image were compared pixel by pixel, and for each pixel, if the
difference was less than a pre-set threshold, it was used to update the background; other-
wise, it was considered as a foreground pixel. After the bounding box of the vehicle was
roughly obtained, edge detection and Hough circle transform were carried out to detect
the wheels in the bounding box. Figure 2c shows the detected edges, and Figure 2d shows
the results of the identified moving vehicle and wheels.

Figure 2. Results of background difference method and circle detection: (a) recorded image; (b) foreground image contour;
(c) detected edges in the bounding box; (d) identified vehicle and wheels.

An image recognition algorithm based on CNN is another type of moving object
tracking method. In this paper, mask R-CNN was selected for vehicle and wheel detection.
The schematic diagram of the algorithm is shown in Figure 3a. A whole recorded image
was firstly inputted into a trained CNN (ResNet, etc.) for feature extraction. At the same
time, the candidate regions of interest (RoIs) were generated by a region proposal network
(RPN). After that, the RoIs were mapped to the last feature map of the CNN. Then, the last
feature map was extracted by the RoIAlign layer to obtain fixed-size feature maps. Finally,
these fixed-size feature maps were put into the mask branch and the classification and
bounding box regression branch to generate the instance segmentation mask, class label,
and bounding box of each candidate object. The position of the vehicle and wheel thus
could be obtained from the center coordinates of the bounding box of the objects. Figure 3b
shows the network-produced masks, and Figure 3c shows the class labels and bounding
boxes of the identified moving vehicle and wheels.
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Figure 3. Mask R-CNN: (a) framework of mask R-CNN for instance segmentation and object detection; (b) mask output;
(c) class label and bounding box outputs.

2.2.2. Binocular Ranging and Coordinate Transformation

After obtaining the object’s centroid pixel coordinate via moving object detection,
the corresponding relationship between the pixel coordinate and the 3D coordinate had to
be determined in order to acquire the object’s 3D position. Binocular ranging and coordinate
transformation technology can be used to implement the 3D coordinate transformation.
The key processes are: binocular camera calibration, stereo rectification, stereo matching,
and 3-D coordinate transformation.

The transformation relationship between the camera coordinate system O-X-Y-Z,
the image coordinate system o-x-y, and the pixel coordinate system op-u-v can be con-
structed through the pinhole imaging model in Figure 4a and the similar triangle model
in Figure 4b. Suppose there is a target point P (X, Y, Z) in the camera coordinate system.
Among them, the image point of P in the imaging plane or pixel plane is P’; the image
coordinate of the point P’ is (x, y); the pixel coordinate of the point P’ is (u, v); cx and cy are
the offsets between the image coordinate system and pixel coordinate system along the x-
and y-direction, respectively; f is the focal length of a single camera; and the distance from
the target point P to the lens plane is the depth Z that can be obtained by binocular ranging
technology.
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Figure 4. Coordinate system transformation and binocular ranging: (a) pinhole imaging model; (b) similar triangle model;
(c) principle of binocular ranging.

Generally, the relationship between the three coordinate systems can be derived based
on the principle of triangular similarity, as shown in Equation (1):
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where dx and dy are the physical lengths of a single pixel along the x- and y-direction,
respectively; and K is the internal parameter matrix of a single camera. The unit of each
parameter in K is pixels, and K can be obtained by via camera calibration.

The schematic diagram of measuring the depth Z with a binocular camera is shown in
Figure 4c. In the figure, it was assumed that the cx, cy, and f of the left and right cameras
were the same, which could ensure that the left and right imaging planes were completely
aligned in parallel. The abscissa difference of the corresponding points Pl’ and Pr’ of the
target point P on the two imaging planes had the following relationship relative to depth Z:

Tx

Z
=

Tx − (xl − xr)

Z− f
=

Tx − d
Z− f

(2)

where d = xl−xr, xl and xr are the abscissas of the points Pl’ and Pr’ in the left and right
image coordinate system, respectively; d is the abscissa difference of the target point P on
the left and right imaging planes, namely disparity; and Tx is the center distance of the left
and right cameras. From Equation (2), we obtained Z = fTx/d, which showed that as long
as the disparity d of the target point P was measured, the depth Z could be obtained; then
X, Y could be calculated by putting Z into Equation (1).

From the above analysis, in order to obtain the 3D coordinate of a point in the image,
the parameters that needed to be obtained were f, cx, cy, Tx, and d. The binocular camera
calibration could obtain the internal parameters (the internal parameter matrix K, the radial
and tangential distortion coefficients) of each camera and the relative position of the two
cameras (namely, the 3D translation parameter T (Tx, Ty, Tz) and rotation parameter R of
the right camera relative to the left camera), so the initial values of f, cx, cy, and Tx could be
calibrated. Stereo rectification eliminated the distortion of the left and right imaging planes
through the internal parameters and the relative position of the two cameras, so that the f,
cx, cy of the two cameras were the same, the optical axes of the two cameras were parallel,
and the two imaging planes were coplanar. Stereo matching found the correspondence
between the pixels of the two imaging planes based on stereo rectification to obtain the
disparity map. Then, the depth information of the original image could be obtained
through the disparity map. Finally, the 3-D coordinate transformation of the image could
be estimated by via Equation (1).
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In order to improve the efficiency of two-dimensional (2D) image matching in stereo
matching, in this paper, the epipolar constraint was applied for image matching to ef-
fectively narrow search range and determine correct pixel correspondence. The epipolar
constraint model of the binocular camera is shown in Figure 5a. The plane POlOr formed
by the target point P and the optical centers Ol, Or of the two cameras is called the epipolar
plane; the intersection points El, Er of the line OlOr and the two imaging planes are called
epipolar points; and the intersection lines Pl’El, Pr’Er of the epipolar plane POlOr and the
two imaging planes are called epipolar lines. The epipolar constraint could be obtained
from the geometric relationship: the corresponding point Pr’ of a point Pl’ must lie in the
epipolar line Pr’Er, and vice versa. This relationship reduced the image matching from a
2D search to a one-dimensional (1D) search, which improved the accuracy and speed of
stereo matching.

Figure 5. Epipolar constraint models: (a) general epipolar constraint model; (b) epipolar constraint model after stereo rectification.

To further simplify the stereo matching process, stereo rectification is indispensable.
As shown in Figure 5b, stereo rectification not only aligned the left and right imaging
planes mathematically, but also completed the alignment of the epipolar line. At this time,
the line OlOr was parallel to the two imaging planes, and the epipolar points El, Er were
at infinity. After the epipolar line was aligned, the point Pl’ on the left imaging plane and
the corresponding point Pr’ on the right imaging plane had the same line number, so the
corresponding point Pr’ could be matched by a 1D search in this line, which made stereo
matching more efficient.

2.3. Influence Line Calibration

O’Brien et al. [14] firstly proposed an efficient “matrix method” to automatically
extract the influence line (IL) from the measured bridge response. The algorithm is very
efficient, but is not applicable for non-constant cases since the load position the algorithm
uses is calculated from speed and sampling time. Therefore, in this paper, the algorithm
was re-derived by directly utilizing the axle position, instead of calculating from vehicle
speed and sampling time.

When a calibration vehicle with known axle weights and axle spacing passes the
bridge along lane l, the total strain response of the bridge εm

x at a certain bridge section can
be measured. It can also be theoretically predicted:

εt
x =

N

∑
i=1

Pi Il
x−Di

(3)

where x is the position of the first axle of the calibration vehicle in the longitudinal direction;
N is the number of axles; Pi is the weight of the i-th axle; Di is the distance between the i-th
axle and the first axle; and Il

x−Di
is the ordinate value of IL at i-th axle’s position.
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As shown in Figure 6, let the calibrating vehicle move a sufficiently small distance ∆x
forward from every sampling step. Let us say that from the moment the first axle reaches
the entrance of the bridge until the last axle leaves the bridge exit, the total distance the
vehicle has travelled is X. Then, there should be K steps sampled, where K = X/∆x + 1.
Let εm

k and εt
k represent the measured and predicted response sampled at the k-th sampling

step, respectively. Let Il
k−Ci

represent the ordinate value of strain IL corresponding to the
i-th axle at the k-th step, where Ci = Di/∆x. Then, the predicted response can be rewritten
as εt

k = Lk·P, where Lk =
[

Il
k−C1

, . . . , Il
k−CN

]
and P = [P1, . . . , PN ]

T .

Figure 6. Schematic diagram of data sampling.

It should be noted that data acquisition equipment usually works at a constant sam-
pling frequency in the time domain rather than “constant distance ∆x” in the x domain;
therefore, a proper interpolation based on the monitored record load position–time (x–t)
relationship may be needed to obtain the measured bridge response εm

k (k = 1, . . . ,K).
Based on the least-squares method, the error function EIL was defined as the Euclidean

distance between the measured bridge response and the theoretical one:

EIL =
K

∑
k=1

(
εm

k − εt
k
)2

=
K

∑
k=1

(
εm

k −
N

∑
i=1

Pi Il
k−Ci

)2

(4)

To minimize EIL, the ordinate value IR shall make the partial derivatives ∂EIL/∂IR = 0,
therefore, we can obtain:

N
∑

i=1
Pi

N
∑

j=1
Pj Il

R+Ci−Cj
−

N
∑

i=1
Piε

m
R+Ci

= 0 ( 1 ≤ R ≤ K− CN , 1 ≤ R + Ci − Cj ≤ K− CN )

(5)
These equations can be expressed in matrix form:

W(K−CN)×(K−CN)I
l = ε (6)

where W (a sparse symmetric matrix), Il , and ε are:

WR,R =
N
∑

i=1
P2

i (R = 1, . . . , K− CN)

WR,R+Ci−Cj = PiPj

(1 ≤ R ≤ K− CN ,1 ≤ R + Ci − Cj ≤ K− CN ,i 6= j,i = 1, . . . , N,j = 1, . . . , N)

(7)

Il =
[

Il
1 · · · Il

k · · · Il
K−CN

]T
(8)

ε =

[
N
∑

i=1
Piε

m
1+Ci

· · ·
N
∑

i=1
Piε

m
k+Ci

· · ·
N
∑

i=1
Piε

m
K−CN+Ci

]T

(9)

By solving Equation (6), the IL ordinate vector Il can be obtained:

Il = W−1ε (10)
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For a bridge with multiple lanes, the influence line of each lane can be obtained by
simply repeating the proposed influence line calibration process with calibrating vehicle
running in each lane.

2.4. Vehicle Weight Identification

In order to overcome the limitation of the constant speed assumption of the conven-
tional BWIM algorithms, in this study, a new BWIM algorithm that identified the axle
weight of multiple vehicles by matching the bridge response and axle loads with real
position was proposed.

The bridge response predicted at the K sampling steps under a moving vehicle can be
written in matrix form:

εt = L·P (11)

where εt =
[
εt

1, εt
k, . . . , εt

K
]T , P = [P1, P2, . . . , PN ]

T , and L =


Il
1,1 Il

1,2 Il
1,N

Il
2,1 Il

2,2
...

. . .
Il
K,1 · · · Il

K,N

.

When multiple vehicles pass over the bridge, the total theoretical strain response will
be:

εt =
M

∑
m=1

Lm·Pm (12)

where M is the count number of all the vehicles on the bridge. It should be noted that
the matrix Lm in Equation (12) is calculated from the influence line of the lane the m-th
vehicle running at and the actual axle load position of the m-th vehicle. Equation (12) can
be rewritten as εt = L·P = [L1, L2, . . . , LM][P1, P2, . . . , PM]T .

Like influence line calibration, the error function can be constructed based on the
calibrated influence lines and the to-be-determined axle weights:

EP = ‖εm − L·P‖2
2 (13)

where εm =
[
εm

1 , εm
k , . . . , εm

K
]T . Apparently, as long as the number of sampling steps K is

not less than the total number of axle count of all the vehicles, the axle weight vector P can
be determined using the least-squares method:

P =
(

LTL
)−1

LT ·εm (14)

After the weight vector P for the axles of all the vehicles is obtained, the gross vehicle
weight (GVW) of each vehicle can be determined simply by summing the axle weights of
the vehicle.

3. Experimental Setup

A series of laboratory scale-model tests were conducted to evaluate the performance
of the proposed method. The test platform consisted of five parts: acceleration ramp,
acceleration approach, bridge model, deacceleration approach, and deacceleration ramp,
as shown in Figure 7a,b. The bridge had a width of 1.01 m and a length of 2.38 m,
and was made with polymethyl methacrylate (PMMA) material. A cross section of the
bridge is shown in Figure 7c. The Young’s modulus was 2795 MPa, and the density was
1181.6 kg/m3. More details of the test platform can be found in [40]. Two vehicle models,
as shown in Figure 7d, were constructed for the experiments. It should also be noted that
the spacing of the vehicle axles could be adjusted manually, and the weight of the vehicles
could be changed by adding or removing mass blocks to/from the vehicles. The details
of axle configurations (axle spacings and weights) of the vehicles for both calibration and
tests are summarized in Table 1.
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Figure 7. Experimental platform: (a) actual scene; (b) schematic diagram; (c) cross section (M-M) of
the bridge model; (d) vehicle models.
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Table 1. Axle spacings and weights of the vehicle models.

Vehicle Name Vehicle Model AS1 (m) AS2 (m) AW1 (kg) AW2 (kg) AW3 (kg) GVW (kg)

Calibration vehicle 3-axle 0.455 0.370 5.80 11.65 7.80 25.25

Test vehicle
2-axle 0.545 - 11.80 9.50 - 21.30
3-axle 0.320 0.545 5.71 17.33 18.83 41.87

Note: AS, axle spacing; AW, axle weight; GVW, gross vehicle weight.

Two T-shaped rails were mounted on the platform to laterally force the vehicles to
travel along the lanes. The lateral position of the rails was also adjustable. The initial speed
of the vehicles was controlled by releasing the vehicle at a set height on the acceleration
ramp. The height of all the supports of the five parts were individually adjustable. By ad-
justing the heights of the platform to form a slop road, the vehicles could be controlled to
run at a constant or non-constant speed. Furthermore, to simulate a randomly changed
speed (sudden acceleration or deacceleration), we directly dragged the vehicle by hand.

Four foil strain gauges (numbers G1 to G4, self-temperature compensated strain
gauges, 3 mm × 5 mm) used to measure the global response of the bridge were attached
under the soffit of the bridge girders and connected to a data acquisition equipment (an NI
PXIe-1082 containing an NI PXIe-4331 module and an NI PXIe-8135 controller; sampling
rate of 1000 Hz for vehicle speeds of 1 m/s~3 m/s), as shown in Figure 7a,b. These
gauges were so-called “weighing sensors”. Two foil strain gauges were placed at the
entrance and exit of each of the two lanes (positions A1, A2 and C1, C2) to monitor the
time when a vehicle entered and left the bridge. Then, the average speed of the vehicle
and its axle spacings could be calculated. These gauges were thus conventionally called
“axle detectors”. Another two strain gauges were closely placed at positions B1 and B2
(with a distance of 0.2 m) to simulate another widely used axle-detecting configuration
that monitored the instant speed of the vehicle while passing the mid-span of the bridge.
In addition, in this study of binocular-vision-based vehicle locating, a hardware-integrated
binocular camera was used to track the vehicles during the entire period from the moment
they entered the bridge to the moment they left the bridge under normal light conditions.
The baseline of the dual cameras was 334 mm. The resolution was 2560 × 960, and the
sampling rate was 60 frames per second.

4. Results and Discussion
4.1. Comparison of the Moving Object Detection Algorithms

In order to comprehensively compare the efficiency and robustness of the CV method
(based on background difference calculation and circle detection) and the DL method
(based on mask R-CNN) on the vehicle and wheel detection, the three-axle vehicle shown
in Figure 7d was set to run through the bridge and was recorded by the dual cameras.
In the experiment, the cameras were installed to capture the vehicles at different shooting
angles. The deflection angle between the camera lens plane and the longitudinal direction
of the bridge was set to be about 0◦ (no deflection), 15◦ degrees (slight deflection), and 30◦

(deflection). It should be noted that the bridge deck was made of transparent PMMA and
could reflect the vehicles in certain scenarios. For these tests, it was found that reflections
could be captured when the deflection angle was about 30◦. In real field tests, reflections
may occur due to water on the bridge surface, and shadows may appear due to sunlight.
Therefore, in this paper, the influence of the unexpected reflections on the performance of
vehicle and wheel detection was also studied.

The vehicle tracking results of the two methods under different scenarios are summa-
rized in Table 2. In the table, the recall rate of object detection is the ratio of the number
of frames in which the vehicle or wheel was successfully identified to the total number of
frames. It can be seen in the table that the DL method could correctly recognize the vehicle
in most frames. The DL method based on mask R-CNN obtained the vehicle positions
for all the frames, especially when the camera was not largely deflected (deflection angle
close to or less than 15◦). The CV method also worked very well for most tests, even with
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a 30◦ camera deflection angle. However, for the situations with the disturbance of reflec-
tions, the recall rate of vehicle detection decreased by more than 7%. For vehicle wheel
detection, both of the methods performed great when the deflection angle was not larger
than 15◦. When the camera was deflected to 30◦, the recall rates of the DL method were
still greater than 98%, showing a good reliability in vehicle wheel recognition. The CV
method performed worse in this section. This was because the CV method was based on a
circle detection method. Larger deflection angle made the images of wheels in the camera-
captured photos appear to be ellipses rather than standard circles. This drawback of the
CV method could theoretically be conquered by using a more advanced ellipse detection
method or by adding an image deflection correction step before circle detection in future
studies. It should be pointed out that the CV method took less than 0.18 s on an Intel i5
CPU for one frame prediction, and the DL method took more than 1.8 s. Therefore, the CV
method had a much better computational efficiency than the DL method, and computation
speed usually is very important for real-time applications.

Table 2. Object detection performance of the two methods.

Camera
Deflection

Angle
Reflection

Frame
Count

Recall Rate (%) Prediction Time
Per Frame (s)Vehicle Wheel

CV DL CV DL CV DL

0◦ No 139 98.56 100.00 97.84 100.00 0.172 1.820
15◦ No 160 98.13 100.00 96.88 100.00 0.172 1.819
30◦ No 172 97.67 99.42 84.88 98.84 0.174 1.814
30◦ Yes 193 90.16 99.48 81.35 98.45 0.179 1.822

It should also be noted that it was not necessary to conduct wheel detection for all
frames. Instead, to determine the axle spacing of a vehicle, only a single frame was needed,
or at most a few more frames for re-computation and confirmation. Table 3 shows the mean
value and standard deviation (SD) of the relative errors of the axle spacing identification
results. It can be seen from the table that the identification errors increased with the increase
in the camera deflection angle. The reflection also seemed to have a negative influence on
the axle spacing detection. However, the axle spacings were obtained with a good accuracy,
since all the mean values were close to zero, and the standard deviations were all less than
4%. In addition, unlike the detection of vehicle and wheel positions, the identification
errors of the CV method on axle spacing detection did not need to be greater than those of
the DL method.

Table 3. Axle spacing identification performance of the two methods.

Camera
Deflection

Angle
Reflection Statistical

Indicator

Relative Error (%)

CV DL

AS1 AS2 AS1 AS2

0◦ No
Mean −0.42 0.52 −0.20 0.14

SD 1.86 2.63 1.72 2.71

15◦ No
Mean 0.50 −0.41 0.14 −0.41

SD 2.35 2.11 3.03 2.34

30◦ No
Mean 1.24 −1.31 0.75 −0.80

SD 3.55 3.17 2.88 3.03

30◦ Yes
Mean 0.67 −1.75 0.73 −1.40

SD 3.31 3.18 3.82 3.06

Overall, both methods performed well in vehicle and wheel detection in this study.
The following sections will show that the results for the vehicle positions and axle spacings
met the requirement of axle weight identification. Apparently, the DL method had a better
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accuracy, and thus is a competitive alternative for vehicle and wheel detection in the future.
In the meantime, the CV method is still an applicable option for traffic object detection in
real BWIM systems due to its efficiency and the tolerance of the latest BWIM algorithms.

4.2. Vehicle Position Tracking

Figure 8 shows the 3D spatial positions (including velocity information) of the ve-
hicle’s first axle in the camera coordinate system during the tests and the longitudinal
locations of the vehicle’s first axle relative to time for several typical traffic scenes (such
as slow deceleration, sudden acceleration, vehicle following, and parallel driving). In the
spatial position figures, the sparseness of the vehicle trajectory points reflected the position
change of the vehicle; namely, the sparser the trajectory points, the faster the vehicle moved.
In the longitudinal location figures, the time histories of the data acquired from the axle de-
tectors (strain sensors placed on the bridge deck surface) were also plotted for comparison
purposes. The peaks on the curves indicated the time that the axles of the vehicle reached
the axle detectors. The times when the vehicle’s first axle reached the axle detectors were
interpolated from the location–time curve obtained from the camera-captured frames and
are marked in the figures as well. It was found that the time of the vehicle’s first axle reach
the axle detectors obtained from camera and axle detectors were basically consistent, which
proved that the vision-based axle detection methods in this study were capable of obtaining
reliable real-time locations of vehicle axles for BWIM usage. Furthermore, the methods
could detect multiple vehicle objects at the same time, thus laying a foundation for a BWIM
system to estimate axle and gross weight of vehicles for multiple vehicle presence.

Figure 8. Cont.
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Figure 8. The 3D spatial position and longitudinal location of vehicles: (a) slow deceleration; (b) sudden acceleration;
(c) vehicle following; (d) parallel driving.

4.3. Influence Line Calibration under Non-Constant Velocity

Before the process of axle weight identification, the influence line (IL) should be
calibrated. In the calibration tests of this study, a calibration vehicle (three-axle vehicle)
with known axle weights and axle spacing was set to pass over the bridge along the center
of each of the lanes in a range of speeds (1 m/s~3 m/s). During the tests, videos were shot
and the data of weighing sensors (strain gauges installed under the soffit of bridge girders)
were collected. The strain signals obtained from weighing sensors were then low-pass
filtered by using simple Fourier transform (FFT) and inverse Fourier transform with a
cut-off frequency at 10 Hz to remove the dynamic fluctuations and noise in the bridge
strain response. The filtered strain response was finally used to extract the influence line.

To calculate the influence line, the position of the vehicle and its axles had to be
determined. In the study, the axle position was obtained by using the proposed binocular-
vision-based load-locating method (see Figure 1a). In addition, the vehicle position is
conventionally computed from speed identified by using axle detectors based on constant
velocity assumption. For comparison, two configurations of axle detectors, referred to
as TRAD-1 and TRAD-2, were used. In the TRAD-1 scheme, two strain gages marked
A1 and A2 (see Figure 7b) were placed at the entrance and the exit of the bridge. In the
TRAD-2 scheme, two strain gages marked B1 and B2 (see Figure 7b) were placed in the
middle of the bridge with a distance of 0.2 m. The vehicle positions (represented using
the first axle) calculated using the three methods are plotted in Figure 9a, in which it can
be seen that differences existed in the axle positions obtained using the three methods.
The reason was that, due to inevitable frictional resistance between the vehicle wheels
and the bridge model, the calibration vehicle could not always maintain a constant speed,
and could slowly decelerates. It should be noted that, although the vehicle was intended to
run at an absolute constant speed in the calibrating test, it was highly possible for certain
fluctuations to occur in the real velocity of the vehicle, either significant or tiny.
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Figure 9. Influence line calibration: (a) identified axle position; (b) influence line calibrated from different methods.

Figure 9b shows the influence line extracted from the bridge response under the vehicle
load by using the previously obtained vehicle positions. The influence line measured by
single static load is also plotted in the figure. In Figure 9b, the abscissa of the influence
line is the load position (x, unit: m), and the ordinate is the influence line value (IL, unit:
µε·kg−1). “TRAD-1” and “TRAD-2” refer to influence lines calibrated using the vehicle
positions calculated from the installed axle detectors, respectively. “Static” refers to the
statically measured influence line. To quantitatively analyze the influence line results
calibrated using the proposed method and the traditional method, Table 4 shows the
detailed identification errors for eight calibration runs. In Table 4, v0 and vend indicate
the speed of the vehicle at the time it entered the bridge and the speed at which it left the
bridge, respectively; ∆v indicates the relative difference between the two speeds; and MSE
indicates mean-square error between the calibrated influence line and the static influence
line.

Table 4. Identification errors of the calibrated IL (lane 1).

No.
v (m·s−1)

∆v (%)
MSE (µε·kg−1)2

v0 vend V-BWIM TRAD-1 TRAD-2

1 1.36 0.87 −36.10 0.0098 0.7586 0.1941
2 1.37 0.91 −33.69 0.0123 0.6507 0.1624
3 1.64 1.25 −23.65 0.0105 0.3672 0.1204
4 1.67 1.32 −21.01 0.0096 0.2919 0.1059
5 2.04 1.67 −18.23 0.0105 0.2393 0.0930
6 2.09 1.74 −16.75 0.0098 0.2161 0.0872
7 2.60 2.26 −13.08 0.0125 0.1525 0.0712
8 2.67 2.38 −10.75 0.0010 0.1368 0.0654

Mean - - - 0.0107 0.3516 0.1125
SD - - - 0.0011 0.2167 0.0421

It was found from the figure that the influence lines calculated using the traditional
method, with the TRAD-1 or TRAD-2 scheme, were not consistent to the static IL. Specially,
the highest peak of the TRAD-1 and TRAD-2 curves were obviously prior to the peak of the
static IL. This was because the axle detectors could not provide the accurate axle position
for the entire test period. On the contrary, the IL calculated using V-BWIM methods fit
the static IL very well, no matter the IL curve shape, the peak location, or the peak height.
This indicated that the IL could be accurately acquired by the proposed method.

From the detailed results stated in Table 4, it was further revealed that the mean-
square error of the traditional methods increased with the increase of the speed difference;
while for the considered eight tests or similar scenarios, the MSE of the proposed V-
BWIM method remained steady and was significant smaller than that of the traditional
methods. Apparently, the negative impact of a non-constant speed on the accuracy of IL
calibration could be effectively suppressed by the proposed method, which again proved



Remote Sens. 2021, 13, 4868 17 of 23

that the accuracy of the identified vehicle position had an important influence on the IL
calibration, and the proposed vision-based, whole-period vehicle-position monitoring
technique was necessary for IL calibration use and future BWIM applications. Moreover,
for real applications in which traditional axle detectors are the option, it seems TRAD-2 may
be a more reasonable axle-detector scheme (sensors were installed close to the midspan)
than TRAD-1 due to its better performance, since the predicted axle position using the
TRAD-2 scheme was closer to the real position than that of the TRAD-1 scheme.

Based on the proposed method, the influence line of each of the two lanes was
calibrated and averaged from eight independent tests to reduce the effect of dynamic
vibration and measurement noise, as shown in Figure 10.

Figure 10. Calibrated influence line (averaged from 8 ILs).

4.4. Vehicle Weight Identification under Non-Constant Velocity

It was obvious that a similar accuracy would be achieved using the proposed method
and the traditional axle-detector-based method for a situation in which the vehicle ran
at a constant speed; thus, only non-constant scenarios were conducted in this section
to evaluate the advantages of the proposed method. In the non-constant-velocity tests,
a three-axle vehicle was used to simulate four types of typical driving behavior: VS-I
(vehicle accelerates at 1/2 span), VS-II (vehicle decelerates at 1/2 span), VS-III (vehicle
accelerates at 1/4 span and decelerates at 3/4 span), and VS-IV (vehicle decelerates at 1/2
span until stopping, and then accelerates to leave the bridge). For each testing mode, eight
independent tests were performed. In addition, in order to compare the traditional vehicle
weight identification method with the proposed method, the axle detectors (A1 and A2) at
the entrance and exit of the bridge and the axle detectors (B1 and B2) near the mid-span
were used to detect the vehicle speed for the vehicle weight identification of the traditional
method.

For illustration purposes, Figure 11 shows the measured bridge strain of one of the
eight tests for each of four driving scenarios, respectively. The results of vehicle tracking
are also plotted in the figure. Stars on the vehicle position curve indicate where the vehicle
changed its speed. The original bridge strain was filtered, and then was used by the
proposed V-BWIM method to obtain the axle weight of the vehicle. The reconstructed
strains based on the identified weight and IL for the tests are also plotted in Figure 11.
To evaluate the extent of accordance between the reconstructed strain and the source strain
(filtered), a ratio r2 of the norm of difference between the two strain curves to the norm of
the source strain was introduced; the formula of r2 is shown as follows:

r2 =
‖y′ − y‖2

2

‖y‖2
2

(15)

where y is the vector of the source strain (filtered), and y′ is the vector of the reconstructed
strain. Apparently, r indicates the relative vector error between the two strain vectors.
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Figure 11. Bridge strain and identified vehicle position (non-constant velocity): (a) VS-I: vehicle accelerates at 1/2 span;
(b) VS-II: vehicle decelerates at 1/2 span; (c) VS-III: vehicle accelerates at 1/4 span and decelerates at 3/4 span; (d) VS-IV:
vehicle decelerates at 1/2 span until stopping, and then accelerates to leave the bridge.

The relative vehicle weight identification errors and the relative vector errors r of the
proposed method are summarized in Table 5. The relative vehicle weight identification
errors of the traditional axle-detector-based methods are summarized in Tables 6 and 7.
TRAD-1 and TRAD-2 indicate the relative errors by using the traditional method with the
two schemes of axle detector installations (A1 and A2, B1 and B2), respectively. In the table,
mean and SD refer to the average value and standard deviation of the relative errors of the
eight tests for each driving scenario.

Table 5. Vehicle weight identification errors of V-BWIM.

Scenario Statistical
Indicator

Relative Error (%)
r (%)

AW1 AW2 AW3 GVW

VS-I
Mean 3.41 −2.28 2.59 0.69 2.71

SD 4.32 3.06 3.78 1.23 3.15

VS-II
Mean 3.06 0.80 3.30 2.23 2.57

SD 5.20 2.49 2.39 0.58 2.21

VS-III
Mean −0.39 −3.69 2.44 −0.48 3.09

SD 5.33 3.84 4.81 1.06 3.72

VS-IV
Mean 6.18 −4.42 5.44 1.46 3.69

SD 3.41 2.49 3.15 0.94 3.27
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Table 6. Vehicle weight identification errors of TRAD-1.

Scenario Statistical
Indicator

Relative Error (%)

AW1 AW2 AW3 GVW

VS-I
Mean −76.98 −100.00 63.83 −23.18

SD 4.32 0.00 3.36 1.84

VS-II
Mean 330.14 −37.14 −54.54 5.12

SD 17.97 3.93 2.92 0.93

VS-III
Mean −76.26 −100.00 64.64 −22.72

SD 5.38 0.00 2.51 1.15

VS-IV
Mean 46.82 −100.00 64.17 −6.15

SD 45.52 0.00 4.02 6.87

Table 7. Vehicle weight identification errors of TRAD-2.

Scenario Statistical
Indicator

Relative Error (%)

AW1 AW2 AW3 GVW

VS-I
Mean 229.17 −92.82 29.17 5.95

SD 13.23 7.49 7.20 2.36

VS-II
Mean 8.51 −9.20 17.82 5.37

SD 2.99 1.60 2.11 0.74

VS-III
Mean 113.68 −43.33 12.79 3.32

SD 15.28 5.54 2.64 1.56

VS-IV
Mean 217.11 −81.05 43.13 15.46

SD 30.17 23.74 20.04 6.03

From Tables 6 and 7, it is easy to see that the results of the traditional method (for
both of the two axle-detector schemes) were not reliable under the considered non-constant
velocity situations. On the contrary, as shown in Table 5, all the errors of the proposed
method were successfully controlled to be less than 2.5% for gross weight identification,
and the axle weight errors did not exceed 6.5%. In Figure 11, it can be seen that the recon-
structed strain and the source strain (filtered) were in a very good accordance (the relative
vector error r for all tests was below 4%). Overall, we concluded that the proposed method
could accurately identify axle weights of a vehicle even it passed over the instrumented
bridge at a non-constant velocity.

4.5. Vehicle Weight Identification for Multiple Vehicle Presence

Another advantage of using traffic surveillance cameras is that all the vehicles on
the test bridge could be captured and effectively tracked at the same time. Therefore,
the proposed method has a good potential ability to properly deal with the multiple
vehicle presence problem of BWIM systems. In order to verify the effectiveness of the
method on multi-vehicle weight identification, two typical traffic scenes were simulated:
two vehicles (a two-axle vehicle and a three-axle vehicle) following one by one (M-I),
and the two vehicles running in parallel lanes (M-II, two-axle vehicle in the left lane and
three-axle vehicle in the right lane). The experiment was independently repeated eight
times to reduce the effects of randomness. During the tests, the inevitable friction again
made the vehicles slowly decelerate.

As in the single-vehicle tests, the bridge strain response was measured and filtered,
and the vehicle position was tracked, as shown in Figure 12, for the proposed method to
detect the vehicle axle weight. The errors of the identified weight of the two vehicles by
the proposed method are illustrated in Table 8. Mean and SD refer to the average value
and standard deviation of the relative error of the eight tests for each driving scenario.
In addition, for comparison purposes, the axle detectors (A1, A2 and C1, C2) at the entrance
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and exit of each of the two lanes were used to detect the number of axles and vehicle speed
as well for vehicle weight identification by using the traditional axle-detector-based method.
The relative errors of the identification results for the traditional method are shown in
Table 9.

Figure 12. Bridge strain and identified vehicle position (multiple vehicle presence): (a) M-I: vehicle following, bridge
strain; (b) M-I: vehicle following, vehicle positions; (c) M-II: parallel driving, bridge strain; (d) M-II: parallel driving,
vehicle positions.

Table 8. Vehicle weight identification errors of V-BWIM.

Scenario Statistical
Indicator

Relative Error (%)

Two-Axle Vehicle Three-Axle Vehicle

∆v (%) AW1 AW2 GVW ∆v (%) AW1 AW2 AW3 GVW

M-I
Mean −14.11 −2.52 −1.74 −2.17 −29.19 −2.52 0.06 1.40 −0.12

SD 0.83 2.42 3.96 1.95 7.44 5.65 3.30 3.89 0.95

M-II
Mean −17.28 0.74 −2.75 −0.82 −39.20 0.10 2.99 2.93 2.31

SD 2.18 1.44 2.81 0.91 7.63 4.82 1.95 4.39 0.85

Table 9. Vehicle Weight identification errors of the traditional method.

Scenario Statistical
Indicator

Relative Error (%)

Two-Axle Vehicle Three-Axle Vehicle

∆v (%) AW1 AW2 GVW ∆v (%) AW1 AW2 AW3 GVW

M-I
Mean −14.11 22.47 −34.47 −2.92 −29.19 112.56 −20.64 −42.10 3.33

SD 0.83 5.27 7.36 1.71 7.44 30.80 10.92 17.47 1.66

M-II
Mean −17.28 31.66 −49.68 −4.62 −39.20 148.95 −28.98 −47.39 6.20

SD 2.18 2.29 6.84 2.37 7.63 24.77 10.26 7.01 1.37

It can be seen in Table 8 that all the relative gross vehicle weight errors were less
than 3%, and the axle weight errors also did not exceed 6%. In Figure 12, it can also be
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seen that the reconstructed strain based on the identified weight and IL were very close
to the source strain (filtered). In addition, it can be seen in Table 9 that the gross vehicle
weight (GVW) of each of the two vehicles was obtained by the traditional method with a
worse accuracy relative to V-BWIM method, but was still acceptable: most of them were
smaller than 5%, and all of them were no more than 6.2%. However, the axle weight
error dramatically grew to not less than 20%, which was multiple times larger than that
of the V-BWIM method. Namely, even for a slight speed change, while the identified
GVW result may not be significantly affected, unignorable errors could be imported in axle
weight identification. This proved that the traditional method based on constant speed
consumption is highly sensitive to the quality of the result of vehicle speed monitoring.
Therefore, a reliable vehicle positioning method is crucial for ensuring the effectiveness of
vehicle weight identification. Considering the performance of the proposed method on
the considered tests, we concluded that the new V-BWIM method can be a competitive
alternative for multiple vehicle weight monitoring.

5. Conclusions

Vehicles can travel at variable speeds when crossing a bridge. Due to this, traditional
BWIM techniques cannot accurately match the position of the vehicles on the bridge with
the bridge response, leading to errors in vehicle weight identification. This paper proposed
a new strategy of the BWIM technique that consisted of three parts: the binocular-vision-
based vehicle-locating method, the real-position-based influence line calibration method,
and the real-position-based axle weight identification method. Laboratory experiments
with scaled vehicle and bridge models were conducted to evaluate the performance of
proposed method. Based on the test results, the following conclusions were reached:

(1) For moving vehicle tracking, the deep learning (DL) method based on mask R-CNN
had a better accuracy, but the conventional CV method was more efficient. Regarding
axle spacing identification, there was no significant difference between the two meth-
ods. Generally, both methods could fulfill the requirements of a BWIM system based
on the need of vehicle load position identification. In future practical applications,
it would be worth combining the two methods to obtain a faster and more accurate
vehicle-tracking method.

(2) A slight change of vehicle speed can induce remarkable errors in the influence line
calibration results for conventional BWIM methods that are based on constant speed
assumption. Test results showed that a larger change of speed caused larger errors,
while the mean-square errors of the influence line extracted by the proposed V-BWIM
method for all the considered varying speeds were similar, and were 10 times smaller
than those of the conventional method. Namely, the proposed method could accu-
rately estimate the bridge influence line despite speed changes during the calibration
process.

(3) The largest relative errors of identified axle weight and gross vehicle weight by
using the V-BWIM method were 6.18% and 2.23%, respectively, for all single-vehicle-
presence tests in which the vehicle ran at a non-constant speed. In contrast, those
errors of the conventional method could exceed tens, and even hundreds of percent.
The reason for this was mainly because the V-BWIM method constructed the objective
function based on the correct relationship between axle load positions and bridge
response, while the axle position information that the conventional method used was
calculated from vehicle speed and axle spacing, which was not consistent with the
real position under the circumstances in which the vehicle did not run at a constant
speed. Thus, obtaining accurate load positions and providing them to a BWIM system
is vital for axle weight identification.

(4) For a multi-presence scenario in which two vehicles were passing over the test bridge
one by one or side by side, the axle and gross weight of the vehicles was successfully
obtained, with axle weight errors less than 6% and gross weight errors less than
3%. It also outperformed the traditional method, which, in the conducted slow-
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deceleration tests, the gross weight error was still controlled within 7%, but the axle
weight error was vast and unacceptable.

The main advantage of the proposed V-BWIM method is that the vehicle position at
every moment during the period the vehicle passes over the bridge is tracked, and the axle
weight then can be accurately obtained. However, these conclusions were made based on
laboratory tests. In future studies, field tests should be conducted to verify the effectiveness
of the method in real-world scenarios. Moreover, the computational efficiency of the object-
locating algorithm based on dual camera vision used in this paper should be improved
for real-time applications in the future. It should also be noted that the proposed V-BWIM
method was only verified in a laboratory with normal brightness and stable camera system.
For real applications under unfavorable conditions such as low light and extreme weather,
necessary measures such as additional illumination or a pre-defogging process should be
adopted to prevent failure.
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