
remote sensing  

Article

Error Evaluation of L-Band InSAR Precipitable Water Vapor
Measurements by Comparison with GNSS Observations
in Japan

Keita Matsuzawa 1,* and Yohei Kinoshita 2

����������
�������

Citation: Matsuzawa, K.; Kinoshita,

Y. Error Evaluation of L-Band InSAR

Precipitable Water Vapor

Measurements by Comparison with

GNSS Observations in Japan. Remote

Sens. 2021, 13, 4866. https://doi.org/

10.3390/rs13234866

Academic Editors: Giovanna Venuti,

Andrea Monti Guarnieri and

Antonio Parodi

Received: 25 October 2021

Accepted: 26 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 3058573, Japan
2 Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 3058573, Japan;

ykinoshita@risk.tsukuba.ac.jp
* Correspondence: s2120547@s.tsukuba.ac.jp

Abstract: Interferometric synthetic aperture radar (InSAR) enables us to obtain precipitable water va-
por (PWV) maps with high spatial resolution through the phase difference caused by refraction in the
atmosphere. Although previous studies have evaluated the error level of InSAR PWV observations,
they validated it only with C-band InSAR PWV observations. Since ionospheric disturbance seriously
contaminates the InSAR phase in the case of the lower-frequency SAR system, it is necessary for a
PWV error level evaluation correcting the ionospheric effect appropriately if we use lower-frequency
SAR systems, such as the Advanced Land Observing Satellite-2 (ALOS-2). In this paper, we evaluated
the error level of the L-band InSAR PWV observation obtained from ALOS-2 data covering four
areas in Japan. We compared the InSAR observations with global navigation satellite system (GNSS)
atmospheric observations and estimated the L-band InSAR PWV error value by utilizing the error
propagation theory. As a result, the L-band InSAR PWV absolute error reached 2.83 mm, which
was comparable to traditional PWV observations. Moreover, we investigated the impacts of the
seasonality, the interferometric coherence, and the height dependence on the PWV observation
accuracy in InSAR.

Keywords: InSAR; ALOS-2; water vapor; error propagation theory

1. Introduction

Water vapor in the atmosphere plays an important role in weather and climatic
processes [1,2]. Tropospheric water vapor has highly fluctuating characteristics in both
time and space, leading to a relatively poor understanding of it compared with other
atmospheric variables, such as wind and temperature fields. In short timescale cases
ranging from minutes to hours, previous studies have reported an increase in the amount
of water vapor just before severe precipitation [3–5]. Therefore, monitoring the amount
and the spatial distribution of atmospheric water vapor in detail is crucial to improving
precipitation prediction and understanding the terrestrial water cycle [6,7].

Interferometric synthetic aperture radar (InSAR) has been used to measure precipitable
water vapor (PWV) maps with high spatial resolution (a few tens of meters) (e.g., [8–12]).
When microwaves emitted from a satellite travel through the neutral atmosphere, the
phase velocity of the microwave is changed, and the travel path is bended due to having
a different refractive index to the vacuum. This effect is called the neutral atmospheric
propagation delay effect. In particular, in the case of InSAR, water vapor plays a dominant
role in the neutral atmospheric propagation delay effect due to its high variability in both
time and space. The dry atmospheric InSAR delay is large, but the heterogeneity of it over
the scene depends on the scene size. In the case of the standard strip map observation
mode, the effect of the dry atmosphere is smaller than that of the wet atmosphere [13].

The satellite InSAR technique was originally used to measure the surface displacement
occurring between two SAR acquisition times by using the microwave phase difference. In
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view of the surface deformation observation, atmospheric water vapor is one of the most
problematic error sources in InSAR observations. Therefore, even if there is no surface
displacement between two observations, InSAR phase information mainly reflects the effect
of atmospheric water vapor. In sum, if the atmospheric delay signal and other contributions,
such as the surface displacement and the ionospheric noise, can be adequately separated
from the InSAR data, it is possible to obtain the water vapor distribution at a high spatial
resolution in orders of tens to hundreds of meters, regardless of the weather conditions [14].

The distribution of water vapor in the atmosphere is not uniform but is greatly
affected by weather conditions. There are two types of water vapor observation techniques
currently used for operational weather predictions: one is ground-based observations,
such as the radiosonde and the global navigation satellite system (GNSS), and the other is
satellite observations using GNSS radio occultation techniques [15] and infrared/passive
microwave sensors. However, ground-based observations such as the GNSS have the
limitation that the spatial resolution depends on the station’s density, resulting in, for
example, tens of kilometers in the best operational case scenario of GNSS [16]. Water
vapor is observed at a low spatial density as the geometric distance between neighboring
observation points is usually at least several tens of kilometers or more. On the other hand,
the satellite infrared observation cannot be used for water vapor in cloudy conditions.

It is expected that the accuracy of precipitation prediction can be improved by incor-
porating InSAR data into weather forecast models in addition to traditional observation
data, as InSAR has the advantage of its unprecedented high spatial resolution, even under
cloudy conditions, which may complement the weakness of traditional water vapor obser-
vation techniques [17]. In a previous study that assimilated InSAR-derived water vapor
information into a meso-scale weather model, precipitation prediction improved by up
to 9 h [7]. In addition, a continuous use of InSAR water vapor information for short-term
weather forecasting at the Iberian Peninsula using Sentinel-1 indicated a positive impact for
improving precipitation prediction [18]; however, InSAR water vapor information has not
yet been put into practical use for operational weather forecasting, and thus it is necessary
to further investigate the potential of InSAR water vapor observation for the improvement
of precipitation prediction.

The statistical evaluation of the accuracy and precision of InSAR water vapor obser-
vation is indispensable, especially for each type of microwave frequency band used in
SAR systems. This is due to the fact that noise characteristics largely differ depending
on the microwave center frequency; however, in previous studies, only the observation
accuracy of C-band SAR was evaluated. (e.g., [19,20]). Currently, three frequency bands
are used for SAR satellites: X-band (e.g., 9.65 GHz), C-band (e.g., 5.40 GHz), and L-band
(e.g., 1.25 GHz). L-band SAR observations are typically less sensitive to the surface cover
change due to, for example, the vegetation change rather than a higher frequency SAR,
such as C-band SAR. Therefore, L-band SAR has the advantage that the phase information
of the received data in two observations can easily interfere with each other, even in the
case of mountainous and richly vegetated areas such as Japan.

When microwaves pass through the ionosphere in the upper atmosphere, the phase
velocity of the microwaves changes and appears in the InSAR data as an apparent change
in line-of-sight distance. The phase variation due to the ionosphere (hereafter referred to as
ionospheric delay) is caused by free electrons in the ionosphere, which has a dispersive
nature within the microwave frequency range. Therefore, the lower the center frequency is,
the larger the change in the wave phase velocity becomes. In particular, the ionospheric
delay effect is significant in L-band SAR compared to other SAR systems. In order to utilize
L-band InSAR data for meteorology, it is necessary to separate the ionospheric delay from
the neutral atmospheric delay.

We need to clarify the error level of the water vapor observation in L-band SAR
systems, which has not been evaluated in previous studies. In this study, we statistically
evaluated the L-band InSAR observation error of water vapor, with the aim of improving
the precipitation forecast accuracy by using InSAR water vapor information, especially
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under extreme weather situations. This paper is organized as follows. In Section 2, we
introduce atmospheric delay physics. In Section 3, we describe methods to estimate the
InSAR PWV error level. In Section 4, we present outlines of the SAR and GNSS data used
in this study. In Section 5, results of the error estimation are shown. Sections 6 and 7 are
the discussion and the conclusion.

2. Atmospheric Delay Physics

The basic InSAR observable is the phase difference of microwaves obtained from two
SAR acquisitions. The observed phase difference φInSAR contains several contributions,
which can be expressed as follows:

φInSAR = φdisp + φorb + φtopo + φion + φneutral_atm + φnoise (1)

where φdisp represents the phase change due to the surface displacement that occurred
during the two observations, φorb is the phase variation due to possible orbital errors, and
φtopo is the residual topographic phase due to errors in the digital elevation model (DEM)
data. φion and φneutral_atm are the atmospheric propagation delays in the ionosphere and
the neutral atmosphere, respectively. φnoise represents all other sources of noise.

From the previous study [21], the propagation distance L of microwaves can be
expressed as follows:

L =
∫

s
nds (2)

where n is the refractive index and ds is the path increment at an arbitrary location in
the atmosphere.

The atmospheric delay ∆L is given as follows:

∆L =
∫

s
nds− G =

∫
s
(n− 1)ds + [S− G] (3)

where S is the actual propagation path length, and G is the geometric distance between the
satellite and the Earth’s surface. In sum, the bending effect expressed in the second term of
the right-hand side is negligibly small in the range of the SAR incidence angle from 20◦ to 50◦.
Therefore, we can ignore the term S− G.

The ionospheric delay is due to the existence of electrons, and the ionospheric range
delay (Lion) at frequency (f) can be written as follows:

Lion = α ∗ STEC/ f (4)

where α is a constant value used to convert the total election content unit (TECU) to the
unit of length, and STEC represents the slant total election content [22].

The refractive index of the neutral atmosphere is a function of temperature T (Kelvin),
partial pressure of dry air Pd (hPa), and partial pressure of water vapor Pv (hPa), which is
expressed as follows [23]:

106[n− 1] = k1

(
Pd
T

)
Z−1

d + k2

(
Pv

T

)
Z−1

v + k3

(
Pv

T2

)
Z−1

v (5)

where Zd and Zv are the compressibility factors of dry air and water vapor, respec-
tively, which can be assumed as equal to the unit value in the ordinary air condition.
k1 = 77.6 (K/hPa), k2 = 70.4 (K/hPa) and k3 = 3.739× 105 (K2/hPa) are the coefficients
determined by laboratory experiments. These specific values were given by [24].
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In particular, the neutral atmospheric delay integrated from the surface to the top of
the atmosphere in the zenith direction is called the “zenith total delay” (ZTD) and can be
written as follows:

ZTD = 10−6
[∫

Zenith k1

(
Ra
md

)
ρdz + k′2

∫
Zenith

(
Pv
T

)
Z−1

v dz+

k3
∫

Zenith

(
Pv
T2

)
Z−1

v dz
]
,

(6)

where ρ is the total density of the atmosphere, md is the molecular weight of dry air
(28.9644 kg/kmol), z is the height and Ra is the universal gas constant (8314.34 J/kmol·K).
In the equation, we introduced a new coefficient, k′2 ≡

(
k2 − k1

mv
md

)
, where mv is the

molecular weight of water vapor (18.0152 kg/kmol). The first term on the right-hand
side of Equation (6) is the effect of the molecular weight of air in the atmosphere, and the
second and third terms on the right-hand side are the delay due to water vapor alone in
the atmosphere. The first term is denoted as the “zenith hydrostatic delay” (ZHD), and the
latter as the “zenith wet delay” (ZWD).

The ZHD can be modeled accurately using the surface pressure P0, the latitude at the
point ϕ and the ellipsoidal height H as follows [25]:

ZHD = (2.2779± 0.0024)
P0

f (ϕ, H)
(7)

and
f (ϕ, H) = (1− 0.00266cos2ϕ− 0.00028H). (8)

The uncertainly given for the ZHD (σZHD) is approximately 2.41 mm [25].
The ZWD is the residual of the ZTD subtracted by the ZHD (ZWD = ZTD − ZHD).

Therefore, the ZWD can be expressed as follows [26]:

ZWD = 10−6
[
k′2
∫

Zenith

(
Pv
T

)
Z−1

v dz + k3
∫

Zenith

(
Pv
T2

)
Z−1

v dz
]

= 10−6Rv

(
k′2 + k3

∫
Zenith

(
Pv
T2

)
dz∫

Zenith(
Pv
T )dz

)
·
∫

Zenith
Pv

RvT Z−1
v dz.

(9)

PWV is the total amount of water vapor contained in the atmospheric column over a
unit area. The relationship between ZWD and PWV is given as follows:

ZWD = Π−1·PWV, (10)

here

Π =
106

ρwRv

(
k′2 +

k3
Tm

) (11)

and

Tm =

∫
Zenith

(
Pv
T2

)
dz∫

Zenith

(
Pv
T

)
dz

, (12)

where Rv is the gas constant of water vapor, ρw = 1000kg/m3 is the density of water
vapor, and Tm is the average air temperature weighted by the partial pressure of water
vapor above the surface (weighted average air temperature) [26]. Fortunately, Tm can be
approximated by the ground temperature Ts as follows [21]:

Tm ≈ 70.2 + 0.72Ts. (13)

In sum, Π can be approximately regarded as a function of the ground temperature.
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3. Error Evaluation Method

InSAR originally observes the phase change φInSAR, which reflects the differences in
microwave propagation path lengths. φInSAR is the linear sum of phase changes due to
several factors, as shown in Equation (1). Regarding the neutral atmospheric delay, InSAR
observes the relative difference in atmospheric delays between two acquisition times. In
this study, we estimated the “InSAR zenith total delay difference” (dZTDInSAR), whose
offset was calibrated using the “GNSS zenith total delay difference” (dZTDGNSS) according
to the formulae provided in previous studies [19,20]. Hereinafter, “InSAR initial value” (IV)
denotes the phase delay in the zenith direction converted from the satellite line-of-sight
direction using the incidence angle θ and a simple trigonometric function. IV was derived
through the following equation as follows:

IV(i) = φneutral_atm(i) × cos θ(i) × λ/4π (14)

where i (= 1, 2, . . . , n) is the colocation point number of the GNSS and InSAR observation
point in the target area. Here, it should be noted that InSAR observations reflect the delay
along the line-of-sight (narrow tube), but GNSS ZTDs reflect the average of the delay
within the inverse cone space above GNSS stations. This indicates that GNSS-derived
atmospheric values are representative values within the inverse cone, whose radius at
the tropopause (approximately 12 km around Japan) was approximately 100 km, with
the cut-off angle of 7 degrees, in our case. On the other hand, the InSAR phase is only
affected by the atmosphere along the microwave path, indicating that the InSAR PWV
signal reflects the atmospheric heterogeneity within a narrow tube (radius ranging from
a few to a hundred meters depending on multilooking and filtering processes) between
the ground and the satellite. In this context, we should keep in mind that the spatial
representativeness of InSAR PWV observation is intrinsically different from that of GNSS.
Therefore, to compensate for this representativeness gap between InSAR and GNSS, even
if only slightly, we applied significantly large multilooking and strong spatial filtering to
all interferograms, resulting in values of the actual spatial resolution of several hundred
meters or larger. Details of the InSAR processing are described in Section 4.1.

The IV must be calibrated to be converted into dZTDInSAR. The amount of an offset
in a specific scene (O f f set) is determined by the non-weighted average of estimated
differences between the IV and dZTDGNSS at each station i within the scene:

dZTDGNSS(i) = ZTD2GNSS(i) − ZTD1GNSS(i), (15)

O f f set =
1
n

n

∑
i=1

(
dZTDGNSS(i) − IV(i)

)
, (16)

where ZTD1GNSS and ZTD2GNSS represent the ZTD observed by GNSS at times clos-
est to the reference SAR observation and the secondary one, respectively. Using the
estimated offset, we could obtain dZTDInSAR at an arbitrary pixel i (dZTDInSAR(i)) by
adding it to IV:

dZTDInSAR(i) = IV(i) + O f f set. (17)

The standard deviation of residuals between dZTDGNSS and dZTDInSAR represents
the relative error of dZTDInSAR from dZTDGNSS. As previous studies that evaluated mea-
surement errors of other kinds of water vapor measurement techniques estimated these
absolute errors by assuming the radiosonde observation technique as the most accurate,
our study finally estimated the absolute error of the L-band InSAR PWV measurement
by considering the radiosonde-derived PWV values as the true value. In sum, we con-
sidered the relative error of the InSAR PWV measurement against the radiosonde PWV
measurement as the absolute error of the InSAR PWV observation. To estimate the standard
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deviation of residuals between dZTDInSAR and dZTDGNSS, we defined the residual (R(i))
at a location i between dZTDGNSS(i) and dZTDInSAR(i) as follows:

R(i) = dZTDGNSS(i) − dZTDInSAR(i). (18)

Then, its standard deviation (σR) was calculated as follows:

σR =

√
1
N ∑ ∑

(
R− R(i)

)2
, (19)

where R represents the mean of R(i) in a specific interferogram.
Then, we could reasonably assume that errors of ZTD1GNSS(i) and ZTD2GNSS(i) had

no correlation and could be set as equal (σZTD1_GNSS = σZTD2_GNSS = σZTD_GNSS) since
the time interval of these two observations was larger than 14 days, which is the recurrence
interval of the ALOS-2 satellite. Under this assumption, we could express the error of
dZTDGNSS using the law of error propagation as follows:

σdZTD_GNSS =
√

2 ∗ σZTD_GNSS. (20)

In our study, we adopted σZTD_GNSS as 17.0 mm, as obtained in a previous study [27].
The absolute dZTD error of InSAR, which is the relative error against the radiosonde

dZTD, is equal to the root of the square sum of (1) the relative error of the GNSS dZTD
(σZTD_GNSS), (2) the processing error of the GNSS ZTD (σSys_GNSS), and (3) the relative error
of dZTDInSAR from dZTDGNSS (σR). Using Equation (20), σdZTD_InSAR can be expressed
as follows:

σdZTD_InSAR =
√

2σ2
ZTD_GNSS + 2σ2

Sys_GNSS + σ2
R (21)

Here, σSys_GNSS is fixed as 3.0 mm, which is the rough average from the processed
GNSS ZTD data [28].

As Equation (21) represents the error of difference of two InSAR ZTD observations,
its decomposition into the error of InSAR ZTD measurements at a single observation
is required. Assuming that there is no correlation between atmospheric delays in each
SAR acquisition time, the error of InSAR ZTD (σZTD_InSAR) can be introduced using
the law of error propagation from σdZTD_InSAR in Equation (21). From the assumption,
standard deviations (errors) of InSAR ZTDs at reference and secondary observations can
be regarded as equal. As the dZTDInSAR is derived from two independent InSAR ZTDs
(dZTDInSAR = ZTD2InSAR − ZTD1InSAR), σdZTD_InSAR can be decomposed as the root

of the square sum of two standard deviations of
√

2σ2
ZTD_InSAR. This can be expressed

as follows:
σdZTD_InSAR =

√
2 ∗ σZTD_InSAR. (22)

To estimate the PWV error, we further needed to decompose σdZTD_InSAR into errors
of dry and wet components. From the relationship between ZWD and ZTD, the error of
InSAR ZWD (σZWD_inSAR) can be expressed as follows:

σZWD_InSAR =
√

σ2
ZTD_InSAR + σ2

ZHD, (23)

where σZHD is the estimation error of ZHD in Equation (7), and as introduced in Section 2,
we set this value as 2.41 mm from the previous study [25]. Using Equation (23), we could
remove the contribution of the dry air and obtain the error of InSAR ZWD measurements,
which was used to obtain the error of the InSAR PWV measurements.

The relationship between ZWD and PWV is provided by Equations (10) – (13). Ac-
cording to [24], the PWV conversion factor Π can be estimated with good accuracy using
the surface temperature. As the sensitivity of Π to Ts is small, in this study, we used a
fixed value of surface temperature, Ts = 299.30(K), which was estimated from the average
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temperature from June to September (hereafter referred to as the wet season) in 2020 in
the Kyushu region, where heavy rainfall events are especially likely to occur in this season.
The reason that we chose this period is that a large amount of SAR data we used were
obtained in Kyushu during the wet season. Specifically, we used Π = 0.163, and thus the
absolute error of the InSAR PWV (σPWV_InSAR), which we aimed to estimate, is expressed
as follows:

σPWV_InSAR = 0.163 ∗ σZWD_InSAR. (24)

4. Data
4.1. InSAR Data

The SAR data used in this study were acquired by the phased array L-band
SAR 2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which
is operated by the Japan Aerospace Exploration Agency (JAXA). The observation mode
used here was the strip map (SM) ultrafine mode with a spatial resolution of 3 m in both
range and azimuth directions. The single SAR scene in the SM mode covers an area of
approximately 50 × 50 km2. All interferograms were generated from level-1.1 Single Look
Complex (SLC) images using the Radar Interferometry Calculation Tools (RINC) software
ver. 0.41r [29]. φorb was estimated from the high-precision satellite orbit data provided
by JAXA, and φtopo was removed by simulating the terrain fringes with the 3-arcsecond
Shuttle Radar Topography Mission (SRTM) DEM provided by the United States Geological
Survey (USGS). Multilook processing resulted in an improvement in the interferometric
coherence by sacrificing the spatial resolution of the InSAR data to approximately 100 m in
both range and azimuth directions. We used the Goldstein and Werner filter with the alpha
value of 0.7 and the filter window size of 32 pixels to reduce small-scale phase noises [30].
After removing these phase contributions, we could obtain the phase difference due to the
neutral atmospheric delay. The statistical-cost, network-flow phase-unwrapping algorithm
(SNAPHU) software was used for phase unwrapping [31]. For the calculation of residuals,
we used IV, where the interferometric coherence was greater than 0.3.

The ionospheric delay φion was estimated and removed by the range split-spectrum
method (SSM) [32]. As Gomba et al. [32] demonstrated, SSM can largely reduce ionospheric
delay phase contaminations by splitting the range spectrum into higher and lower parts.
Although several papers have reported the effectiveness of SSM to mitigate the ionospheric
delay signal [33–35], to the best of our knowledge, none of the reviewed papers reported
its statistical performance. According to the derivation of Gomba et al. [32], the theoretical
estimation accuracy of the ionospheric delay by SSM is an order of centimeters or less
depending on the interferometric coherence and the multilooking size. We visually checked
all interferograms and found that the application of SSM to interferograms with serious
ionospheric delay contaminations showed a significant reduction, especially for long-
wavelength phase variations.

We selected four areas in Japan—southern Ibaraki, western Tokyo, Osaka and southern
Kyushu—where a significant number of GNSS stations and ALOS-2 SM1 mode SLCs are
available (Figure 1). The orbit is ascending in southern Ibaraki and descending in the other
areas. Detailed information of the SAR observations is summarized in Table 1.

Table 1. Detailed information of SAR observations in four Japanese areas.

Area Path-Frame Orbit SLCs Interferograms Period

Southern
Ibaraki 125-710 Ascending 14 7 13 September 2015–

14 June 2020

Western
Tokyo 18-2900 Descending 20 10 15 February 2015–

2 April 2020

Osaka 20-2920 Descending 12 6 5 October 2014–
20 January 2019

Southern
Kyushu 23-2970 Descending 46 23 9 February 2015–

17 August 2020



Remote Sens. 2021, 13, 4866 8 of 18

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 18 
 

 

Western 
Tokyo 

18–2900 Descending 20 10 15 February 2015– 
2 April 2020 

Osaka 20–2920 Descending 12 6 5 October 2014– 
20 January 2019 

Southern 
Kyushu 

23–2970 Descending 46 23 9 February 2015– 
17 August 2020 

 
Figure 1. The geographic configuration: Black rectangles indicate coverages of ALOS-2 data with 
each path-frame (125-710, 18-2900, 20-2920, 23-2970). Blue dots represent locations of available 
GNSS stations. 

Japan is well known as a tectonically active area, and thus several kinds of 
phenomena, such as earthquakes, land subsidence, and volcanic activities, cause surface 
deformation. In this study, we assumed that there was no surface displacement (𝜙 =0 ) as no large earthquakes (>M6) were reported among all pairs of reference and 
secondary SAR acquisitions. Note that recent studies reported that earthquakes with 
magnitudes not only larger than 6 but also smaller than 6 can cause geodetically detectable 
surface displacements if source depths are close to the surface (depths of a few kilometers) 
[36–38]. To assess the possible impacts due to both larger- and smaller-magnitude 
earthquakes, we checked the earthquake source catalog developed by the Japan 
Meteorological Agency. As a result, we confirmed that all interferograms used in this 
study contain no possible impacts due to co-seismic fault slips. In addition, as we chose 
interferometric pairs by using two subsequently acquired SLCs, all interferograms have 
time intervals of shorter than 210 days (most parts of the interferograms have time 
intervals shorter than four months), which would be significantly short to neglect secular 
surface displacements, such as the plate tectonic motion and land subsidence (ranging 
from a few millimeters per year to centimeters per year). 

4.2. GNSS Data 
GNSS data were derived from the GNSS Earth Observation Network System 

(GEONET), the operational GNSS network in Japan. We used the 5 min-interval 
tropospheric parameters estimated by the Geodesy Laboratory at the University of 
Nevada (NGL) [28]. The analysis method for the GNSS was the precise point positioning 
method using the International GNSS service precise orbit information and Earth rotation 
parameters. In order to avoid the effect of surface displacements caused by volcanic 
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GNSS stations.

Japan is well known as a tectonically active area, and thus several kinds of phenomena,
such as earthquakes, land subsidence, and volcanic activities, cause surface deformation.
In this study, we assumed that there was no surface displacement (φdisp = 0) as no
large earthquakes (>M6) were reported among all pairs of reference and secondary SAR
acquisitions. Note that recent studies reported that earthquakes with magnitudes not only
larger than 6 but also smaller than 6 can cause geodetically detectable surface displacements
if source depths are close to the surface (depths of a few kilometers) [36–38]. To assess
the possible impacts due to both larger- and smaller-magnitude earthquakes, we checked
the earthquake source catalog developed by the Japan Meteorological Agency. As a result,
we confirmed that all interferograms used in this study contain no possible impacts due to
co-seismic fault slips. In addition, as we chose interferometric pairs by using two subsequently
acquired SLCs, all interferograms have time intervals of shorter than 210 days (most parts of
the interferograms have time intervals shorter than four months), which would be significantly
short to neglect secular surface displacements, such as the plate tectonic motion and land
subsidence (ranging from a few millimeters per year to centimeters per year).

4.2. GNSS Data

GNSS data were derived from the GNSS Earth Observation Network System (GEONET),
the operational GNSS network in Japan. We used the 5 min-interval tropospheric param-
eters estimated by the Geodesy Laboratory at the University of Nevada (NGL) [28]. The
analysis method for the GNSS was the precise point positioning method using the Interna-
tional GNSS service precise orbit information and Earth rotation parameters. In order to
avoid the effect of surface displacements caused by volcanic activity, GNSS observation
data near Mt. Kirishima in southern Kyushu (blue circles in Figure 2d) were excluded in
our analysis. σSys_GNSS shown in Equation (21) is provided by NGL. As a result, there were
18 stations in southern Ibaraki, 15 stations in western Tokyo and Kanagawa, 15 stations in
Osaka and 7 stations in southern Kyushu (red triangles in Figure 2).
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Figure 2. GNSS stations over study areas: (a–d) Areas at southern Ibaraki, western Tokyo, Osaka
and southern Kyushu, respectively. Red triangles represent locations of GNSS stations used in
our analysis. Blue circles represent GNSS stations excluded from our analysis. Black rectangles
represent observation areas using SAR. Background images were generated from SRTM DEM with a
3-arcsecond spatial resolution.

5. Result

Figure 3 shows the distribution of residuals between dZTDGNSS and dZTDInSAR (R)
in each area. The average values of residuals R were 0.00 mm in each area. Standard
deviations of R were 6.35 mm in southern Ibaraki, 8.59 mm in western Tokyo, 6.69 mm in
Osaka and 7.29 mm in southern Kyusyu, respectively. We also plotted the distribution of
the residuals between dZTDGNSS and dZTDInSAR, combining all four areas in Figure 4.
For the residuals of all four areas, the mean and standard deviation (σR) became 0.00 and
7.36 mm, respectively. Based on the estimated standard deviation of the residuals includ-
ing all areas, we evaluated the errors in Equations (21) (σdZTD_InSAR), (22) (σZTD_InSAR),
(23) (σZWD_InSAR) and (26) (σPWV_InSAR) step by step using the error propagation theory.
First, we calculated the absolute error of InSAR dZTD (σdZTD_InSAR) using Equation (21),
resulting in 25.50 mm based on GNSS processing and the ZTD error values introduced
in Section 3. In the next step, we calculated σZTD_InSAR in Equation (22), which was esti-
mated as 18.03 mm. After calculating σZWD_InSAR using the ZHD error (σZHD) through
Equation (23), we could finally obtain the absolute error of InSAR PWV (σPWV_InSAR) as
2.96 mm through Equation (24). The estimated σPWV_InSAR was slightly larger than the
PWV errors of other observation techniques evaluated in previous studies [12,20,39–41]
(Figures 5 and 6).
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Figure 6. Absolute errors of PWV observations.

In the previous study [42], the PWV in July was greater than in January in Japan.
Shoji [42] also showed the same tendency in the root mean square (RMS) difference between
the GNSS and radiosonde PWV. Moreover, the GNSS PWV has a seasonal variation in
Japan [43]. We checked whether the error of the InSAR PWV becomes larger in the wet
season as with the error of the GNSS PWV. Figure 7 shows the R distribution of data that
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were acquired during the wet season. As a result, the mean of GNSS ZTD was larger in
the wet season than in other months (hereafter referred to as the dry season) in our case.
The mean and standard deviation of R were 0.00 and 8.16 mm, respectively, during the wet
season. σPWV_InSAR in the wet season became 2.99 mm. On the other hand, the mean and
standard deviation of R were 0.00 and 5.84 mm, respectively, in the dry season. σPWV_InSAR
in the dry season became 2.91 mm. Our results indicate that σR was larger in months when
the GNSS ZTD was also larger than that in other months. We concluded that σPWV_InSAR
was greater in the wet season than that in the dry season.
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We compared the error of the L-band InSAR PWV (σPWV_InSAR) estimated from this
study with that of the C-band InSAR PWV estimated by other studies [12,20] (Figure 5).
Note that previous studies only estimated the standard deviation of residuals between
PWVGNSS and PWVInSAR. Therefore, Figure 6 shows the relative PWV errors of In-
SAR against GNSS. The error of the L-band InSAR PWV compared with the GNSS PWV
(σPWV(GNSS)InSAR

) can be estimated by Equation (24) with σR (=7.4 mm) instead of σZTD_InSAR.
In the previous study [20], the ENVISAT difference PWV error was 0.675 mm, which was
the average of the mean absolute error (MAE) of difference PWVs between InSAR and
GNSS for 10 interferograms in the United States (US). Here, we divided their PWV errors by√

2 using Equation (22) and replaced the ZTD with PWV to obtain the above error values,
resulting in the ENVISAT PWV error in [20] becoming 0.48 mm. The Sentinel-1 PWV error
was 0.65 mm, which was the average of the root mean square error (RMSE) between the
InSAR and GNSS PWV of 10 interferograms in the US [12]. The L-band InSAR PWV error
in this study was found to be 0.93 mm by solving the following equation:

σPWV(GNSS)_InSAR = 0.163 ∗
√

σ2
ZHD + (σ2

R/2). (25)

Figure 6 summarizes the observation errors of other kinds of PWV observations and
the error of the L-band InSAR PWV estimated in this study. These observation errors are
relative errors to the radiosonde observation. In [39], the GNSS error was 3.7 mm, which
was the RMSE with 10 radiosonde stations observed for one year in Japan. The radiometer
error was 1.29 mm, which was the RMSE against the radiosonde PWV in the US [40]. The
Geostationary Operational Environmental Satellite (GOES) error was 2.7 mm, which was
the RMSE against the radiosonde PWV in the US [41]. Comparing the estimated L-band
InSAR PWV error with those of other techniques, as shown in Figure 6, the L-band InSAR
PWV observation showed relatively worse accuracy than others. Nonetheless, the PWV
error level of 2.96 mm in the L-band InSAR would be too small for meteorological use as
PWV in Japan ranges from 10 to 50 mm in ordinary conditions, and sometimes exceeds
80 mm in extreme weather conditions [43].
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We investigated the relationship between the interferometric coherence and the InSAR
atmospheric observation accuracy. Although we used InSAR observation values with an
interferometric coherence greater than 0.3 to estimate the amount of offset in a specific
InSAR scene, we also plotted the absolute values of estimated R with a coherence lower
than 0.3. Figure 8 shows the scatterplot of absolute dZTD residuals (R) as a function of
the interferometric coherence. We also plotted the regression line and the moving average
line (the black dashed line and the solid red line in Figure 8) to visually elucidate the
relationship between the interferometric coherence and absolute values of estimated R.
The correlation coefficient between the scatterplot of absolute dZTD residuals and the
coherence was −0.27, indicating a weak negative correlation between the residuals and
the coherence. If the interferometric coherence is lower, InSAR observation becomes less
precise, which may be due to the decorrelation noise.
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In addition, we investigated the height dependence of the ZTD residual between
InSAR and GNSS. Figure 9 shows the scatter plot of the residuals of all four areas as a
function of observation altitude and a fitting line with a correlation coefficient of 0.218.
Similar to the relation between the interferometric coherence and absolute values of esti-
mated R, we found a weak positive correlation between the elevation and absolute values
of estimated R. Possible explanations for the existence of this weak positive correlation
may be that (1) at higher altitudes (around 1000–2000 m), atmospheric turbulence is more
severe and highly variable, and (2) some GNSS stations in mountainous areas were affected
by topographic configurations by, for example, blocking lower-elevation microwave paths.
However, these possible explanations are only speculation, and the number of samples
and survey areas seem to be insufficient to derive any conclusions. Therefore, the height
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dependence of the ZTD residuals and its mechanism should be further investigated in
future works.
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6. Discussion

The comparison of different seasons in Figure 7 shows interesting features. σR during
the wet season was 1.50 times larger than that during the dry season. This result indicated
that in the wet season, when the ZTD was large, the discrepancy between GNSS and
InSAR atmospheric observation also increased. Furthermore, the shapes of the histograms
in Figure 7 visually suggest that the shape in the wet season deviated further from the
fitted Gaussian distribution than that in the dry season. InSAR observations reflect the
delay along the line-of-sight (within a narrow tube extended between the satellite and the
ground pixel), but GNSS ZTDs reflect the average of the delay within the inverse cone
space above GNSS stations. These different characteristics may affect ZTD observation
when atmospheric water vapor largely varies over small distances (for instance, orders of
from hundreds to thousands of meters). If this difference was a reason that the residual
became greater in the wet season than in the dry season, then water vapor may severely
fluctuate in the wet season compared to in the dry season.

We evaluated the relative error of the L-band InSAR PWV against the GNSS as
0.93 mm, which was comparatively worse than the C-band InSAR PWV error in previous
studies [12,20]. We summarized possible factors of the difference between previous studies
and our study as follows: (1) We performed a comparison between GNSS data and a
collocated InSAR pixel, but the average of multiple InSAR pixels (for example, the radius of
a few kilometers) surrounding GNSS stations was used in previous studies. As our method
compared the dZTD of one InSAR pixel (resolution of several hundred meters or larger
by multilooking and filtering) with GNSS dZTD, residual pixel-scale noises may affect the
error level estimation. Here, note that extending the averaging radius would make the
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interpretation more complex in terms of the pixel height and the associated stratified delay
effect. Especially in mountainous areas, if we set a large radius for averaging, the averaged
pixel value would make the InSAR delay value more suitable for the comparison to GNSS
in terms of horizontal representativeness but may represent a delay value at a different
height due to variable topography height. This causes another problem for the comparison
of InSAR and GNSS. Therefore, we need to determine the averaging radius carefully. Ac-
cording to our understanding, both too large and too small radii would be inappropriate,
although we do not have an idea of how to determine the radius for averaging. (2) While
we removed φion from the total phase differences of the L-band InSAR, it should be noted
that our ionospheric correction cannot perfectly remove the effect of the ionosphere, and
thus the residual in the ionospheric correction may have had a negative impact on the
InSAR PWV error estimation in this study. Previous studies have not removed it as they
considered its effect to be negligible as in the case of C-band InSAR, which has a higher
microwave frequency and, thus, lower ionospheric phase contamination. (3) Previous
studies [12,20] used SAR images acquired during drier seasons than the Japanese summer
season. The larger the PWV values are, the larger the InSAR PWV errors might be [42]. On
the other hand, there is no difference between the GNSS atmospheric processing in our
study and that in the previous two studies. Due to the above-described reasons, the error
of L-band InSAR PWV estimated in this study may, to some extent, become larger than the
error of C-band InSAR.

We also compared the L-band InSAR PWV error with other PWV observation errors
in Figure 6. Contrary to our intuition, the GNSS PWV error was larger than the L-band
InSAR PWV error evaluated in this study. Among the reasons for such a contradiction
may be that we could not compare the InSAR observation with the radiosonde directly as
no available data existed; however, the estimated L-band InSAR error included the GNSS
observation error. Therefore, our estimated InSAR error included errors of both the GNSS
and the radiosonde, resulting in the tendency towards larger estimation to some extent.
Nevertheless, the estimated L-band InSAR PWV error was approximately the same order
as other PWV observation errors. In the future, the InSAR PWV error should be directly
compared with radiosonde PWV. Another reason for this may be that the GNSS PWV
error was derived at the end of the 20th century. Recently, GNSS processing techniques
have been further improved, and the number of available GNSS satellites is increasing.
Therefore, the GNSS PWV observation would be more accurate than that at the time of the
previous study.

We evaluated the relationship between R and the interferometric coherence.
In Figure 8, the smaller the interferometric coherence was, the larger the absolute value (R)
tended to be. Especially in the range of coherence values lower than 0.3, the number of
samples was small, and there were some extraordinarily large R. Our method did not use
pixels with a coherence of less than 0.3 for offset estimation. Therefore, the absolute values
of R with a coherence of less than 0.3 tended to largely deviate and may have had bias. It
is important to define the threshold of the interferometric coherence appropriately when
estimating offsets.

7. Conclusions

We estimated the dZTD distribution using L-band ALOS-2 InSAR data and calculated
the residuals between dZTDGNSS and dZTDInSAR using the error propagation theory.
The estimated standard deviation of residuals was 7.36 mm, which was used to estimate
the observation error of PWV derived from InSAR data, which was finally found to be
2.96 mm. The estimated L-band InSAR PWV error was comparable to that of other InSAR
observations evaluated in previous studies. We investigated the dependences of the
observation season and altitude and found that the standard deviation of the residual
increased in the wet season, which may be due to the high variability and a larger amount
of water vapor in this season. The height dependence was not suggested in our analysis.
This study clarified that the InSAR water vapor observation using L-band InSAR has
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significant accuracy compared to C-band InSAR, which showed its usefulness for the data
assimilation into meso-scale weather prediction [7,9,18,44], indicating that L-band InSAR
also has the potential for improving the precipitation forecast. At present, there are no
experiments on the precipitation forecast using the L-band InSAR data assimilation. In
the near future, high-spatial resolution water vapor mapping by InSAR may be utilized
for operational meso-scale weather forecasting to enhance its prediction ability, especially
against localized severe rainfall. The number of SAR satellites from both governmental
space agencies and private companies is expected to increase in the coming decades,
and thus, more InSAR data will be available for meteorological applications. The use of
high-spatial and -temporal density InSAR data for weather forecasting would improve
precipitation prediction for localized heavy rainfall, which is currently difficult to predict
accurately, and contribute to mitigating the social damages caused by hydrological disasters
related to heavy rainfall.
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