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Abstract: Agricultural greenhouse (AG), one of the fastest-growing technology-based approaches
worldwide in terms of controlling the environmental conditions of crops, plays an essential role in
food production, resource conservation and the rural economy, but has also caused environmental
and socio-economic problems due to policy promotion and market demand. Therefore, long-term
monitoring of AG is of utmost importance for the sustainable management of protected agriculture,
and previous efforts have verified the effectiveness of remote sensing-based techniques for mono-
temporal AG mapping in a relatively small area. However, currently, a continuous annual AG
remote sensing-based dataset at large-scale is generally unavailable. In this study, an annual AG
mapping method oriented to the provincial area and long-term period was developed to produce
the first Landsat-derived annual AG dataset in Shandong province, China from 1989 to 2018 on
the Google Earth Engine (GEE) platform. The mapping window for each year was selected based
on the vegetation growth and the phenological information, which was critical in distinguishing
AG from other misclassified categories. Classification for each year was carried out initially based
on the random forest classifier after the feature optimization. A temporal consistency correction
algorithm based on classification probability was then proposed to the classified AG maps for
further improvement. Finally, the average User’s Accuracy, Producer’s Accuracy and F1-score
of AG based on visually-interpreted samples over 30 years reached 96.56%, 86.64% and 0.911,
respectively. Furthermore, we also found that the ranked features via calculating the importance
of each tested feature resulted in the highest accuracy and the strongest stability in the initial
classification stage, and the proposed temporal consistency correction algorithm improved the final
products by approximately five percent on average. In general, the resultant AG sequence dataset
from our study has revealed the expansion of this typical object of “Human–Nature” interaction in
agriculture and has a potential application in use of greenhouse-related technology and the scientific
planning of protected agriculture.

Keywords: agricultural greenhouse; annual mapping; Landsat; Google Earth Engine

1. Introduction

With a growing global population, further urbanization and increasing demand for
a balanced food supply, protected agriculture has been widely developed all over the
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world, especially in China [1]. Agricultural greenhouses (AG), as the most typical object
of protected agriculture, has been steadily increased throughout the world and reached
about at a total area of 3.02× 106 ha in 2016 [2]. Since it has played a great role in the
balanced annual supply of food, the utilization of agricultural resources, the increase of
farmers’ income and the employment of rural labor, the Chinese government has been
vigorously promoting the construction of AG since the late 1980s. China also has the
largest area of AG in the world, with a total area of about 1.32× 106 ha as of 2016 [3].
In the meantime, the widespread use of greenhouse-related technology also poses certain
threats to ecological and environmental safety, the efficient use of cultivated land and
national food security. On the one hand, driven by market demand, with the increase in
the number of years of continuous cultivation, especially in terms of irrational fertilizer
and water management [4] and plastic waste [5] has resulted in continuous crops [6] and
soil biodiversity degradation [7]. On the other, the lack of scientific and unified planning
for AG construction [8], especially in its early stage of development, largely caused by
farmers’ autonomous behavior [9], has resulted in the scientific design of the structures
not being in accordance with the local geographic location and environment. In addition,
as one of the typical ways of non-grain cultivation of cultivated land, greenhouse planting
has the potential of disorderly expansion under the will of rational economic man, which
reduces the possibility of restoring grain planting [10] and threatens China’s most stringent
cropland protection policy. In order to prevent and control the surface source pollution
caused by the disorderly development of AG, optimize the layout of land for protected
agriculture, balance the relationship between non-grain cultivation, ensuring food security,
and promoting the sustainable development of agricultural resource utilization, it is urgent
to track the long-term dynamics of the AG in the typically protected agriculture regions.

Due to the better availability of satellite images in recent years, remote sensing tech-
nology that provides a unique vision for unveiling its growth has been verified to be
the most feasible approach to obtain the spatiotemporal information of AG [11]. Several
prior studies have proposed various approaches for AG mapping; from the perspective of
image classification, it is mainly divided into unsupervised classification and supervised
classification. For unsupervised approaches, various index-based approaches have been
proposed for AG extraction, such as the Greenhouse Detection Index (GDI) [12], Plastic
Greenhouse Index (PGI) or Retrogressive Plastic Greenhouse Index (RPGI) [13], Plastic-
Mulched Landcover Index (PMLI) [14] and Index Greenhouse Vegetable Land Extraction
(VI) [15]. For supervised classification, the Pixel-based (PB) approach is mainly applied to
extract the distribution of AG [16], while the Object-based (OBIA) approach is aimed at AG
detection [17–19], delineation [20] or even further for greenhouse crop identification [21,22]
in a specific protected agricultural area. In addition to the mono-temporal AG mapping
studies mentioned, a few studies have focused on the long-term AG dynamics at regional
scales. For instance, Picuno et al. analyzed the plasticulture landscapes changes in southern
Italy with two-year intervals over 10 years using multitemporal Landsat TM images [23].
Arcidiacono et al. proposed a model to manage crop-shelter spatial development and used
it in a highly representative study of the Italian protected cultivation during 1994–1999 [24].
Ou et al. produced seven greenhouses maps in the 1990–2018 period in a typical protected
agricultural region of China [25].

However, none of these studies have achieved a continuous AG mapping over a long
time at the provincial scale, which is essential for policymakers to have a complete picture
of the development of the protected agriculture and to assess its negative impacts from a
macro perspective. With the availability of the Landsat archive, a series of annual maps
of urban area [26–28], cropland [29,30], forest [31,32], lake [33] and land cover [34–36] has
been carried out. The main challenging part of annual long-term AG mapping is as follows:
firstly, the AG is easily mixed with bare cropland and plastic-mulched land at provincial
scale; secondly, the construction materials and the planting structure of AG is diverse in
different regions and periods, which leads to a strong spatiotemporal heterogeneity of its
remote sensing characteristics; and thirdly, the image of individual years is affected by the
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cloud cover and strip problems, resulting in the inconsistency of annual maps of AG over
the long-term.

To address the above issues, an annual remote sensing mapping method of AG
oriented to the provincial area and long-term period was proposed in this study. This
method integrated the remote sensing characteristics analysis of provincial AG, mapping
window selection, classification feature optimization and temporal consistency correction
for annual classification results. Based on this method, we developed the provincial
AG annual maps in Google Earth Engine (GEE) at 30 m resolution from 1989 to 2018
over Shandong province, China for the first time. The dataset not only provided the
first complete description of the annual dynamics of AG over 30 years at the provincial
scale, but also has the potential to serve the use of greenhouse-related technology and the
scientific planning of protected agriculture.

2. Study Area and Data
2.1. Study Area

The study area is Shandong province, which is part of the eastern coastal region of
China, between 34◦22′∼38◦24′N and 114◦47′∼122◦42′E (Figure 1), with a total area of
about 157,900 km2. This area is dominated by three landforms: mountain, plain and hill,
and belongs to a warm temperate monsoon climate zone, with a short spring and autumn
and long winter and summer, and the annual average temperature is approximately
11∼14 ◦C. The drainage area of Shandong province is about 4.8× 104 km2, and the average
river network density is about 0.24 km/km2. Such climate and hydrological conditions
favor agricultural production. Therefore, Shandong is not only a major grain-producing
province, but also an important economic crop producing province in China, especially
in vegetable production. By the end of 2019, Shandong province has ranked first among
the vegetable supply provinces in China with an output of 81.92 million tons, accounting
for 11.65% of the total vegetable supply in China. In particular, the large-scale specialized
greenhouse-based vegetable planting in this area began in the early 1990s and ranks first
among the 34 regions for the number of AG, accounting for 15.78% of the AG in China [37],
and is the earliest and largest province to develop protected agriculture in China. Therefore,
we selected Shandong province as the representative province in China to trace the full
change trajectory of AG in this study.

Figure 1. Study area.

2.2. Landsat Archive

In this study, we used archived Landsat data in its SR (atmospherically corrected
surface reflectance) form in GEE from 1989 to 2018 as our remote sensing data, including
the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
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and the Landsat 8 Operational Land Imager (OLI) [38], and the extent of the study area
was covered by 16 scenes of Landsat imagery (Figure 2a) for each year. After counting the
number of available scenes for each year (Figure 2b), and considering the stripe problem
of Landsat 7 ETM + due to the SLC-off issue (when the Scan Line Corrector failed and
these products have data gaps) after 2003 [39], we finally selected Landsat 5 images for the
period of 1989–2001, 2003–2006 and 2008–2010, Landsat 7 images for period 2002, 2007 and
2011–2012, and Landsat 8 images for the period 2013–2018. In total, around 8450 Landsat
scenes were collected for the study area over the past three decades. Since the L1T-level
Landsat SR products retrieved in GEE have been corrected for the radiometric, topographic,
and atmospheric effects [40], we applied the “CFmask” algorithm to create cloud- and
cloud-shadow- free Landsat images covering the study area for each year. In addition,
in order to reduce the interference of other similar objects in mountainous and hilly areas,
the global DSM data (ALOS World 3D) produced by the ALOS satellite launched by the
Japan Aerospace Exploration Agency (JAXA) in 2006 with a spatial resolution of 30 m [41]
was used to calculate the elevation and slope of the study area.

Figure 2. Spatiotemporal distribution (DOY, day of year) of Landsat images used in this study: (a) Landsat tiles in Path
119–123 and Row 33–36, (b) the acquisition time of Landsat images.

2.3. Reference Dataset for Supervised Training

The annual maps of AG from 1989 to 2018 were derived separately using a supervised
machine learning approach in GEE. The accuracy of the reference dataset has a great impact
on the classification accuracy under the supervised learning-based strategy, including the
accuracy of samples labeling and the spatial distribution of samples [42]. This study is
oriented to the provincial area, which covers an area of more than 150,000 km2, while
AG in this area are concentrated in several developed regions of protected agriculture.
According to the conclusion of the previous study [25], the labeled samples are limited
to the above-mentioned regions only, which will lead to large misclassification in other
regions. In order to avoid this phenomenon, a 10 km grid sampling structure covering the
study area was constructed in this study, which ensured that labeled samples are available
in each grid (Figure 3).
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Figure 3. (a–e) The 10 km grid sampling structure: (a) and the visual-interpreted samples (red marks
for AG, green marks for Non-AG) from Landsat 5 TM (b), Landsat 7 ETM+ (c), and Landsat 8 OLI (d).

Finally, two types of reference datasets, including AG and Non-AG, were labeled via
visual inspection of high-resolution imagery such as QuickBird and IKONOS available in
Google Earth or Landsat imagery based on the proposed sampling structure. Meanwhile,
70% of this dataset was randomly selected as the training samples and the remaining 30%
was randomly selected as the test samples to evaluate the accuracy of classification results
for each year. A total of 271,729 samples were finally obtained for the period of 1989–2018,
including 44,969 samples for AG and 226,760 samples for Non-AG (Table 1).

Table 1. The number of training and testing samples for each class from 1989 to 2018.

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

AG 568 562 612 654 734 756 797 811 937 1164 1066 1181 1193 1309 1512
Non-AG 8252 8224 8103 7890 7731 7677 7631 7587 7539 7536 7495 7403 7367 7346 7309

Total 8820 8786 8715 8544 8465 8433 8428 8398 8476 8700 8561 8584 8560 8655 8821

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

AG 1776 1604 1516 1941 1958 1948 1890 2078 2049 1849 1908 2020 2099 2333 2308
Non-AG 7262 7159 7141 7141 7117 7108 7073 7066 7107 7009 6900 6852 6831 6745 6653

Total 9038 8763 8657 9082 9075 9056 8963 9144 9156 8858 8808 8872 8930 9078 8961

3. Methods

This study was aimed at developing a set of continuous annual AG maps at 30 m
resolution for Shandong province, China for the period of 1989–2018, and the research
workflow mainly included four parts: collecting the Landsat archive and reference dataset,
remote sensing characteristics analysis and mapping window selection, input feature
optimization and annual classification, as well as temporal consistency correction and
accuracy evaluation (Figure 4). The whole procedure was implemented on the GEE
platform, which has shown great potential in dealing with massive image processing
for multi-temporal classification in previous studies [43–45]. Based on the obtained and
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analyzed Landsat archive and reference dataset (Sections 2.2 and 2.3), we (1) analyzed the
spectral curves of different landcover categories and its NDVI time series, combining the
phenological information of cropland and plastic-mulched land, selected the best mapping
window within a year for annual AG mapping, (2) calculated the tested features and
obtained the best feature combination via evaluated average importance over 30 years for
each feature, and derived the initial classifications, and (3) applied a temporal consistency
correction algorithm to generate the final annual AG classifications and performed accuracy
evaluation. A detailed description of each individual part of the whole procedure is
presented in the following sections.

Figure 4. The research flowchart of the article.

3.1. Remote Sensing Characteristics Analysis

As a kind of agricultural facility to ensure the balanced annual output of crops,
the spectral curves of AG will be affected by the change of crop phenology, but theo-
retically, its seasonal variation is more stable than that of cropland or forest. Therefore,
the quantitative analysis of the spectral curves of AG is an important basis for mapping
AG. In this study, 600 samples (divided into AG, cropland, impervious, forest, water and
plastic-mulched land, 100 samples in each category) were individually labeled on the
Landsat 8 OLI imagery in 2018, and the pixel-based surface reflectance of those types was
used to analyze its spectral curves in different seasons. In order to reduce the interference
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of outliers among them, the median value of each band corresponding to each type was
used as the SR reflectance of each band.

As shown in Figure 5, firstly, the spectral curves of AG are more stable than cropland,
forest and plastic-mulched land and more variable than impervious and water in different
seasons, which indicates that vegetation cover is a determinant of seasonal variations in
the spectral curves of all land cover types, and differences in vegetation growth are an
important point for differentiating AG from other types. Secondly, the spectral curves
of AG are similar to those of cropland and plastic-mulched land that leads to a poor
separability in autumn and winter, while the spectral curves of AG are obviously different
to those of impervious, water and forest that leads to a strong separability in all seasons,
which indicates that those non-crop growing land cover types interfere less with the remote
sensing identification of AG. Thirdly, in terms of specific bands, the visible band (2, 3, 4) of
AG is close to impervious in spring and summer, and close to cropland and plastic-mulched
land in autumn and winter; the infrared band (5) of AG is close to the forest in summer,
and close to cropland, plastic-mulched land and impervious in autumn, but differs from all
other land cover types in spring and winter; the short-wave infrared band (6 and 7) of AG
differs from all other land cover types in spring and summer, which indicates that all the
above-mentioned bands can play a role for AG mapping, and the key lies in the selection
of the mapping window.

Figure 5. Spectral curves of different land cover types (SR reflectance in median value) in different seasons.

3.2. Mapping Window Selection

According to the results of the spectral curves analysis, cropland and plastic-mulched
land are most likely to cause misclassification in AG mapping and their differences in
vegetation growth during a year are critical to distinguishing them. Therefore, the selection
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of the mapping window should consider the vegetation growth that best differentiates AG
from cropland and plastic-mulched land. Based on this assumption, we constructed the
time-series NDVI data of AG, cropland and plastic-mulched land at a 16-day interval from
the Landsat 8 OLI imagery in 2018. Specifically, we calculated the median NDVI value of
all the samples and used it to represent the NDVI value for each category, and we further
smoothed the NDVI time series by the Savitzky-Golay filter to eliminate small fluctuations
using a moving window of size 5 and a filter order of 2 [46]. As shown in Figure 6, there
are two periods of flourishing vegetation growth within a year, in which the difference of
the NDVI value between AG, cropland and plastic-mulched land is pronounced. The first
period is day of year (DOY) 73-136 (from 15 March to 15 May), in which the maximum
NDVI difference between AG and cropland is about 0.4, and that between AG and plastic-
mulched land is about 0.3; The second period is DOY 165-248 (from 15 June to 5 September),
in which the maximum difference of NDVI between AG and cropland is about 0.5, and that
between AG and plastic-mulched land is about 0.3.

Figure 6. (a,b) Mapping window selection based on vegetation growth.

Due to the complex crop structure in AG, we collected the phenological information
of cropland and plastic-mulched land in Shandong province (Figure 7). Winter wheat
(WW), summer corn (SUC) and spring corn (SPC) are the dominant crop type of cropland
in Shandong province, DOY 73-136 are mainly in the reviving, jointing and heading stage
of WW and the planting and seeding stage of SPC, and DOY 165-248 are mainly in the
ripening and harvest stage of WW, and the seeding, jointing, tesseling and repending-
harvest stage of SUC or SPC. Meanwhile, garlic (GA) and cotton (CO) are the dominant
crop type of plastic-mulched land in Shandong province, DOY 73-136 are mainly in the
differentiation stage of GA and the planting and seeding stage of CO, and DOY 165-248
are mainly in the repending-harvest stage of GA and the square-boll and picking stage of
CO. Referring to the crop calendars for the dominant crops in Shandong province, both
mapping windows are for the period that the vegetation growth is flourishing. However,
as the major gain production crop in Shandong province, WW is usually harvested in late
DOY 165-248, while all kinds of crops are usually grown in DOY 73-136, which shows
a better differentiation AG from cropland and plastic-mulched land than DOY 165-248.
Therefore, combining the smoothed NDVI times-series and the phenological information,
we finally selected DOY 73-136 (from 15 March to 15 May) as the best mapping window
within a year for annual AG mapping.
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Figure 7. The phenological information of cropland and plastic-mulched land in Shandong province includes winter wheat
(WW), summer corn (SUC), spring corn (SPC), garlic (GA) and cotton (CO).

3.3. Tested Features

The AG exhibits wider feature variation with respect to both space and time due to
the difference in construction type, crop structure and satellite sensors. In order to reduce
the mapping error in classification accuracy due to the different contributions of features to
AG classification in different years and different regions, the tested features were calculated
in terms of spectral-based, index-based, and texture-based features (Table 2). Firstly,
based on all available Landsat SR within the selected mapping window, we calculated the
median value of the image composite for each spectral band [47], including blue (B), green
(G), red (R), near-infrared (NIR), shortwave infrared 1 (SWIR1) and shortwave infrared
2 (SWIR2).

Given that the index-based features can effectively enhance the information of spectral-
based features in specific directions, we selected 15 index-based features based on the anal-
ysis of remote sensing characteristics of greenhouses and previous research on greenhouse
mapping. Enhanced Vegetation Index (EVI), The Normalized Difference Vegetation Index
(NDVI), Green NDVI (GNDVI) and Green Red Vegetation indices (GRVI) were used to
indicate the vegetation greenness, and Normalized Difference Built-up Index (NDBI) was
one of the most popular indices for mapping impervious areas. The Modified Normalized
Difference Water Index (MNDWI) and Land Surface Water Index (LSWI) were closed to
open surface water bodies and land surface moisture, respectively. Normalized Burn Ratio
(NBR) was a good indicator of surface temperature, Bare Soil Index (BSI) and Soil Adjusted
Vegetation Index (SAVI) were sensitive to the background information from vegetation
and soils, and Normalized Difference Tillage Index (NDTI) was used to distinguish the
differences of residue between AG, cropland and plastic-film land. Plastic Greenhouse
Index (PGI), Index Greenhouse Vegetable Land Extraction (VI), Retrogressive Plastic Green-
house Index (RPGI) and Plastic-Mulched Landcover Index (PMLI) were both developed
to delineate greenhouse or plastic-film by previous studies. It should be noted that NBR,
LSWI and NDTI were first used to identify AG.

Since the construction of a greenhouse can significantly change the texture of the
land surface, we further calculated texture-based features based on the gray-level co-
occurrence matrix (GLCM) [48]. Previous studies have shown that the blue band is the
most sensitive to the greenhouse fraction in each Landsat band [13], therefore we selected
the blue band for texture-based features calculation. Referring to the results of previous
studies [21,22] and the texture characteristics of the greenhouse in the study area (e.g.,
contrast, correlation, and entropy, etc.), the eight most common texture-based features
were selected and computed via the “glcmTexture” function in GEE, including the angular
second moment (ASM), contrast (CON), correlation (CORR), variance (VAR), inverse
difference moment (IDM), sum average (SAVG), entropy (ENT) and dissimilarity (DISS).
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Table 2. Landsat time-series features. GLCM, gray-level co-occurrence matrix; NIR, near-infrared; SWIR1, shortwave
infrared 1; SWIR2, shortwave infrared 2; R, red band; G, green band; B, blue band.

Tested Features Description Reference

Spectral-based features Median value Median value of B, G, R, NIR, SWIR1, and SWIR2 bands [47]

Index-based features

EVI 2.5*(NIR-R)/(NIR+6*R-7.5*B+1) [49]
NDVI (NIR-R)/(NIR+R) [50]

GNDVI (NIR-G)/(NIR+G) [51]
GRVI (G-R)/(G+R) [52]
NDBI (SWIR1-NIR)/(SWIR1+NIR) [53]

MNDWI (G-SWIR1)/(G+SWIR1) [54]
NBR (NIR-SWIR2)/(NIR+SWIR2) [55]
BSI ((SWIR1+R)-(NIR+B))/((SWIR1+R)+(NIR+B)) [56]

NDTI (SWIR1-SWIR2)/(SWIR1+SWIR2) [57]
LSWI (NIR-SWIR1)/(NIR+SWIR1) [58]
SAVI (1.5*(NIR-R))/(NIR+R+0.5) [59]
PGI (100*R*(NIR-R))/(1-(NIR+B+G)/3) [60]
VI ((SWIR1-NIR)/(SWIR1+NIR))*((NIR-R)/(NIR+R)) [11]

RPGI (100*B)/(1-(NIR+B+G)/3) [13]
PMLI (SWIR1-R)/(SWIR1+R) [61]

Texture-based features

ASM Angular Second Moment of GLCM from B [48]
CON Contrast of GLCM from B [48]

CORR Correlation of GLCM from B [48]
VAR Variance of GLCM from B [48]
IDM Inverse Difference Moment of GLCM from B [48]

SAVG Sum Average of GLCM from B [48]
ENT Entropy of GLCM from B [48]
DISS Dissimilarity of GLCM from B [48]

3.4. Classification and Feature Optimization

As the research flowchart described, we adopted the supervised learning method
to produce AG classification for each year. Random forest (RF) classifier, which is a
combination of tree predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the forest [62],
has a number of advantages, such as the additional description of data, less manual
intervention, the ability to handle high-dimensional data, and the robustness to missing
data [63–65]. It has also been widely used for large-scale mapping applications [66].
Therefore, the RF classifier was used to generate the annual AG maps in this study. The
number of trees (N) was set to 100 according to the total number of features and a large
number of experiments [28], and the decision tree divides nodes (M) was set to six based
on the arithmetic square root of the total number of features [67].

In addition, for the classifier based on machine learning algorithm, it is not that the
more feature dimensions, the higher the final classification accuracy. The fact that certain
redundancy between features and exorbitant feature dimension often causes “dimension
disaster”, results in the decline of classifier learning ability [68]. During the construction
of RF, about 63% of training samples are bootstrapped for the training of the classifier.
Meanwhile, about 37% of training samples are not extracted, which is called “Out-of-Bag
(OOB)” data. The OOB data not only be used to determine whether the training stage is
completed, but also can be used to calculate the importance of each feature. Therefore, we
promoted feature optimization by calculating the importance of each tested feature in the
process of RF construction.
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3.5. Temporal Consistency Correction

The selected mapping window within a year for annual AG mapping is Spring,
in which the weather of Shandong province is changeable, which leads to different cloud
cover phenomenon every year. In addition, the SLC-off issue of Landsat 7 after 31 May
2003 led to the stripe problem of classification results in 2007, 2011 and 2012. Therefore, it is
necessary to modify the long-term mapping results to reduce the mapping errors caused by
the inconsistent image quality each year. The long-term mapping error could be reduced by
checking whether specific land cover change is reasonable under the temporal context [69],
and the basic idea of previous research was to eliminate it by using a temporal filtering
algorithm based on the temporal context (previous and after classification results in specific
sliding window) [36,70].

In this study, a new algorithm based on classification probability (Probability-based
Temporal Consistency Correction, PTCC) was proposed to obtain more consistent long-term
mapping results than the individual results. Detailed procedures of the PTCC algorithm
are shown in Figure 8, the individual classification results and its classification probability
of each pixel were obtained, and then the individual classification results and its adjacent
classification probability in the specific sliding window of each pixel were combined.
For those pixels that were recognized as AG, if its adjacent classification probability were
both greater or equal to threshold a, it would be corrected to Non-AG. For those pixels that
were recognized as Non-AG, if its adjacent classification probability were both greater or
equal to threshold b, it would be corrected to AG. In light of the demolition and construction
characteristics of AG, the sliding window of this study was set to 3 (only the classification
probability of the previous year and the next year is considered). Therefore, it can be seen
that the key point to implement the PTCC algorithm is to set threshold a and b when
the sliding window is determined. Compared to the related research, the revisability
of long-term mapping results with different classification probabilities was discussed in
this study.

Figure 8. Detailed procedures of the PTCC algorithm.

3.6. Accuracy Assessment

In order to evaluate the accuracy of the annual classification results under different
scenarios for feature optimization and temporal consistency correction, we calculated the
annual classification accuracy based on the confusion matrix. Since the classification of
AG in this study is a two-class task, the confusion matrix is a 2-by-2 matrix, including



Remote Sens. 2021, 13, 4830 12 of 22

true AG (TAG), false AG (FAG), true non-AG (TNAG) and false non-AG grapes (FNAG).
The Producer’s Accuracy (PA) and User’s Accuracy (UA) for each category are calculated as:

UAi =
TPi
Pi
× 100% (1)

PAi =
TPi
Ci
× 100% (2)

where TPi represents the total number of pixels correctly classified into a certain category
(TAG or TNAG), Pi represents the total number of pixels of a certain category in the whole
classification result (TAG+FAG or TNAG+FNAG), and Ci represents the total number of
pixels of a certain category in the test samples (TAG+FNAG or TNAG+FAG). Finally, The
F1-score conveys the balance between PA and UA, which is suitable for the unbalanced
samples of the two-class task, is computed as:

F1i = 2× UAi × PAi
UAi + PAi

(3)

4. Results and Discussion
4.1. Performance of Feature Optimization

In the process of features optimization, we first performed the unbiased estimates of
the generalization errors for each feature, and computed the importance of all features
from 1989 to 2018. In terms of the different size of OOB data in each year, the importance
of each feature was normalized over 30 years, and then the contribution of each feature
for AG classification in each year was obtained. As shown in Figure 9a, the importance of
spectral features has the smallest variation in 30 years, the importance of index features
has the largest variation in 30 years, and the importance of texture features has a slight
variation in 30 years. Furtherly, we ranked the average importance of each feature over
30 years. Figure 9b showed that GREEN (0.33) and BLUE (0.28) got the highest average
importance among spectral features, NDTI (0.88) and PGI (0.21) got the highest average
importance among index features, and SAVG (0.41) and CON (0.35) got the highest average
importance among texture features. Notably, we found that NDTI (0.88) and NBR (0.46),
which were first applied to remote sensing recognition of AG, ranked first and seventh in
the average importance respectively. It means that in addition to the growth of vegetation
in AG, the thermal characteristics of AG can also be used as an important factor in AG
classification. Finally, all features were divided into four combinations based on the ranked
order, including ranked features with one average importance greater than 0.5 (NDTI,
GREEN, BLUE), ranked features with two average importance greater than 0.4 (NDTI,
GREEN, BLUE, PGI, RED, SWIR1, NBR, NIR, SAVG), ranked features with three average
importance greater than 0.3 (NDTI, GREEN, BLUE, PGI, RED, SWIR1, NBR, NIR, SAVG,
SWIR2, CON, RPGI, EVI, PMLI, GRVI, MNDWI, DISS), and ranked features with 4 average
importance greater than 0.2 (NDTI, GREEN, BLUE, PGI, RED, SWIR1, NBR, NIR, SAVG,
SWIR2, CON, RPGI, EVI, PMLI, GRVI, MNDWI, DISS, CORR, VAR, VI, GNDVI, ASM,
ENT, IDM, NDBI, NDVI).

We also evaluated the feature-by-feature iteratively F1-score curve based on the order
of the ranked features. As shown in Figure 10, the trend of F1-score curves in 1995 (Landsat
5 TM), 2007 (Landsat 7 ETM+) and 2018 (Landsat 8 OIL) were similar, which reached
around 0.8 before the top five features and then fluctuated slightly with the increase of
features. Specifically, the F1-score reached the highest value (0.881) when it iterated to the
top 22 features in 1995, the highest value (0.935) when it iterated to the top 23 features in
2007, and the highest value (0.940) when it iterated to the top 17 features in 2018. It verified
that the method based on the multi-year average importance ranking of features could
efficiently select those features that have an important impact on the classification accuracy.
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Figure 9. The importance of all features from 1989 to 2018: (a) the importance of each feature from 1989 to 2018; (b) the
average importance of each feature over 30 years after ranking.

Figure 10. The change of F1-score curves of AG within the different selected years.

Therefore, a total of 10 sets of scenarios (Table 3) were designed to investigate the
importance of different types of features for AG classification, and the average and standard
deviation of F1-score in each scenario were obtained. From Figure 11 we can see that the
average F1-score of scenarios 1 and 2 were equal and significantly higher than scenario 3,
but the standard deviation of F1-score in scenario 2 was slightly lower than scenario 1,
indicating that the spectral-based and index-based features were more effective in AG
classification than the texture-based features, and the index-based features were more
stable than the spectral-based features in multi-year AG classification. For scenarios 4
and 5 in which the index-based features and texture-based features were added to the
spectral-based features respectively, their average F1-score were improved to 0.844 and
0.836 and the standard deviation of F1-score was reduced to 0.088 and 0.085, indicating that
the combination of spectral-based features with index-based or texture-based features can
both improve the average accuracy and stability over 30 years. Comparing the average and
standard deviation of F1-score in scenarios 6, 7, 8, and 9, which were both ranked feature
combinations based on the average importance of the features, we found that the highest
average F1-score (0.869) and the lowest standard deviation of F1-score (0.063) were shown
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in scenario 8, which was also the best performer among the 10 scenarios. All of these results
indicated that although each feature showed certain importance for AG mapping, not all of
them can achieve the highest and most stable classification accuracy. Therefore, we choose
the results of scenario 8, in which the features with an average importance of more than
0.3, as the annual AG classification results.

Table 3. Different scenarios for feature optimization.

Scenarios Feature Combination (Count) Scenarios Feature Combination (Count)

1 Spectral-based features (6) 6 Ranked features 1 (3)
2 Index-based features (15) 7 Ranked features 2 (9)
3 Texture-based features (8) 8 Ranked features 3 (18)
4 Spectral and index-based features (21) 9 Ranked features 4 (28)
5 Spectral and texture-based features (14) 10 All features (31)

Figure 11. Comparison of accuracy of different feature scenarios.

4.2. Performance of the Temporal Consistency Correction

In this study, we designed 25 combinations based on the PTCC algorithm to explore
the conditions under which the classification probability of adjacent pixels in the sliding
window of each pixel needs to be corrected. As shown in Figure 12, when the threshold a
remains unchanged (i.e., the threshold for judging whether AG needs to be corrected to
Non-AG), with the increase of threshold b (i.e., the threshold for judging whether Non-AG
needs to be corrected to AG), of the correction results gradually decreased and the standard
deviation of F1-score gradually increased, indicating that for Non-AG with a large coverage
area, it can be corrected directly if the classification results of the previous and subsequent
years were AG (i.e., threshold b equals 0.5). When the threshold b remains unchanged,
with the increase of the threshold a, the average F1-score of the correction results gradually
increased and reached the maximum value (0.911), indicating that for AG with a small
coverage area, the correction should be carried out when the classification probability of
Non-AG in the previous and subsequent years were more than 0.8 (i.e., threshold a equals
0.8). Considering the priority of the average F1-score, the correction threshold was finally
determined as a = 0.8 and b = 0.5.
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Figure 12. Comparison of 30-year average classification results after a temporal consistency correction under different
classification probability combinations: (a) the average F1-score of the correction results, (b) the standard deviation of the
F1-score of the correction results.

Comparing the F1-score of AG before and after correction year by year (Figure 13), it
can be seen that the average F1-score of the corrected results has been effectively improved
from 0.869 to 0.911. In terms of specific years, the most obvious improvement after the
correction occurred in 1996 and 2003, with an improved F1-score by 0.190 and 0.101
respectively. In addition, for 2007, 2011, and 2012 using Landsat 7 ETM + strip problem
images, the F1-score of the corrected AG classification was improved by 0.015, 0.028,
and 0.047, respectively. In conclusion, the temporal consistency correction based on the
PTCC algorithm effectively improved the quality of annual maps of AG in Shandong
province, China from 1989 to 2018.

Figure 13. Comparison of F1-score of AG before and after temporal consistency correction year by year.

We further compared the results before and after implementing the temporal con-
sistency correction by enlarging the details. As shown in Figure 14, the correction based
on the proposed PTCC algorithm effectively eliminated the limitations caused by cloud
cover or strip problems, et al. In region (a), the missed information underneath the cloud
has been well restored for the cloud contaminated areas. Whereas for data missing areas
that are due to the SLC-off issue of Landsat 7, it has been recovered through the temporal
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consistency correction in the region (b). Besides, the underestimation of AG areas has been
considerably complemented in the region (c).

Figure 14. Improved classifications after implementing temporal consistency correction: (a) TM image acquired in 1996,
(b) ETM image acquired in 2012; (c) OLI image acquired in 2018. Regions within ellipses are typical areas improved after
implementing the proposed PTCC algorithm.

4.3. Annual Maps of AG in Shandong Province from 1989 to 2018

The accuracy of the annual AG mapping product was first assessed for each year
via visually-interpreted test samples, respectively (Table 4). Overall, the accuracy of
obtained AG sequences was stable and satisfactory, the F1-score of AG within all years are
greater than 0.8, and for years 2005, 2009, 2010, and 2011, their accuracies are even better
(above 0.95). From the classification accuracy of each year, the average UA of AG from
1989 to 2018 was 96.56%, the minimum value appeared in 2003 (93.67%), the maximum
value appeared in 1991 (98.60%), and the standard deviation of UA in 30 years was 1.12%.
From 1989 to 2018, the average PA of AG was 86.64%, the minimum value appeared in 1990
(68.31%), the maximum value appeared in 2005 (94.76%), and the standard deviation of user
accuracy in 30 years was 7.60%. And the average F1-score of AG was 0.911, the minimum
value appeared in 1990 (0.801), the maximum value appeared in 2010 (0.960), and the
standard deviation of F1-score in 30 years was 4.33%. In summary, this product had a
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good agreement between mapped pixels and referenced pixels, which can be used for
subsequent analyses or for expansion modeling.

Table 4. Classification performance of AG in specific years.

Class Non-AG AG Total PA(%) UA(%) F1-Score

Confusion matrix—1989
Non-AG 2429 6 2435 98.18 99.75 0.990

AG 45 120 165 95.24 72.73 0.825
Total 2474 126 2600

Confusion matrix—1999
Non-AG 2271 10 2281 98.48 99.56 0.990

AG 35 277 312 96.52 88.78 0.925
Total 2306 287 2593

Confusion matrix—2009
Non-AG 2053 16 2069 98.23 99.23 0.987

AG 37 555 592 97.20 93.75 0.954
Total 2090 571 2661

Confusion matrix—2018
Non-AG 1991 19 2010 96.79 99.05 0.979

AG 66 631 697 97.08 90.53 0.937
Total 2057 650 2707

Figure 15 showed the mapped AG areas in each city of Shandong province in 1989,
1999, 2009 and 2018. The map series indicated that greenhouses in 1989 were mainly
scattered in the northern plain areas (Dezhou, Jinan, Dongying, Binzhou and Weifang),
and distributed in the northwest of Weifang (represented by Shouguang area) in 1999.
By 2009, AG in Shandong province appeared in a provincial spread pattern, with concen-
trated distribution areas including Weifang, Linyi, Jining and Liaocheng, while further
expanding on the previous basis in 2018. Generally, it showed the “C” shape spreading
trend around the central mountainous area, especially in the north, south and west plain
areas. In addition, Figure 16 showed the enlarged AG details in seven typical locations in
1989, 1994, 1999, 2004, 2009, 2014 and 2018, and we can see that the concentrated distribu-
tion of AG is often built according to the terrain, diffuses outward around the farmland
around rural residential areas, and is divided by rivers and roads.

Figure 15. Cont.
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Figure 15. Spatial distribution of AG in Shandong province, China in 1989 (a), 1999 (b), 2009 (c) and 2018 (d).

Figure 16. Landsat image examples (ture color composite) for greenhouses in 1989 (a), 1994 (b), 1999 (c), 2004 (d), 2009 (e),
2014 (f) and 2018 (g).
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5. Data Availability

The Landsat-derived annual AG dataset herein is now available in the public domain
at https://doi.org/10.5281/zenodo.5633605 (accessed on 15 November 2021). This dataset
was tagged in GeoTIFF file format, with a spatial resolution of 30 m under the WGS84
geographic coordinate system, named as “AG_SD_CHN_v01.zip”. A detailed description
of the classification system is also provided. The uploaded imagery can be processed using
GIS software such as ArcGIS or QGIS.

6. Future Works

Future works should consider several aspects: first, in order to achieve high spatial
accuracy and temporal consistency of the final annual AG mapping products over a long
time at the provincial scale, the sample acquisition process was still in accordance with
the sampling method year by year. The idea of transfer learning should be introduced
to explore the spatial and temporal generalizability of the classified samples, reduce the
labor cost and improve the intelligence of classification under such scenario. Second,
limited by the time span of the study, we can only use Landsat-derived images with a
spatial resolution of 30 m, with the development of the Earth observation satellite system
and the accumulation of high-resolution remote sensing data, images with higher spatial
resolution should be further used in future studies to achieve fine classification of different
greenhouse types. Third, the mapping product generated here have a wider coverage and
higher spatiotemporal resolution than statistical data and other similar studies. As one of
the most typical provinces for the development of protected agriculture in China, Shandong
Province has received attention in the fields of industrial development, economic geography
and environmental science regarding the socio-economic and ecological impacts brought
about by the development of greenhouse-related technology, and it is also a direction
worth exploring for future research to break through the disciplinary barriers to achieve
interdisciplinary sharing and analysis of this dataset.

7. Conclusions

With the rapid urbanization and agricultural modernization in China, a sequential
and fine-resolution AG product is the fundamental information to implement informed
and sustainable protected agriculture management. However, previous efforts to map
AG have generally used visual interpretation and supervised, and unsupervised methods,
and mono-temporal or multi-temporal images at regional scales, while fine-resolution
annual AG maps at large scales have rarely been investigated in the current literature.
Therefore, to better understand the expansion of AG in the representative province of China,
we generated the first Landsat-derived annual AG dataset from 1989–2018 in Shandong
province based on the GEE platform. Combining vegetation growth with the phenological
information, we found that DOY 73-136 (from 15 March to 15 May) is the best mapping
window within a year, which is critical in distinguish AG, cropland and plastic-mulched
land in the study area. Furthermore, by employing feature optimization via calculating the
importance of each tested feature, the mapping accuracy of each year has been considerably
increased. In addition, the proposed temporal consistency correction algorithm played a
crucial role in the eventually obtained products, with an improvement of approximately
5% on average. It is strongly recommended that temporal consistency should be corrected
based on classification probability when mapping AG over multiple times. Eventually,
we got accurate and long-term AG dynamic maps in the most representative province of
China, which have an average UA of 96.56%, an average PA of 86.64% and an average
F1 accuracy of 0.911. Therefore, the AG maps in this study could provide important
reference and scientific guidance for the efficiently planning and managing of protected
agriculture. Combined with other data (e.g., environmental data or socio-economic data),
it also could serve as the higher spatiotemporal resolution dataset for more comprehensive
characterization of its ecological and economic impacts.

https://doi.org/10.5281/zenodo.5633605
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