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Abstract: The maximum soil freezing depth (MSFD) is an important indicator of the thermal state of
seasonally frozen ground. Its variation has important implications for the water cycle, ecological pro-
cesses, climate and engineering stability. This study tested three aspects of data-driven predictions of
MSFD in the Qinghai-Tibet Plateau (QTP), including comparison of three popular statistical/machine
learning techniques, differences between remote sensing variables and reanalysis data as input
conditions, and transportability of the model built by reanalysis data. The results show that support
vector regression (SVR) performs better than random forest (RF), k-nearest neighbor (KNN) and
the ensemble mean of the three models. Compared with the climate predictors, the remote sensing
predictors are helpful for improving the simulation accuracy of the MSFD at both decadal and annual
scales (at the annual and decadal scales, the root mean square error (RMSE) is reduced by 2.84 and
1.99 cm, respectively). The SVR model with climate predictor calibration using the in situ MSFD at
the baseline period (2001–2010) can be used to simulate the MSFD over historical periods (1981–1990
and 1991–2000). This result indicates the good transferability of the well-trained machine learning
model and its availability to simulate the MSFD of the past and the future when remote sensing
predictors are not available.

Keywords: seasonally frozen ground; soil freezing depth; statistical learning; machine learning;
Qinghai-Tibet Plateau

1. Introduction

The maximum soil freezing depth (MSFD) is an important indicator of the thermal
state of seasonally frozen ground, and its variation plays a significant role in the hydrologi-
cal processes, energy transformation, biochemical processes and engineering construction
of cold regions [1–3]. The Qinghai-Tibet Plateau (QTP), also known as the “Third Pole”
of the Earth, has an area of seasonally frozen soil of approximately 1.2 × 106 km2 [4,5].
Recent studies have shown that the MSFD has continued to decrease over the past few
decades [6–8]. The MSFD on the QTP declined by an average of 4.9 cm per decade from
1960 to 2014 [9]. In the hinterland of the QTP, the Yellow River source region, the MSFD
decreased even faster, with an average rate of 6.01 cm per decade from 1982 to 2015 [10].
These changes alter the soil properties and constituents, affect the growth of vegetation,
lead to a redistribution of energy and water on the surface, and can also affect the slope
stability in high-mountain areas and trigger rock and ice avalanches [11–18].

The mapping methods of the MSFD include empirical models, physical models and
statistical/machine learning models. The in situ observed data play an important role in
the calibration and validation of the MSFD model because of its high accuracy. However,
in situ observations are limited and costly to obtain [19]. High calculation efficiency and
simple structure are two primary advantages of empirical models; for example, the Stefan
solution can be simplified due to the significant correlation between the MSFD and the
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freezing index. A few studies have been performed to predict the MSFD using the Stefan
solution [10,20–22]. However, the estimated results using the Stefan solution will have
large errors if the basic assumption (i.e., a linear temperature gradient and constant heat
conductivity in the soil and a steady upper boundary condition) are not met [23]. Similar to
empirical models, physical models also have a fixed model structure and exhibit powerful
simulation ability through coupling with land surface or hydrological models [24–26].
Nevertheless, the simulation accuracy and computational efficiency of the physical models
are still poor [27]. The physical processes and parametric schemes for physical models
need further enhancement and improvement [28].

Statistical/machine learning models are an alternative approach for simulating the
MSFD. These methods provide connections (mathematical and statistical relationships
between the MSFD and environmental factors) if the equilibrium between the MSFD and
climate conditions is satisfied over a long time scale. In contrast to empirical models
and physical models, statistical/machine learning models are not limited by the explicit
structure of the model and provide a way to describe model errors and uncertainty, which
have been used to map soil properties and thermal states [29].

Remote sensing provides important technical means and environmental variables
for observing the thermal state of frozen ground. Many previous studies have shown
that it is feasible to estimate the freezing/thawing state of soil using microwave remote
sensing [30–32], because it is very sensitive to the near surface dielectric properties and
has the ability to penetrate clouds. At the same time, microwave remote sensing also
shows great potential in the detection of snow cover [33]. However, the spatial resolution
of passive microwave remote sensing products is generally low [34,35]. Remote sensing
products such as land surface temperature (LST), vegetation [36], and snow cover sensing
products are better and exhibit higher spatial resolution than microwave remote sensing
products [37–39]. In particular, LST is more directly related to local land surface charac-
teristics than air temperature [40,41], which has traditionally been used for frozen ground
mapping. The correlation between LST and air temperature depends on vegetation and
soil conditions [40,42]. Although the correlation is complex, several studies show a high
correlation between LST and air temperature at the regional scale [43,44]. Thus, remotely
sensed LST, as a better indicator than air temperature, has been widely used to map frozen
ground [40,42,45,46].

The combination of remote sensing and statistical/machine learning models has
been widely applied to the cryosphere, including permafrost mapping [47] and active
layer thickness simulation [29,48], which provides new ideas for modeling the MSFD [19].
Statistical/machine learning has been recognized as an effective approach for simulating
the MSFD. However, the impact of different combinations of statistical/machine learning
algorithms and predictors on the simulation performance of the MSFD has not been
evaluated, especially regarding the role of remote sensing predictors in the simulation of
the MSFD. In addition, can statistical/machine learning models calibrated by current in
situ observations be used to simulate the MSFD in the past and future?

Therefore, with the Qinghai-Tibet Plateau (QTP) as a study area, the objectives of this
study were (1) to compare the effects of different statistical/machine learning models on
the simulation of the MSFD; (2) to assess the impact of remote sensing observations on the
simulation of the MSFD; and (3) to evaluate the trainability of statistical/machine learning
models built during the baseline period (2001–2010) to simulate the MSFD for historical
periods (1981–1990 and 1991–2010).

2. Materials and Methods
2.1. Experimental Design

Freezing degree-days (FDD), thawing degree-days (TDD), vegetation, snow cover,
elevation, and soil properties affect the thermal stability of seasonally frozen soil. Among
them, FDD is the most basic climatic indicator directly related to the MSFD [49] and has
a significant correlation with the MSFD [21,50]. Snow cover is another important factor
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affecting the thermal stability of frozen soil and has a great impact on the heat exchange
between the soil and atmosphere. Due to its high albedo and emissivity in visible light
bands [51], snow cover has low thermal conductivity and acts as an insulator for the
ground surface [49]. Soil properties mainly affect the thermal and hydraulic conductivity
of the soil [49]. Vegetation affects the energy balance of the ground and influences the
freezing conditions of the soil, and the extinction effect of vegetation cover reduces the
solar radiation of the ground surface [52]. These variables are predictors of the MSFD.

Therefore, in situ MSFD data on the QTP and several predictors, including FDD and
TDD (i.e., annual degree-day totals below and above 0 ◦C), precipitation, snow, soil proper-
ties (soil organic carbon, bulk density, coarse fragments, silt, clay and sand content), leaf
area index (LAI), a digital elevation model (DEM) and solar radiation data, were collected.
In this study, we first classified (variables were classified into remote sensing variable sets
and climate variable sets) and optimized (variables were ranked by importance) these
predictors. Then, four statistical/machine learning models with different predictors were
compared based on the results of cross-validation, and an optimal model combination (i.e.,
machine learning model with predictors that performed better than others) was used to
simulate the MSFD on the QTP. Finally, the transferability of the model for the baseline
period was tested.

We designed three groups of experiments to address the effect of predictors and statis-
tical/machine learning models on the simulation of the MSFD as well as the transferability
of statistical/machine learning models with climate variables. Detailed processes for the
two problems will be introduced in Sections 2.1.1−2.1.3.

2.1.1. Comparison of the Remote Sensing Model and Climate Model

In this study, we tested the effect of remote sensing data and climate data on MSFD
simulation at two timescales (i.e., decadal and annual scales). According to the different
data sources used to build the model, we defined the predictors as two models, a full
remote sensing model and a full climate model. The differences between the two sets of
predictors were (1) the data sources of FDD, TDD and snow were different (detailed in
Section 2.2), and (2) the LAI data representing vegetation were available in the remote
sensing model but not in the climate model (Equations (1) and (2)).

MSFD = TDD (MODIS) + FDD (MODIS) + SCDs + LAI + Soil (6 properties) + DEM + SR + RP (1)

MSFD = TDD (WC) + FDD (WC) + SP + LAI + Soil (6 properties) + DEM + SR + RP (2)

where TDD (MODIS) and FDD (MODIS) represent the freezing and thawing degree days,
respectively, based on MODIS surface temperature; TDD (WC) and FDD (WC) represent
the freezing and thawing degree days, respectively, based on climate data; SCDs are snow
cover days; SR is the solar radiation; SP is the snow precipitation; and RP is the rain
precipitation.

To reduce the complexity of the model and remove the possible collinearity between
variables, we simplified the model by using extremely randomized trees (Extra-Trees)
in Python and established two kinds of simplified models, a simplified remote sensing
model and a simplified climate model. This method calculated the Gini coefficient of
each feature by selecting the optimal partition attribute to ensure the highest purity at the
node. The feature_importances_ function returns the importance of each feature. A feature
variable is more important the larger its value. According to the importance of variables,
8 predictors in the full remote sensing model and 7 predictors in the full climate model
were used to build the simplified remote sensing model and climate model, respectively
(Equations (3) and (4)).

MSFD = TDD (MODIS) + FDD (MODIS) + SCDs + LAI + Soil (bulk density) + DEM + SR + RP (3)

MSFD = TDD (WC) + FDD (WC) + SCDs + SP + Soil (bulk density) + DEM + SR + RP (4)
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2.1.2. Statistical/Machine Learning Model

Four poplar statistical/machine learning techniques, random forest (RF), support
vector regression (SVR), k-nearest neighbor (KNN), and ensemble average were used; three
of the models were compared based on cross-validation.

RF is an ensemble learning algorithm based on decision trees developed by Breiman [53].
It uses bootstrap repetitive sampling and extracts samples from the total sample for mod-
eling. The final output result is the average of the results of all decision trees [54]. In this
study, the number of trees was set to 100, and the nodes of each tree were divided into
random features and random thresholds. SVR establishes a regression model based on a
given error interval (ε). If the simulated value falls within the error range, the predicted
value is considered correct, and the kernel function directly determines the performance of
the support vector machine. This study used the most commonly used kernel function, the
radial basis kernel function [55], and the penalty parameter was set to 100. KNN found the
k-nearest neighbors of each query point from the training sample and used the average
of the k-nearest neighbors as the prediction target [56]. The value of k was set to 10, and
the weights were assigned based on the distance from the target point to the k points in
this study. The above three machine learning algorithms were all implemented using the
scikit-learn module in Python [57].

Tenfold cross-validation was used to evaluate the predictive performance of each
machine/statistical model. A total of 184 ground-measured SFD sample points were
collected from 2001 to 2010 on the QTP. For each model, 165 sample points were used for
model training, and the remaining 19 sample points were used for model validation. To
reduce the uncertainty of the model, each model was run 200 times, and the arithmetic
average was used as the final simulation accuracy. The root mean square error (RMSE),
coefficient of determination (R2) and bias (mean difference) were used to evaluate the
performance of the model.

2.1.3. Trainability of Statistical/Machine Learning Models

To assess the trainability of statistical/machine learning models to simulate the MSFD
in the past, the trained model using the in situ MSFD data at the baseline period (2001–2010)
was used to project the MSFD at two historical periods (1981–1990 and 1991–2000). We
assumed the DEM, solar radiation and soil properties did not change on a long time scale,
and the climate conditions in the historical periods, including the rain precipitation, snow
precipitation, FDD and TDD, were adopted as the remaining inputs. The in situ MSFD
measurement was used to validate the simulation accuracy and assess the accuracy change
relative to the baseline period (2001–2010).

2.2. Data
2.2.1. MSFD Measurement Data

In this study, daily soil freezing depth measurement data from 184 meteorological
stations on the QTP were collected from 1981 to 2010. First, we found the annual MSFD of
each site in the daily data from 1981 to 2000. Then, the average MSFD of the three periods
was calculated using the MSFD of ten years, i.e., 1981–1990, 1991–2000 and 2001–2010.

Due to the lack of data from some sites, the numbers of sites available in 1981–1990,
1991–2000, and 2001–2010 were 84, 89, and 184, respectively. MSFD measurement data in
the baseline period (2001–2010) were used for model training and cross-validation, and
observed MSFD in the historical periods (1981–1990 and 1991–2000) from all available
sites were used to validate the performance of the model. The spatial distribution of the
sites is shown in Figure 1. The altitude of these sites was 846–4800 m, and the MSFD was
3.7–276.6 cm. Among them, the average MSFD of the sites less than 100 cm, 100–200 cm,
and greater than 200 cm accounted for 75.54, 22.28, and 2.74%, respectively.
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2.2.2. Remotely Sensed Annual Freezing and Thawing Degree-Days

The multiyear average FDD and TDD were generated by calculating the 1 km res-
olution MODIS products (MOD11A1 and MYD11A1 v5) four times a day [58,59]. To
obtain the complete daily average LST in time and space and reduce the error caused by
missing data [60,61], a gap-filling scheme was adopted [62]. This scheme uses the pixels
with complete data (i.e., four times LST data are available) to directly calculate the daily
LST amplitude, and estimates the daily mean LST of the missing pixels (i.e., daytime or
nighttime LST data is missing) using the amplitude. The specific details of the gap-filling
method are presented in [47]. Based on the daily average LST, the FDD and TDD from 2001
to 2010 were calculated. The annual average FDD and TDD were used as predictors of the
MSFD simulation to construct the remote sensing variable model.

2.2.3. Snow-Cover Days (SCDs)

The SCD product adopts the daily cloudless snow product in combination with
MODIS daily snow products (MOD10A1, MYD10A1) and AMSR-E/Aqua snow water
equivalent products in the middle and high latitude regions of Eurasia, with a spatial
resolution of 500 m [63]. The validation results show that it is basically consistent with the
daily cloudless snow product synthesized based on Landsat 5, and the kappa coefficient
is 0.57 [50]. In this paper, the average annual snow cover days from 2001 to 2010 were
calculated and resampled to 1 km. This predictor was used to construct the remote sensing
variable model.

2.2.4. Leaf Area Index (LAI)

The LAI data adopt the 2001–2010 Global Land Surface Satellite (GLASS) product. The
dataset uses a long-term series of MODIS and AVHRR reflectance data to generate GLASS
LAI products from 1981 to 2012 year by year, based on the neural network method [64].
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The validation results showed that GLASS LAI products had higher accuracy than did
MODIS and CYCLOPES LAI products [65]. The LAI data were used to construct a remote
sensing variable model.

2.2.5. Soil Data

Soil data were obtained using SoilGrids250m, which was developed by the Interna-
tional Soil Reference and Information Center (ISRIC—World Soil Information, Wageningen,
the Netherlands) [66]. Based on the first version, the machine learning integrated algorithm
was used to replace the original linear regression algorithm, the spatial resolution was
increased from the original 1 km to 250 m, and the relative accuracy was increased from 60
to 230%. The data included soil organic carbon content (g kg−1), bulk density (kg m−3),
coarse fragments (volumetric %), and silt, clay, and sand contents (weight %) at 7 depths (0,
5, 15, 30, 60, 100, and 200 cm). In this study, the thickness of 7 layers of soil was used as the
weight, and the weighted average of each component of the soil was resampled to 1 km.

2.2.6. Digital Elevation Model (DEM)

The DEM data were obtained by the National Aeronautics and Space Administration
(NASA) Shuttle Radar Topographic Mission (SRTM). The SRTM data are categorized into
SRTM1 and SRTM3 according to the accuracy, and the corresponding spatial resolutions
are 30 and 90 m, respectively. SRTM1 was used in this study and resampled to 1 km.

2.2.7. Downscaled Climate Data

The climate data including the monthly average temperature (◦C), precipitation (mm)
and solar radiation (kJ m−2 day−1) derived from WorldClim v2.1 (https://worldclim.
org, accessed on 24 November 2021) with a spatial resolution of 1 km [67]. Except for
the solar radiation data, the temporal resolution of the temperature and precipitation
indicators (1970–2000) did not fit the time frame of this study (2001–2010). Therefore,
following Ran et al. (2021), we adopted an adjustment scheme to obtain the temperature
and precipitation data with a resolution of 1 km from 2001 to 2010. First, nearest-neighbor
interpolation was used to resample the monthly average weather data of WorldClim from
2001 to 2010 (with a spatial resolution of 21 km2) to 1 km. Then, according to the local
smoothing (3 × 3 window) difference of the resampled weather data, the temperature and
precipitation data from 1970 to 2000 were adjusted to 2001–2010. The specific adjustment
scheme refers to [48]. Finally, four predictors were calculated from the adjusted climate
data, including the freezing and thawing index (the cumulative value of monthly average
temperature above 0 ◦C and below 0 ◦C, respectively [68]), snow precipitation (precipitation
sum in millimeters for months below 0 ◦C) and rain precipitation (precipitation sum for
months above 0 ◦C). These predictors were used to construct a climate variable model.

2.2.8. Ancillary Data

The permafrost, glaciers and lakes were excluded in the final simulated MSFD map.
The permafrost area adopted the recently released high-precision 1km spatial resolution
permafrost map [29]. Glacier extent used the Global Land Ice Measurement from the Space
(GLIMS) geospatial glacier database [69], that could be downloaded at http://nsidc.org/
glims/, accessed on 24 November 2021. The lake extent was derived from the levels 1 of
the Global Lakes and Wetlands Database (GLWD) [70].

3. Results
3.1. The Comparison of Statistical/Machine Learning Model

RF, SVR, KNN and the ensemble averaging of the three models were used to construct
the statistical/machine learning model, with remote sensing variables and climate variables
as input conditions. Each model was run 200 times, and the results of 10-fold cross-
validation (Tables 1–4) showed that the results of the four models were not significantly
different, but the SVR model was relatively good. The SVR model with the simplified

https://worldclim.org
https://worldclim.org
http://nsidc.org/glims/
http://nsidc.org/glims/
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remote sensing variables had better performance for the simulation of MSFD (R2 = 0.76,
RMSE = 21.64 cm, bias = −1.22 cm). The simulation performance of SVR performed better
than RF and KNN and was closest to the ensemble mean. The simulation accuracy of KNN
showed obvious differences when full variables and simplified variables were used as input
data. R2 increased by 0.11 and the RMSE decreased by 4.41 using KNN when simplified
remote sensing variables were used as input conditions compared to the use of full climate
variables. The RF algorithm was not very sensitive to input variables. Regardless of
changing the amount of input data or the type of input variables, the difference in the
R2 between them was less than 0.01, and the RMSE was less than 1 cm. The ensemble
average of the three models could reduce the uncertainty and improve the accuracy of
the simulation. KNN exhibited poor performance, which affected the performance of the
ensemble mean when full variables were used as input conditions. However, the ensemble
average of the three models was the best model when the accuracy of KNN was improved;
for example, R2 was maximized and RMSE and bias were minimized compared with
the other three models when simplified climate variables were used as input conditions.
Therefore, the SVR algorithm had a strong spatial generalization ability and was more
suitable for predicting the MSFD, which was consistent with the conclusion of [19].

Table 1. Simulation performance of the full remote sensing model.

RF SVR KNN Ensemble Mean

R2 0.65 ± 0.23 0.74 ± 0.14 0.57 ± 0.21 0.70 ± 0.18
RMSE 26.10 ± 8.90 22.86 ± 7.23 29.28 ± 7.73 24.33 ± 7.94
bias 0.30 ± 6.28 −2.20 ± 5.36 2.89 ± 6.69 0.33 ± 5.71

Table 2. Simulation performance of the full climate model.

RF SVR KNN Ensemble Mean

R2 0.66 ± 0.23 0.69 ± 0.29 0.60 ± 0.22 0.69 ± 0.22
RMSE 25.55 ± 9.11 24.09 ± 10.38 28.27 ± 7.75 24.47 ± 8.97
bias 0.68 ± 6.01 −0.63 ± 6.12 2.54 ± 6.39 0.86 ± 5.81

Table 3. Simulation performance of the simplified remote sensing model.

RF SVR KNN Ensemble Mean

R2 0.66 ± 0.23 0.76 ± 0.13 0.66 ± 0.20 0.73 ± 0.16
RMSE 25.70 ± 8.88 21.64 ± 6.82 25.88 ± 7.92 22.88 ± 7.80
bias 0.48 ± 6.12 −1.22 ± 5.09 2.49 ± 6.01 0.58 ± 5.42

Table 4. Simulation performance of the simplified climate model.

RF SVR KNN Ensemble Mean

R2 0.67 ± 0.23 0.70 ± 0.29 0.70 ± 0.23 0.72 ± 0.24
RMSE 25.31 ± 9.18 23.63 ± 10.30 23.96 ± 8.90 23.09 ± 9.39
bias 0.81 ± 5.95 −0.77 ± 6.01 1.41 ± 5.69 0.48 ± 5.89

3.2. The Role of Remote Sensing Variables in Predicting the Change in MSFD

As mentioned in Section 3.1, cross-validation showed that SVR had the best simulation
performance. Therefore, based on the four sets of predictive factors, SVR was used to map
the average MSFD on the QTP from 2001 to 2010, excluding permafrost, glaciers and lakes
(Figure 2). The remote sensing variables and the climate variables as different inputs of
the SVR model showed differences in the performance of simulating the MSFD (p < 0.05,
paired one-sided t-test, n = 200), and the simulation accuracy based on the remote sensing
variables was higher than that of the climate variables. According to the cross-validation
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results (Tables 1–4), compared with the climate variables, the R2 of the remote sensing
variables was improved, and the RMSE was reduced, but the deviation was larger. For
example, the R2 of the full remote sensing variables increased by 0.05, the RMSE decreased
by 1.23 cm, the deviation increased by 1.57 cm; the R2 of the simplified remote sensing
variables increased by 0.06, the RMSE decreased by 1.99 cm, and the deviation increased
by 0.45 cm.

Regardless of whether the remote sensing variables or the climate variables were used,
the accuracy of the simplified variables was improved. The R2 of the simplified remote
sensing variables and the climate variables increased by 0.02 and 0.01, respectively, and the
RMSE was reduced by 1.24 cm and 0.55 cm, respectively.

Spatially, using remote sensing variables for mapping the MSFD could show richer
details, especially in the southern QTP, and the transition zone of the MSFD in the range
of 25–100 cm was more obvious. This difference in detail might be related to the data
richness of the FDD, and the FDD based on reanalysis data was calculated using monthly
average temperatures that were interpolated using coarse-resolution weather data (spatial
resolution of 5 km).

To test the effect of remote sensing data on the simulation of the MSFD at the annual
scale, SVR with remote sensing variables and climate variables was constructed using the
year-by-year observed MSFD from 2004 to 2010. According to the results of 200 simulations,
the prediction indicators of the SVR model based on the simplified remote sensing variables
and climate variables were calculated. The time series changes in the R2, RMSE and bias
(Figure 3) showed that remote sensing observation data could improve the simulation
accuracy of the MSFD on an annual time scale. The simulation performance index, i.e.,
the R2 value, of the remote sensing variables was always greater than that of the climate
variable model, and the RMSE was always smaller than that of the climate variable model.
The annual average R2 and RMSE based on the remote sensing variables were 0.75 and
21.92 cm, respectively, which increased by 0.08 and decreased by 2.84 cm compared with
the annual average R2 based on the climate variables, respectively. The biases of the remote
sensing variables and the climate variables from 2004 to 2010 were highly volatile; however,
the multiyear average bias of the remote sensing variables was 0.02 cm smaller than that of
the climate variables.
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and lakes (Figure 2). The remote sensing variables and the climate variables as different 
inputs of the SVR model showed differences in the performance of simulating the MSFD 
(p < 0.05, paired one-sided t-test, n = 200), and the simulation accuracy based on the re-
mote sensing variables was higher than that of the climate variables. According to the 
cross-validation results (Tables 1–4), compared with the climate variables, the R2 of the 
remote sensing variables was improved, and the RMSE was reduced, but the deviation 
was larger. For example, the R2 of the full remote sensing variables increased by 0.05, the 
RMSE decreased by 1.23 cm, the deviation increased by 1.57 cm; the R2 of the simplified 
remote sensing variables increased by 0.06, the RMSE decreased by 1.99 cm, and the de-
viation increased by 0.45 cm. 

Regardless of whether the remote sensing variables or the climate variables were 
used, the accuracy of the simplified variables was improved. The R2 of the simplified 
remote sensing variables and the climate variables increased by 0.02 and 0.01, respec-
tively, and the RMSE was reduced by 1.24 cm and 0.55 cm, respectively. 

Spatially, using remote sensing variables for mapping the MSFD could show richer 
details, especially in the southern QTP, and the transition zone of the MSFD in the range 
of 25–100 cm was more obvious. This difference in detail might be related to the data 
richness of the FDD, and the FDD based on reanalysis data was calculated using month-
ly average temperatures that were interpolated using coarse-resolution weather data 
(spatial resolution of 5 km). 

 
Figure 2. Cont.



Remote Sens. 2021, 13, 4829 9 of 17
Remote Sens. 2021, 13, 4829 9 of 18 
 

 

 

 
Figure 2. Cont.



Remote Sens. 2021, 13, 4829 10 of 17
Remote Sens. 2021, 13, 4829 10 of 18 
 

 

 
Figure 2. Spatial distribution of simulated MSFD using the SVR model for the baseline period (2001–2010). (a) Full re-
mote sensing variables; (b) full climate variables; (c) simplified remote sensing variables; and (d) simplified climate vari-
ables. 

To test the effect of remote sensing data on the simulation of the MSFD at the annu-
al scale, SVR with remote sensing variables and climate variables was constructed using 
the year-by-year observed MSFD from 2004 to 2010. According to the results of 200 sim-
ulations, the prediction indicators of the SVR model based on the simplified remote 
sensing variables and climate variables were calculated. The time series changes in the 
R2, RMSE and bias (Figure 3) showed that remote sensing observation data could im-
prove the simulation accuracy of the MSFD on an annual time scale. The simulation per-
formance index, i.e., the R2 value, of the remote sensing variables was always greater 
than that of the climate variable model, and the RMSE was always smaller than that of 
the climate variable model. The annual average R2 and RMSE based on the remote sens-
ing variables were 0.75 and 21.92 cm, respectively, which increased by 0.08 and de-
creased by 2.84 cm compared with the annual average R2 based on the climate variables, 
respectively. The biases of the remote sensing variables and the climate variables from 
2004 to 2010 were highly volatile; however, the multiyear average bias of the remote 
sensing variables was 0.02 cm smaller than that of the climate variables. 

Figure 2. Spatial distribution of simulated MSFD using the SVR model for the baseline period (2001–2010). (a) Full remote
sensing variables; (b) full climate variables; (c) simplified remote sensing variables; and (d) simplified climate variables.

Both remote sensing variables and climate variables could be used to predict the
MSFD; however, the DFF and LAI in remote sensing variables played an important role in
the simulation, especially for the FDD data. The FDD in the climate variables was a form
of indirectly expressing the thermal state of the MSFD because it was calculated based on
the monthly average air temperature. There was a difference between air temperature and
LST, and this difference might be related to vegetation types and climate background [28].
The FDD in remote sensing variables was the most direct environmental indicator affecting
the MSFD, and it was calculated based on the daily average LST (i.e., the average of the
four temperatures in a day). Therefore, remote sensing variables performed better as input.

3.3. The Transferability of the Current Model to Simulate Past Changes

The MSFD in the historical periods (1981–1990 and 1991–2000) was simulated using
the SVR model trained in the baseline period (2001–2010) with simplified climate vari-
ables (Figure 4). We assumed that the conditions of soil properties, elevation and solar
radiation were constant and changed the model input conditions of rain precipitation,
snow precipitation, FDD and TDD for the corresponding periods. Eighty-nine observed
MSFDs in the 1980s and 84 in the 1990s were used to validate the simulation results. The
results showed that the predicted and observed values were in good agreement (Figure 5),
which indicated that SVR with the simplified climate variables had good transferability.
Compared with the 1990s (R2 = 0.83, RMSE = 22.42 cm), the simulation results for the
1980s (R2 = 0.77, RMSE = 27.14 cm) had a larger error, with an increase in the RMSE of
4.72 cm. Compared with the baseline period, the bias increased by 3.32 cm and 2.19 cm in
the 1980s and 1990s, respectively, which suggested that the statistical/machine learning
models had a time scale limitation in terms of reconstructing the spatial distribution of the
past MSFD, and the uncertainty in the simulation increased with time from the baseline
period. Therefore, prediction of the past and even the future MSFD could be achieved
according to the method developed in this paper even if there were no environmental
remote sensing variables related to the MSFD, e.g., land surface temperature, LAI.
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from 2004 to 2010; and (c) changes in the bias for different sets of variables from 2004 to 2010.
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fectively improve the simulation accuracy and are the key indicators used to reflect the 
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4. Discussion

This study integrated the in situ measurement of the MSFD and spatial prediction
factors to develop a data-driven model to simulate the current (2001–2010) and past (1981–
1990 and 1991–2000) MSFD on the QTP. The accuracy of the models was supported by
the metrics (i.e., R2, RMSE and bias) based on 10-fold cross-validation. The validation
results showed that the SVR model had better spatial generalization ability and produced
values closest to the multimodel ensemble mean. Previous studies reached similar conclu-
sions showing that the SVR model performed better in data-driven simulations of frozen
ground [19,47].

Input data were an important factor affecting data-driven prediction. Remote sensing
data and climate data, as input conditions, have different advantages and roles in simula-
tion. Snow cover, LAI and, especially, LST are used as the input conditions to effectively
improve the simulation accuracy and are the key indicators used to reflect the thermal
state of seasonally frozen ground [71,72]. Remote sensing data had high temporal and
spatial resolution, which provided a good data source for studying the characteristics of
MSFD changes at different time scales (i.e., decadal, annual and daily scales). In the case
of a short time scale, the simulation accuracy of the MSFD might be higher. LST retrieval
from thermal infrared remote sensing, LAI, and snow cover significantly contribute to
the performance of the model. At the same time, the data obtained by different remote
sensing technologies have potential as predictors to drive machine learning models. For
example, soil moisture from microwave remote sensing has the potential to overcome the
data challenge of MSFD simulation [31,34,35,73].

Climate data can be used as input conditions for the model when remote sensing
variables are not available. We found that the model with climate variables had good
transferability, which made it possible to simulate the MSFD when remote sensing data
(FDD, TDD, snow cover and vegetation) were not available in the past or in the future.
Many previous studies also used the transferability of the data-driven model to predict
the mean annual ground temperature (MAGT) [48,74], active layer thickness (ALT) [48]
and MSFD [19] in the past and future periods. However, the transferability of the model
had a certain time-scale limitation; that is, when the frozen ground and climatic conditions
reached a balance on a long-term scale [28], the accuracy of the simulation decreased with
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increasing distance from the baseline period, and the uncertainty increased due to the
forgetfulness and error accumulation of the machine model [75].

5. Conclusions

In this study, we assessed the performance of data-driven models to simulate the
MSFD on the QTP with different configurations of predictors for different periods. RF,
SVR, KNN and the average of the three models with different input conditions (i.e., remote
sensing variables and climate variables) were compared in the baseline period (2001–2010).
We found that the SVR model was better for the simulation of MSFD than the RF, KNN,
and multimodel mean models, regardless of whether they were driven by remote sensing
or climate variables. The diversity of remote sensing-based variable inputs improved the
estimation of seasonal maximum freezing depth relative to the reanalysis climate inputs,
both on the decadal scale and on the annual scale. When remote sensing variables were not
available, the climate data-driven machine learning model could be used to trace the past
and predict the future MSFD, but its accuracy decreased with the extension of prediction
periods.

In the future, data-driven MSFD simulation could be improved in at least two ways:
input data and model structure. Multiple deep learning architectures, such as deep be-
lief networks, recurrent neural networks, and convolutional neural networks, that have
achieved great success in other fields might be promising to promote MSFD simulation.
More remote sensing variables, such as downscaled microwave remote sensing products,
and higher resolution optical remote sensing, such as Landsat data, have the potential to
improve the accuracy and spatial resolution of MSFD simulations.
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