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Abstract: Machine Learning (ML) techniques are now being used very successfully in predicting and
supporting decisions in multiple areas such as environmental issues and land management. These
techniques have also provided promising results in the field of natural hazard assessment and risk
mapping. The aim of this work is to apply the Supervised ML technique to train a model able to
classify a particular gravity-driven coastal hillslope geomorphic model (slope-over-wall) involving
most of the soft rocks of Cilento (southern Italy). To train the model, only geometric data have been
used, namely morphometric feature maps computed on a Digital Terrain Model (DTM) derived from
Light Detection and Ranging (LiDAR) data. Morphometric maps were computed using third-order
polynomials, so as to obtain products that best describe landforms. Not all morphometric parameters
from literature were used to train the model, the most significant ones were chosen by applying the
Neighborhood Component Analysis (NCA) method. Different models were trained and the main
indicators derived from the confusion matrices were compared. The best results were obtained using
the Weighted k-NN model (accuracy score = 75%). Analysis of the Receiver Operating Characteristic
(ROC) curves also shows that the discriminating capacity of the test reached percentages higher than
95%. The model, resulting more accurate in the training area, will be extended to similar areas along
the Tyrrhenian coastal land.

Keywords: landslides; morphometric analysis; computer vision; supervised learning; Neighborhood
Component Analysis; Receiver Operating Characteristic; Digital Terrain Model; LiDAR data

1. Introduction

Landslide-prone areas’ identification and classification play an important role in land
assessment, planning and management. They are usually performed using a supervised
approach, either through direct geomorphological analysis [1] or through visual interpre-
tation of optical images, e.g., satellite (panchromatic, multispectral) or from Unmanned
Aerial Vehicles (UAV) [2,3], or even from Digital Terrain Models (DTM) derived from
Light Detection and Ranging (LiDAR) survey [4–6]. Radar or Synthetic Aperture Radar
(SAR) imagery is also used to detect acting deformation; interferometric techniques al-
low the derivation of multi-temporal surface deformation maps with high accuracy and
spatial resolution [7].

Although visual interpretation is highly reliable [5,6], the process, besides being subjec-
tive, is both time-consuming and labor-intensive. Therefore, automated or semi-automated
methods for landslide identification based on remote sensing techniques have been studied
greatly in recent years; several automated techniques for landslide susceptibility mapping
have been proposed in the past two decades [8,9]. The exponential increase in the number
of suggested methods is related to continued advances in computer technology, including
the development of increasingly high-performance algorithms and computing processors
and increased storage capacity.

A number of models used to study landslide susceptibility exist; they can be roughly
divided into two main categories, physical-based models and empirical, data-driven
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models [10]. Physical-based models analyze susceptibility using soil and rock mechanics;
the lack or dearth of geotechnical data is still a major liability in physical models. Empirical
models, instead, mainly use remote sensing-based information, such as satellite imagery
and high-resolution DTM, land cover and precipitation products; in this way, large-scale
predictions can be conducted and also where not enough geotechnical information is
available to apply physical models [11]. All these models are “static” and time-dependent,
as they do not consider the progressive evolution from landslide-prone area to landslide-
affected area. Empirical models, which are data-driven, mainly include three types of
models: heuristic [12], general statistical [13] and Machine Learning (ML) models [9].

ML is seen as a part of Artificial Intelligence (AI) and is based on algorithms that can
“learn” from experience, through automated learning (Supervised or Unsupervised). The
ML aims to learn to automatically recognize complex patterns and be able to take “thinking”
decisions based on the acquired data. Models, “trained” to recognize a given situation on
areas with known characteristics, can be used to make predictions on different areas of un-
known nature. Many kinds of ML algorithms have been developed and applied to produce
landslide susceptibility maps in different regions of the world, the most used are: binary
logical regression (BLR) and artificial neural networks (ANNs) [14], fuzzy logic [15], deci-
sion tree (DT) [16], random forest (RF) [17], support vector machine (SVM) [18], Bayesian
network [19], neuro-fuzzy algorithm [20] and Naïve Bayes algorithm [21]. As highlighted,
a variety of different ML models have been used, although a most accurate model has not
yet been defined [22].

In recent years, very good results have been obtained using methods based on object-
oriented analysis, ANNs and SVMs [9]. Most studies show that in the context of landslide
assessment, the solution tends to be nonlinear, due to the complexity of the geological
environment as well as factors related to the triggering itself. The unavoidable presence
of spatial autocorrelation among the input data, if not taken into account, could lead to
erroneous results [23].

Usually, AI-based techniques have proven to be a powerful and promising tool in many
engineering applications related to landslide identification [8]. The latest AI algorithms are
capable of handling large and complex datasets with the ability to obtain predictions with
high success rates, especially when based on methods that avoid overfitting such as k-fold
cross-validation [24].

Given the sudden development of remote sensing sensors and the chance to get
high-resolution data, even open source, in record time, several research papers have
been written on ML for studying landslide susceptibility mapping (LSM) and automatic
landslide mapping (ALM), which are mainly based on the use of variables derived from
remote sensed data [25,26].

X. Chen and W. Chen [27] evaluated the spatial prediction of landslides using bi-
variate statistical-based kernel logistic regression machine learning classifiers, starting
from fourteen landslide conditioning factors (LCF) analyzed via multicollinearity analy-
sis; morphometric parameters of geometric nature (derived from DTM), geological (e.g.,
lithology, soil, land use) and indices derived from multispectral analysis, such as the NDVI
vegetation index, have been used.

The trained models result accurate, and the landslide susceptibility maps could be
successfully used by government agencies for prevention and mitigation of hydrogeological
risk. Youssef and Pourghasemi [28] performed a study to compare the results of seven
ML algorithms (SVM, RF, ANN, Quadratic Discriminant Analysis, Linear Discriminant
Analysis, Naive Bayes and Multivariate Adaptive Regression Spline); for training, the
authors use remotely sensed data, geological data, and other conditioning factors such
as vegetation and land-use indices. The accuracy achieved confirms that the largest
contribution comes from geometric parameters derived from remotely sensed data.

Novellino et al. [29] used the Generalized Boosting Model (ANN) technique to derive
the Landslide Risk (LR) of a coastal area in Southern Italy by using variables derived
from remotely sensed data (radar, LiDAR and satellite images), as well as from geological
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and geomorphological data. The authors also introduced an innovative method based
on the combination of data coming from the InSAR technique and Ensemble Modeling
(EM); again, the results show that the variables that most influence the process for the
determination of landslide risk are the geometric ones derived from remotely sensed data.

Nsengiyumva and Valentino [30] used three distinct machine learning methods in a
GIS environment to map landslide susceptibility; RF, Naïve Bayes Tree (NBT) and Logistic
Model Tree models were trained and compared. The predictors used are based on features
derived from processing of remotely sensed data (DTM, NDVI) as well as geologic land
use and hydrologic data. The NBT model produced more accurate results in terms of
discrimination ability; overall, the three methods result, for the analyzed area, all accurate
and promising.

Merghadi et al. [25] presented a detailed overview of the ML methods developed in
the last two decades about the analysis of landslide susceptibility, comparing the main
ML algorithms. The authors highlighted that the relevant parameters to be considered in
training are mainly function of the scale of the analysis and the case study; they should
also be chosen according to their influence on the triggering mechanisms [31]. In this
study, too, the hydrological and geomorphometric parameters are the ones that provide
the greatest contribution to the result, an aspect in line with the recent works cited and the
most relevant studies referred to in the literature.

Choosing the proper spatial resolution of the DTM is a key issue for an effective
landslide analysis based on data acquired with remote sensing techniques. Several studies
have shown that the highest resolution is not always the best solution [32,33].

Pawluszek et al. [34] presented a Pixel-Based study on the sensitivity analysis of ALM;
the authors assessed the influence on the classification results of the resolution of the
LiDAR-based DTM and analyzed different morphological indicators (based on Aspect,
Topographic Position Index, Slope, Curvature and Roughness), computed with different
kernel sizes, to evaluate their impact on the classification algorithms used: Maximum
Likelihood, Feed-Forward Neural Networking (as in ANNs) and SVM. The morphological
indicators influence differently the classification algorithms depending on the resolution of
the DTM from which they derive. Feature sensitivity, for selected kernel sizes, increases
with coarser DTM resolution. The authors also suggested future research to study models
able to classify landslides according to type and size.

In a few studies regarding ALM, only DTM-based features have been used [35,36]; in
others, they have been integrated with other remotely sensed data [37,38]; here also, the
key aspect is the choice of the parameters (predictors) used for classification [37,39,40].

The literature review also showed that there is no ML model that can be defined as
the most suitable for a specific problem, therefore, selecting the most suitable method for
landslide spatial prediction does not depend solely on the underlined scientific goal for the
case study [41,42].

Research papers on the use of ML for the study of models that can classify landslide-
prone or susceptible areas are many, but all authors highlighted the need for further
research to develop methodologies that minimize subjectivity in the selection of input
data for training, since there are no universal rules for selecting conditioning factors for
classification or for creating landslide susceptibility maps [43,44].

The aim of our work is to use the Supervised ML (supervised learning) technique to
identify and classify a specific coastal land evolution model (slope-over-wall) that char-
acterizes most of the Cilento soft rock coasts [45]. This geomorphological phenomenon is
characterized by the presence of three contiguous areas having recognizable and previously
studied geomorphometric features [6].

DTM can be effective in representing specific landforms accurately; however, the
potential of landslide identification using machine learning and deep learning from DTM
and its derivatives has not yet been widely exploited [46].

Most of the studies using DTM in classification algorithms also use non-geometric
data as input, e.g., data of hygrometric nature, lithology, indices, etc. Many research papers



Remote Sens. 2021, 13, 4782 4 of 21

show that the morphometric parameters extracted from DTM are those that provide a
greater contribution to achieve a good result. The goal of our work is to use, in training
classification models, only predictors of geometric nature, i.e., morphometric parameters
derived from high-resolution DTM. Due to the wide range of potential applications, high-
precision DTMs are often made available by national or regional authorities, while remotely
sensed data should generally be acquired ad hoc.

We analyzed the features (morphometric parameters) most suitable to characterize the
area and the models that allow to take full advantage of their characteristics. The model
assessed to be more accurate in prediction will be chosen and applied to test other areas, to
evaluate the portability and effectiveness of the model on areas with characteristics similar
to that of training.

2. Case Study and Materials

The study area is located along the Cilento coast in the Campania Region (southern
Italy) (Figure 1). It covers a coastal area, which is affected by landslide phenomena [5].
The coastal area has been described as a “slope-over-wall” model, composed of a convex,
colluvial, debris upper slope laying on remnants of a buried, uplifted marine platform
covered by rounded, gravelly marine deposits hanging on the cliffed bedrock toe slope.
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The temporal and spatial evolution of this phenomenon can be described by schema-
tizing the geomorphological evolutionary process in three distinct coastal sections, clearly
distinguishable [6,45]:

1. Area I, corresponding to the western coastal strip, where the morphology of the origi-
nal model of “slope-over-wall” is preserved; in terms of morpho-structural evolution,
it corresponds to the initial and unperturbed stress stage.

2. Area II, corresponding to the intermediate stage of the evolutionary process; the origi-
nal cliff is fragmented by gullies and ravines affected by erosive and flow processes
triggered by shallow retrogressive landslides.

3. Area III, representing the space-time expression of the definitive gravity-driven evolu-
tion of the coastal slope; it corresponds to the area progressively affected by active,
reactivated and deep-seated landslides.

Figure 1c shows the three sections described. Each section is characterized by a
peculiar geomorphological feature that leads to topographic variations well distinguishable
and consequently analyzable through geo-morphometric parameters. Accordingly, some
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of these parameters will be derived from the DTM in order to identify a model that best
identifies the three coastal sections.

This study area in Figure 1c has been chosen to train the model whereas other coastal
areas with similar characteristics have been used for testing.

On the wide area, as well as on the whole Italian territory, LiDAR data from the survey
carried out in 2012 on behalf of the Ministry of Environment and Protection of Land and Sea
(MATTM) are available (http://www.pcn.minambiente.it/mattm/progetto-pst-dati-lidar/
accessed on 19 October 2021). The data were acquired by an Optech Lidar ALTM System
mounted on an aircraft flying at an altitude between 1500 and 1800 m AGL (height above
ground level). The direction of flight is parallel to the coastline, the maximum scan angle
used is 25◦ and the scan frequency has been set equal to 100 kHz.

The specifications of the data, as stated by the distributing authority, are as follows:
point density greater than 1.5 points per square meter, planimetric accuracy (2σ) of 30 cm,
altimetric accuracy (1σ) of 15 cm. The available point clouds are referenced in the current
National Reference System (ETRS89/ETRF00).

To test the model, different sites of the Cilento coast were searched to select those pos-
sibly characterized by the same “slope-over-wall” phenomenon. This morpho-evolutionary
phenomenon was particularly evident in two areas [45]: (i) in the stretch of coastline called
“Ripe Rosse”, in northern Cilento and (ii) to the west of the area used as training, in the
coastal stretch of the Marina di Ascea reef. The data used for the test belong to the same
survey campaign that produced the data used for training. Figure 2 shows the map with
the areas used for testing.
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3. Methods

The aim of our work was to study and train a model using the Supervised Machine
Learning technique, able to predict the typology of coastal section (I, II, III) using strictly
DTM-based geometric morphometric parameters. The LiDAR point cloud was filtered
before interpolating the DTM, using the Multiscale Curvature Classification (MCC) filtering
algorithm, according to the procedure described in detail in [6].

After having selected the most appropriate supervised model among those evaluated,
we checked its classification ability on other data for which the attribution class is not

http://www.pcn.minambiente.it/mattm/progetto-pst-dati-lidar/
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known a priori. The exploited tool allows to export the trained model, so that it is possible
to make predictions using new data. The chosen model is applied to other areas than the
one used for training.

The methodology implemented is based on several steps, listed below:

1. Building of a 5 m resolution LiDAR-derived DTM.
2. Computation of morphometric parameters for each individual coastal section.
3. Selection of the morphometric parameters that are deemed significant for our classifi-

cation problem, using Neighborhood Component Analysis (NCA).
4. Training of a few selected models, their validation and choice of the one providing the

best accuracy.
5. Testing of the trained model on two different areas characterized by the same morpho-

evolutionary process.

Figure 3 shows the workflow of the methodology used; the whole process is imple-
mented in MATLAB environment.
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3.1. Maps of Geomorphometric Parameters

The maps of geomorphometric parameters are derived from a DTM built starting
from the filtered LiDAR point cloud, interpolated to the nodes of a 5 m grid.

The choice of the optimal pixel size depends on several things, including the com-
plexity of the terrain, the scale of analysis, and the type of landslide to be analyzed [33].
Pawłuszek et al. [32] reported a study (accuracy assessment) on the choice of the optimal
pixel size for automatic landslide mapping (ALM), using LiDAR-derived DTM. The au-
thors pointed out that in the case of classification with ML algorithms, there is a close
relationship between performance and DTM resolution. When using a resolution of 5 m,
an excellent compromise between classification accuracy and processing time is obtained.
There is no optimal resolution but rather a range of relevant resolutions [34].

For the spatial interpolation of data and the construction of the DTM, we used the
kriging method which, unlike other interpolators, requires the variogram modeling which
in turn needs the study of the spatial distribution of the data. Studies on variogram models
used for this area can be found in previous papers [5,6].
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To choose the morphometric parameters of interest to be derived from the DTM, we
referred to the relevant literature on the subject, in particular, we followed the approach
proposed by Foroutan et al. [47] who analyzed twenty-two parameters and among them,
identified nine as the most significant for the unsupervised classification (self-organizing
maps) of landforms, being based on the Optimum Index Factor (OIF). The ones chosen
are as follows: 1. difference of curvature (Difc); 2. slope insolation (Slins); 3. rotor (Rot);
4. aspect (Asp); 5. cross-sectional curvature (Crosc); 6. total ring curvature (TRc); 7. extreme
curvature (Extc); 8. vertical curvature (Verc); 9. unsphericity (Unsph).

From the DTM, nine features have been derived according to the formulas reported
in [47]. Curvature, particularly, has important implications for surface processes [48]. It
has been shown that the quadratic models [49] can be used to model geomorphometric
elements (ridges, slopes, valleys) and basic hillslope units. Higher-order polynomials,
which produce non-uniform curvature for the analysis window, can represent special
landform features with a more complex structure.

The formulas for computing the first, second, and third-order partial derivatives of the
elevation of the DTM nodes are those introduced by Florinsky [50], who used a third-order
polynomial instead of a second-order polynomial as proposed by Evans [51].

The method developed by Florinsky has proven to be more accurate in the computa-
tion of partial derivatives (in terms of root mean square error), reducing the uncertainty in
the computation of the morphometric parameters, thus the derived maps result to be more
detailed in the description of the features (shapes) of the ground [50]. The coefficients of
the polynomial equation were computed using a 5 × 5 moving window on the DTM.

3.2. Feature Selection Using Neighborhood Component Analysis

To train the classification model, not all computed features always contribute usefully,
so it is advisable to select the truly relevant ones. To select those features that maximize
the prediction accuracy of classification, we used the method known as NCA [52], a non-
parametric method developed to be used especially in combination with k-nearest neighbor
(k-NN) classification models. In details, we used the k-fold cross-validation (k-fold CV)
method (with k = 5).

The goal of NCA is to maximize the regularized objective function F(w) with respect
to the weights [53]:

F(w) =
1
n

n

∑
i=1

pi − λ
p

∑
r=1

w2
r (1)

where λ is the regularization parameter and pi is the average Leave-One-Out probability of
correct classification of the observation i. There is only one regularization parameter λ for
all weights, which can drive some of them to 0.

For selecting features, we used the “fscnca” function in MATLAB, which requires, as
input, the matrix containing the predictors, with a number of rows n equal to the number
of observations (number of pixels within the coastal sections) and a number of columns p
equal to the number of features. In addition, the vector containing the class labels (classes
related to the geomorphometric/coastal section, associated with each single observation,
row of the matrix containing the predictors or features) is required as input.

As suggested in Ref. [53], 1/n could be used as the value of λ but we rather used the
one that led to the lowest loss.

The input data, namely predictors and classes, are randomly divided into five sub-sets,
of which four are used as training set for the NCA model and the remaining sub-set is used
as testing set.

Given a range of values of λ (starting from λ = 1/n), the k-fold CV was run for any
value of λ, so as to compute the associated loss value, with the function “classification
loss”, which requires as input the NCA function F(w).

The process of computing the loss value is repeated five times, with the sub-set for
testing always different. There will be a total of five loss values, and the one associated
with the single input value of λ will be the average of the five. The whole process is run for
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all values of λ contained in the range. The optimized regularization parameter λ will be
the one with the minimum loss value.

Once the λ value has been estimated, the weights wi of the features have been also
estimated using the technique called Stochastic Gradient Descent (SGD), an effective
learning algorithm when the training set is large. Features with a weight below a certain
threshold T:

T = τ · max(wi) (2)

may be rejected, i.e., not used in model training; the tolerance parameter τ suggested in [53]
is 0.02.

3.3. Supervised Machine Learning Classification

Supervised Machine Learning is a technique that uses an existing supervised classified
dataset as a training dataset to make predictions [54]. The training dataset includes input
variables (features) and response variables (in our case, the classes that correspond to
coastal sections I, II, III). Machine learning algorithms use computational methods to
“learn” information directly from the data without relying on a predetermined equation as
a model. The algorithms adaptively improve their performance as the number of available
variables for learning increases.

Supervised learning uses classification or regression techniques to develop predictive
models, whereas unsupervised learning uses the clustering technique to detect hidden
groupings of data. There are multiple supervised machine learning algorithms; complex,
highly flexible models usually lead to overfitting of the data, modeling small variations that
would be noise. Whereas models with low flexibility generally are easier to interpret but
may result in lower accuracy. The model that best represents the input data should be the
one that provides a golden mean between accuracy of results and model complexity [55].

To train and select the model that best fits the input data, the MATLAB tool “Classifi-
cation Learner App” was used, which is a tool that allows to train different models. All the
classification models from the relevant literature were trained: Decision Trees (DT), Dis-
criminant Analysis, Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), Naive
Bayes, so as to compare them and choose the one that maximizes the overall accuracy.

To assess how well models fit data using cross-validation, we computed the accuracy
score, that is, number of correct predictions divided by the total number of input samples,
using all observations found in a held-out fold [56].

The model with the highest accuracy score might not be the most ideal model because
it might fit better to details of the training sample rather than to its overall trend (overfitting)
whereas a model with a slightly lower overall accuracy might be the best classifier for us.

In addition, to analyze the behavior of the model for each class, some main indicators,
derived from the confusion matrix, have been computed, namely the True Positive Rate
(TPR), the False Negative Rate (FNR), the Positive Predictive Value (PPV) and the False
Discovery Rates (FDR). In details: the TPR, also called “Recall” or “Sensitivity”, is used
to measure the percentage of actual positives which are correctly identified; the FNR is
the remaining percentage of TPR; the PPV, also called “Precision”, is the proportion of
correctly classified observations per predicted class; the FDR is the proportion of incorrectly
classified observations per predicted class. The formulas used are [57]:

TPR = TP
TP+FN ; FNR = FN

TP+FN = 1 − TPR;

PPV = TP
TP+FP ; FDR = FP

FP+TP = 1 − PPV

Accuracy = TN+TP
TN+FP+TP+FN

(3)

where TP are the True Positive (samples correctly classified as positive), TN are the True
Negative (samples correctly classified as negative), FP are the False Positive (samples
incorrectly classified as positive) and FN are the False Negative (samples incorrectly
classified as negative).
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Often, there is an inverse relationship between Precision (PPV) and Sensitivity (TPR):
when precision increases, model sensitivity worsens and vice versa. For these reasons, it is
important to find the golden mean, meaning a balance between the two indicators, so as to
obtain a model that best fits the input data.

In addition, for the same purpose of assessing the classification accuracy of each single
class, the standard ROC (Receiver Operating Characteristic) method was used [58]. In a
ROC curve, the true positive rate (Sensitivity) is plotted as function of the false positive
rate (Specificity) for different cut-off points of a parameter.

Each point on the ROC curve represents a sensitivity/specificity pair corresponding
to a particular decision threshold. The Area Under the ROC curve (AUC) is a measure of
how well a parameter can distinguish between two diagnostic groups (diseased/normal).
The ROC curve also allows to find the best cut-off, that is, the test value that maximizes the
difference between true positives and false positives.

4. Results
4.1. Morphometric Maps

Morphometric parameters have been computed starting from the DTM derived from
LiDAR data filtered for vegetation and artifacts. As for the MCC algorithm used for
filtering, the values chosen for the key parameters are λ = 0.55 and t = 0.095. The parameter
t used is greater than the default suggested, this is due to the roughness of the terrain of
the analyzed area, so using a greater value of t better preserves the natural morphology
of the terrain. The scale factor λ is congruent with the density of the point cloud (about
1.5 points/m2).

Figure 4 shows the classified maps of morphometric parameters computed from the
DTM at 5 m resolution. For a better visualization, the subdivision of the feature classes
was done with the Natural Breaks method.

4.2. Feature Selection

To tune λ, that is, finding the value that will produce the least classification loss
for feature selection, and to maximize the prediction accuracy of the NCA classification
algorithm using the “fscnca” function, we used five-fold cross-validation.

First, we computed the nine morphometric parameters selected for analysis (Difc,
Slins, Rot, Asp, Crosc, TRc, Extc, Verc, Unsph) for each coastal section (I, II, III in Figure 1).
These were sorted by columns in a matrix containing a number of rows equal to the number
of observations (n = 4558) and a number of columns p equal to the number of features used
(p = 9 features). The column vector containing the class labels (coastal section I, II, III) for
each observation also had a number of rows equal to n = 4558.

The NCA algorithm was run for twenty values of λ, within the range [0–0.011] in
steps of 5.8 × 10−4. The range of values of λ analyzed was chosen in order to identify the
minimum of the function whereas the step chosen is a threshold value, based on tests. The
procedure was repeated for the five different folds.

The mean of the five loss values computed for each k-fold is associated with the
corresponding λ. The mean values are shown in Figure 5a for each value of λ of the
considered range. The smallest loss value, equal to 0.35, is obtained in correspondence of
λ = 0.0046, which is assumed as optimized parameter. In Figure 5b are reported the values
of the weights relative to each feature, computed with that value of parameter.
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The significant features are those with a weight greater than the tolerance value as
computed with Equation (2), i.e., greater than T = 0.05.

The chart in Figure 5b shows that only the TRc feature (Total Ring curvature) has a
weight lower than the tolerance, it is even zero; TRc is a product of horizontal excess and
vertical excess curvatures.

In our case, i.e., the classification of the three different coastal sections, this feature
does not seem to improve the accuracy of the model.

The results obtained (Figure 5b) are in line with those found in the relevant literature.
In particular, the most significant features are Slins and Asp; the other features are derived
from the curvature computation and are those that affect less of the predictive ability of the
classifier [29,30].

4.3. Supervised Machine Learning Classification

At first, models have been trained using all the nine computed features. Then, all
models have been trained again after removing the TRC feature, which had resulted non-
significant after the NCA. The “best” classifier, from the point of view of accuracy, was
the k-NN (average score of 70%), and among the various algorithms, the best results are
obtained with the Weighted k-NN. Similar comments can be made when eight predictors
were used.

The k-NN classifiers [59] result very well suited when dealing with large volumes
of training data; it is a non-parametric method, i.e., it makes no hypothesis about the
distribution of the data being analyzed; the structure of the model is determined by the
data itself and this is quite convenient, because in the “real world”, most data do not
obey pre-established patterns. As such, it aims to better fit the input data by resulting in a
greater level of accuracy in the classification. Thus, this model type is widely used for the
generation of landslide susceptibility maps, since landslide distributions do not usually fit
into neat distributions [25].

This type of classifier is closely dependent on the value of k (number of nearest
neighbors), on the method of computing the distance (distance metric) and on the method
chosen to determine the weight, as for the Weighted k-NN. Hence, we decided to use
techniques of “hyperparameter optimization”, to identify the optimal parameters and
compare them with those chosen. The parameters obtained in some cases were the same as
those used; in other cases, they did not result in an improvement in terms of classification
accuracy. In detail, for the k-NN classifiers, the optimal k was found to be 10, except for the
Fine k-NN and Coarse k-NN classifiers for which the default values were used (1 and 100,
respectively). For Weighted k-NN, the parameters that provided higher accuracy were the
Euclidean distance and the inverse of the square of the distance for the computation of the
weights, in agreement with the results obtained by “hyperparameter optimization”.

Figure 6 shows the plot of the accuracy scores; in panel (a), the score for all nine
features, in panel (b) for only eight features and in panel (c), the differences of values.
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Within each of the five classification methods, the specific algorithm leads to significant
differences in the level of accuracy up to 15 %.

Even looking at the differences between the scores (panel c), we noticed that removing
the feature (TRc) did not result in significant changes in accuracy, except for a few algo-
rithms (Quadratic Discriminant, Gaussian Naive Bayes, and Kernel Naive Bayes) for which
there was a positive percentage change from 2.5 up to almost 5 points.

Looking also at the indices computed from the confusion matrices (TPR, FNR, PPV,
FDR), shown in Figures 7 and 8, we noticed that removing the TRc feature resulted in a
significant increase in Sensitivity (TPR) for Class II, thus decreasing the False Negative Rate
(FNR). In addition, for those same algorithms, there was an increase in Precision (PPV) for
all three classes. However, the associated accuracies are still too low, and thus they are not
considered suitable to correctly represent the input data.
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The values of the computed indicators, as well as the accuracy scores, also showed that
the Weighted k-NN algorithm is the one that provides higher accuracy than the others. For
this algorithm, removing Feature TRc does not result in significant changes in sensitivity
and accuracy values (differences of less than 2% for each class); the results are in line with
those derived from the NCA method which showed TRc as a non-significant feature for our
classification. Removing TRc also resulted in a slight balance of sensitivity and precision
across classes.

The Weighted k-NN model is also characterized by an average value of flexibility (the
propensity for the model to fit the data); this is significant because a less flexible model
greatly reduces the chance of overfitting.

Optimization of the Weighted k-NN Classification

To evaluate the effectiveness of the NCA, the Weighted k-NN model was trained by
also removing the features with a weight lower than 1.5, specifically the Difc feature with a
weight of 1 and the Unsph feature with a weight of 1.4. The removal of Difc leads to an
increase in overall accuracy of about 1% (accuracy score = 75%), whereas the removal of
Unsph leads to a decrease in accuracy of about 2% (accuracy score = 73.3%).

The selection of the features to disregard followed an iterative procedure, according
to the weights computed by the NCA method, is based on the evaluation of the accuracy
achieved for training, in accordance with relevant literature [25]. This result highlights that
the NCA played a key role in the choice of features; in our case, the accuracy of the model
improves by removing only the feature with weights less than 1.

Figure 9 shows the confusion matrix and the four indicators derived from it; as for
the final solution: Weighted k-NN trained after removing TRc and Difc features, having
an accuracy score of 75%. Columns of the matrix represent the predicted values, whereas
rows represent the actual values. The confusion matrix allows to deepen the analysis on
the classification accuracy by providing a judgment on the correctness of the predictions;
the classification error is recorded in the elements outside the main diagonal of the matrix.
Panel (b) shows the Sensitivity values (TPR) and panel (c), the Precision values (PPV) for
each class.
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From the graphs, it can be seen that a good balance has been reached between Sen-
sitivity and Precision. The trained model shows high sensitivity mainly for Class I and
Class II (between 74% and 87%) and good accuracy for all classes (greater than 72%).
Models having high Sensitivity (TPR) have a higher probability to identify real cases, but
they also have a rather high rate of false positives. High Precision Values (PPV), on the
other hand, are indicators of confidence in having true positives and mean a reduction in
false positives.

4.4. Validation of the Model Performance on the Training Area

The trained model was applied on the same training area using a distinct DTM. In
detail, the DTM built on the test area derives from the same LiDAR data used for the
training area, but the point cloud was first interpolated on a grid of 1 m step and then,
by subsequent bilinear interpolation, a 5 m step DTM was built. So, the morphometric
parameters obtained on the three coastal sections are slightly different from those used to
train the model.

On the DTM of the test areas, the seven predictors (Slins, Rot, Asp, Crosc, Extc, Verc,
Unsph) were computed and used in the trained model to obtain the class prediction vector
of the results. The vector contains a number of class labels (I, II, III) equal to the number of
observations given as input.

Figure 10 shows the map with 1 m contour lines, also derived from the DTM, overlaid
on the output raster map containing the prediction.

The results shown in figures highlight that the model used produced a good classifi-
cation in correspondence of the three coastal sections; the three areas are well delineated
with the presence of a few isolated pixels of other classes. Class I (yellow pixels) in terms
of morpho-evolutionary changes, corresponds to the initial and unperturbed phase, class II
(green pixels) corresponds to the transition phase and class III (blue pixels) corresponds to
active landslide processes.

The success rate of the model in the identification of the correct class in the learning
areas could be better quantified through the Relative Operating Characteristic (ROC) curves
that report for each class the True Positive Rate (TPR) as a function of False Positive Rate
(FPR). Figure 11 shows the ROC curves for each class. The area under the curve (AUC)
can assume values between 0.5 and 1. The greater the area under the curve (i.e., the closer
the curve is to the top of the graph), the greater the discriminating power of the test
and thus of the model. In detail, for Class I (Figure 11a), the test was highly accurate
(AUC > 0.9), whereas for Classes II and III (Figure 11b,c), the test was moderately accurate
(0.7 < AUC < 0.9). The judgments on the discriminative ability of the test, in terms of
accuracy, were derived from the study by Swets [60].
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Looking at Figure 10, it shows that in the training area I (yellow), the AUC is 96% and
there are very few pixels attributed to other classes, while for area III, where the AUC = 85%,
there is a greater number of pixels of a different color from that of the class (blue).

With respect to the whole analyzed area, most of the areas classified as Class I are sur-
rounded by Class II pixels; this is not accidental since the change from Class I (unperturbed
area) to Class III (active landslide) implies, in most cases, the transitory phase represented
by Class II.

The areas classified as Class II, coincide, in most cases, with the areas affected by
gullies and ravines. The areas classified as Class III, in all cases, correspond to the areas
characterized by active landslides (from inventory). The other areas not covered by land-
slides from inventory, however, correspond to areas characterized by a medium and high
landslide hazard.

In details, the model was very effective for the classification of unperturbed areas
(areas belonging to class I); this aspect is in line with the statistical results, which assign a
highly accurate discriminating power to the class I predictive test (AUC = 0.96).

5. Discussion

To assess its applicability, the trained model was tested on the DTMs of two other
coastal areas characterized by the same morpho-elevation phenomenon as the training
area (Figure 2).
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On these areas, the DTMs are also derived from the LiDAR data of the MATTM but
only the points belonging to the bare ground surface have been triangulated. Next, the TIN
was rasterized by linear interpolation to produce a grid DTM with 5 m resolution.

The seven predictors (Slins, Rot, Asp, Crosc, Extc, Verc, Unsph) selected to train the
model were computed on the two DTMs.

Figure 12 (panel a) shows the result of the classification, superimposed on the contour
lines with 5 m spacing, for the “Ripe Rosse” area. In the figure (panels b, c) are also
shown two images (from Google Earth) of some details showing the presence of gullies and
ravines; these shapes have been recognized and classified as part of class II, correspond-
ing to the transition zone, affected by erosive and flow processes triggered by shallow
retrogressive landslides.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 12. Test area “Ripe Rosse”. Classified map superimposed on contour lines; (a,b) details from Google Earth images. 

Figure 13 shows the classified map of the second area analyzed, in correspondence 
of the cliff of “Marina di Ascea”, superimposed on the contour lines. The figure shows 
that at the coastal zone (southern part), there are landslide areas with well distinguishable 
clusters belonging to class II. Figure 13a helps to better understand the morphology of the 
territory. Of particular interest are the clusters belonging to class I in correspondence of 
the coastal zone and in the central part (slightly eastward) of Figure 13b. In this area, on 
the satellite image, one can see a road descending towards the coast, not affected by land-
slide activities. Again, the trained model produced a classification with well-defined clus-
ters, despite the morphological complexity of the test area. 

The results are promising; they also highlight and confirm that predictive perfor-
mance rates rely primarily on the quality of input data [61]. Most landslide inventories 
are incomplete and inaccurate [8], so it is important to have available a reliable and accu-
rate landslide dataset to produce landslide susceptibility or classification maps [62]. The 
quality of the available LiDAR dataset is very high; in addition to plano-altimetric accu-
racy, the very high resolution allows the description of land topography to be extremely 
faithful [4]. 
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The classification has produced well-defined clusters, highlighting very well the oc-
currence of channels (II) on the whole coastal landslide area (III). The area to the northwest,
classified as Class I, is sandy beach, the only area not involved by landslides.

Figure 13 shows the classified map of the second area analyzed, in correspondence
of the cliff of “Marina di Ascea”, superimposed on the contour lines. The figure shows
that at the coastal zone (southern part), there are landslide areas with well distinguishable
clusters belonging to class II. Figure 13a helps to better understand the morphology of the
territory. Of particular interest are the clusters belonging to class I in correspondence of the
coastal zone and in the central part (slightly eastward) of Figure 13b. In this area, on the
satellite image, one can see a road descending towards the coast, not affected by landslide
activities. Again, the trained model produced a classification with well-defined clusters,
despite the morphological complexity of the test area.
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The results are promising; they also highlight and confirm that predictive performance
rates rely primarily on the quality of input data [61]. Most landslide inventories are
incomplete and inaccurate [8], so it is important to have available a reliable and accurate
landslide dataset to produce landslide susceptibility or classification maps [62]. The quality
of the available LiDAR dataset is very high; in addition to plano-altimetric accuracy, the
very high resolution allows the description of land topography to be extremely faithful [4].

LiDAR-based DTMs allow a better description and delimitation of landslide bodies
at a larger scale [32]; it is not a chance that on the test cases, the output areas have well
aggregated pixels, a non-trivial aspect not to be underestimated, being a Pixel-Based
Approach (PBA).

The other important issue involves the DTM interpolation and the computation of
morphometric parameters; as for the trained model, the accuracy is directly proportional
to the accuracy of the input features [63]. Significant levels of accuracy of the model are
achieved only if a rigorous process of data filtering is applied upstream for the extraction
of the bare ground surface [4,6], which does not over-smooth the terrain and lose any
representative shapes of the various evolutionary processes or landslide bodies.
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Thus, in addition to allowing faithful reconstruction of landslide bodies, LiDAR
technology is extremely useful in areas rich in vegetation since the high-intensity laser
beam can penetrate even very dense vegetation [35].

Based on the aforementioned thinking, we have studied a methodology based on
data able to render the objectivity of the territory, which only LiDAR or photogrammetric
data can provide, trying to optimize the morphometric parameters derived by applying
polynomials with powers greater than the square and removing non-objective data or not
always available ones (such as rainfall data or stratigraphy).

The approach used (ALM) is of PBA type, whose main limitation, compared to object-
oriented approaches (OOA), is to obtain spotty classification maps [64]; vice versa, OOA
is more site-specific and contains too many classification steps to be transferred easily to
other regions [65]. Although the approach used is PBA, the careful creation and selection
of features to be given as input to the classifier, has produced results not far from an OOA
approach, i.e., well-defined and clustered areas.

The classified maps obtained on the test areas shall be compared with those obtained
from an expert-based classification, so as to validate the numerical results obtained.

6. Conclusions

In this study, several different Supervised Machine Learning models were analyzed
to identify and classify a morpho-evolutionary phenomenon that characterizes a large
part of the Cilento coast (slope-over-wall). In details, three different coastal sections have
been classified, each characterized by a particular morpho-evolutionary process that has
changed its shape (Class I unperturbed, Class II transitional and Class III active landslide).

The advantages of using ML techniques for mapping and monitoring landslide events
are many; the algorithms are able to handle large datasets and the results are very accurate,
especially if based on methods that avoid overfitting, such as cross-validation.

One of the concepts of our work was to use in the training phase only geometric
data, i.e., morphometric parameters obtained from a high-resolution DTM derived from
remotely sensed data. The results obtained are very promising and prove the capability
of classifying and mapping these landslide phenomena accurately over large areas and
without geotechnical data, which in most cases can only be acquired in situ. It is also
evident that the additional use of other data sources can only make the classification more
robust; the authors will experiment with this approach in the near future.

As for computing of morphometric parameters, the tests run confirmed the scientific
findings reported in relevant literature, i.e., that polynomials of order higher than the
second are more suitable to model more complex geomorphological forms with greater
accuracy, aiding classification processes.

The most frequently cited features in the literature were tested, among the many that
can be derived from a DTM. In order to avoid overfitting, and to remove features with
low or no useful information value in our application, NCA was applied. This analysis
has been preferred to the PCA (Principal Component Analysis) that is implemented in
MATLAB, because NCA is a supervised method, so it needs class labels to be applied,
unlike the PCA.

Identifying the most suitable ML model for a case study is likely to be challenging,
since the results obtained from model training do not depend solely on the input data,
but also depend on the uncertainties associated with modeling landslide phenomena and
the limitations that characterize each model. Among all the models analyzed, the one
that produced a higher accuracy has been the Weighted k-NN (accuracy rate of 75%). In
addition, the analysis of ROC curves showed a very good discriminating power mainly
for class I (AUC > 0.96) and a quite good discriminating power for the other classes
(AUC > 0.85).

The trained models can be used to make predictions on different areas; the most
relevant aspect is that the classification will be associated with a parameter that quantifies
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its accuracy for each class. In this way, to each class can be quantitatively assigned a
judgment of reliability; this would need to be validated by an expert geomorphologist.

Given the complexity of the Italian territory from the geomorphological point of view,
which makes it subject to a high hydrogeological risk, on the analyzed area, as well as
on all coastal areas, periodical ALS measurement campaigns are planned by the national
competent agency. The authors therefore propose to apply again the proposed approach to
the new data, with the aim of characterizing the areas from a multi-temporal point of view.
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