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Abstract: The dramatic undulations of a mountainous terrain will introduce large geometric distor-
tions in each Synthetic Aperture Radar (SAR) image with different look angles, resulting in a poor
registration performance. To this end, this paper proposes a multi-hypothesis topological isomor-
phism matching method for SAR images with large geometric distortions. The method includes the
Ridge-Line Keypoint Detection (RLKD) and Multi-Hypothesis Topological Isomorphism Matching
(MHTIM). Firstly, based on the analysis of the ridge structure, a ridge keypoint detection module and
a keypoint similarity description method are designed, which aim to quickly produce a small number
of stable matching keypoint pairs under large look angle differences and large terrain undulations.
The keypoint pairs are further fed into the MHTIM module. Subsequently, the MHTIM method is
proposed, which uses the stability and isomorphism of the topological structure of the keypoint set
under different perspectives to generate a variety of matching hypotheses, and iteratively achieves
the keypoint matching. This method uses both local and global geometric relationships between two
keypoints, hence it achieving better performance compared with traditional methods. We tested our
approach on both simulated and real mountain SAR images with different look angles and differ-
ent elevation ranges. The experimental results demonstrate the effectiveness and stable matching
performance of our approach.

Keywords: Synthetic Aperture Radar (SAR); SAR image registration; ridge detection; large geometric
distortion; graph isomorphism

1. Introduction

About 24% of the earth’s land is covered by mountains [1]. Since NASA launched
its first SAR satellite SEASAT in 1978, several countries have successively deployed mul-
tiple spaceborne SAR systems, accumulating massive amounts of SAR image data of
mountain areas. In order to jointly exploit these data for elevation inversion, deforma-
tion detection, and biomass monitoring, an accurate matching performance becomes a
prerequisite. However, the SAR imaging mechanism determines that a mountainous SAR
image is a slope-distance mapping of the mountain from a three-dimensional space to a
two-dimensional image. The difference in the viewing angles causes a relative geometric
distortion between two images. In particular, the larger the difference in the angles, the
larger the geometrical deformations. This poses great challenges to the registration of SAR
images with large geometric distortion.

Increasing efforts have been made to improve the accuracy of registration. According
to a measuring function, an acceptable classification [2] for existing SAR image matching
methods is area-based [3–9] and feature-based [10–17] pipelines. The area-based methods
either use image grayscale statistical information or transform domain statistical infor-
mation as a measure, and register the image by searching for the maximum value of
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the measuring function. These types of methods are more suitable for the cases with a
small difference in look angles, that is, the cases where the coherence between images
is high, and widely used in interferometric SAR (InSAR) [18,19] and SAR tomography
(TomoSAR) [20,21]. However, this type of SAR image accounts for only a small proportion.
Since the topography of the imaging area increases sharply with increasing difference in
SAR imaging angles, the relative deformations of the images increase and the correlation
between them decreases. In this case, a feature-based method is more suitable. The feature-
based methods first extract spatial features such as corners, contours, and line segments in
an image, then produce homologous points by some matching methods, and finally calcu-
late a transfer model between images based on the homologous points, so as to complete
the matching. Among many feature-based methods, the Scale-Invariant Feature Transform
(SIFT) [10] is the most widely used method. It is capable of coping with geometric transfor-
mations, such as scaling and rotation. However, its real-time performance is limited, and it
cannot handle smooth edges well. Based on SIFT, Speeded-Up Robust Features (SURF) [16]
use the Haar wavelet response and integral image to improve the computational efficiency.
However, the performances of SIFT and SURF in SAR image matching are still not very
satisfactory. In order to reduce the impact of coherent speckle on the SAR image processing,
Dellinger et al. [12] proposed the SAR-SIFT method based on a new gradient definition.
Subsequently, Ma et al. [22] proposed an improved SIFT and enhanced the feature matching
method named PSO-SIFT to enhance the adaptability of features. Xiang et al. [23] proposed
a high-level rotation invariant descriptor that does not specify the master direction to
improve SIFT, and improved the discrimination of different feature descriptors. Apart
from the SIFT-like methods, DASIY, BRIEF, ORB and other methods [24] also complete the
optical image registration under small differences in viewing angles.

Most of the existing approaches work on the improvement of general feature descrip-
tors. The matching algorithms for large geometric deformation of SAR images are still in
their infancy. Although SAR-SIFT and PSO-SIFT [12,22] have achieved good results for
mountain SAR image registration with small differences in viewing angles, they remain
challenging when registering large geometric distortion of SAR images with only a small
number of keypoints (refer to the experimental part in Section 3 for detail). For small-
deformation SAR image registration, fewer keypoints can complete a global high-precision
fitting of the matching transformation model. However, it is difficult for a matching trans-
formation model of large distortion of SAR images to perform a global high-precision
approximation through a linear affine transformation and a low-order nonlinear transfor-
mation. In this case, it is important to know how to improve the quality and quantity of
keypoints, so as to increase the matching accuracy.

The ridge is one of the cardinal topographic features, which forms the skeleton line of
an undulating topography and reflects the spatial topological structure of the topography.
For solving the problem of large geometric distortion of SAR image matching in moun-
tainous areas caused by large differences in look angles and severe terrain fluctuations, we
propose a large geometric distortion SAR image multi-hypothesis topological isomorphism
matching method. It is composed of keypoints of ridges Detection (Ridge-Line Keypoint
Detection, RLKB) and Multi-hypothesis Topological Isomorphism Matching (MHTIM).
The method can produce more matching keypoints with better stability, so as to achieve a
higher matching precision.

This paper is arranged as follows. In Section 2, we introduce the motivation and ideas
of the proposed method and discuss the two parts of the method in detail. In Section 3, we
present the simulation results and measured data. Finally, in Section 5, we summarize the
method and give directions for future improvements.

2. Methods

The overall flowchart of our proposed method is shown in Figure 1. In the rest of
this section, we first analyze the deficiency of existing methods and present the moti-
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vation of the proposed method in Section 2.1, and then explain RLKB and MHTIM in
Sections 2.2 and 2.3, respectively.
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Figure 1. Pipeline of our proposed method.

2.1. Problem Description

Despite its long success in optical image matching, the feature-based method still
has vulnerability in detecting and matching the ridge features of most of the parts of SAR
images with large geometric distortion. In the case of a SIFT-like method, there are two
reasons: (1) The method constructs the Difference of Gaussian (DoG) pyramid of the image
when considering the image scale. The position of the keypoints in the image has an offset
relative to that of the ridge. So, the keypoints cannot represent the position of the ridge.
(2) The method generally uses information such as the gray gradient direction of the small
image blocks around the keypoint as the descriptor, and calculates the similarity of the
descriptor (distance between two vectors) to determine whether the keypoints represent
a homologous object. In fact, in mountain areas, when the look angle of the SAR image
changes significantly, except for the ridge line with a larger scale, other areas of the image
have significant changes in brightness, shape and even phase, which make the similarity of
the descriptor invalid. Similar to the intuitive experience, the topological structure of the
ridge features in the SAR image at different look angles is isomorphic.

Analyzing Figure 2, it is observed that the distributions of the extreme points of the
image intensity formed by SAR images with different look angles on ridges are isomorphic.
Figure 3 shows the SAR image of the mountainous area of the Sichuan-Tibet Plateau in
China, where the DEM data of the DEM map, ascending stripe mode SAR image from
Sentinel 1 and descending stripe mode SAR image from Sentinel 1 are shown in a–c,
respectively. Sub-figures a–c in Figure 3 have undergone rough geometric registration. It
is worth mentioning that geometric registration can roughly overlap the regions to be
registered to enhance the efficiency of subsequent algorithms, and when the images overlap
(like the images produced by TanDEM-X), geometric registration is not necessary. In
Figure 3, two images are taken from the opposite-side of the terrain, and the angle between
the line of sight of (b,c) is greater than 90◦. We can find even more intuitively that when
SAR images are taken from opposite-side, the topological structures composed of yellow
circles and yellow lines in the three figures are still isomorphic. Therefore, this paper
attempts to match the ridge features through the topological relationship between the ridge
features. It divides the method into two parts: ridge keypoint detection and matching.

In geometry, the feature information that characterizes the mountain morphology
includes extreme points, saddle points, ridge lines, valley lines, etc. [25]. The most apparent
feature in mountain SAR images is the ridge line and the intersection of two or more ridge
lines. Since the SAR image is a slant distance mapping from a three-dimensional space
to a two-dimensional image, it is necessary to find a stable ridge line detection method.
The ridge line is a kind of edge information. Commonly used edge detection operators
include algorithms such as Sobel, LoG, Canny, etc. [26], followed by deep learning methods
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such as Holistically-nested Edge Detection (HED) [27] and Richer Convolutional Features
(RCF) [28]. The location of the intersection of lines is generally obtained by calculating
its surrounding curvature, gradient, etc. [13]. However, the time complexity of the above
methods is relatively high. This paper proposes a ridge feature keypoint detector based on
the LoG operator, which can produce stable ridge keypoints while detecting ridge lines at
a lower time complexity.

A
B

C D

PLOS of S1

PLOS of S2
Ridge of real terrian

Extreme point of S1

Extreme point of S2

Figure 2. Schematic diagram of the projected profile from the mountain area to the slant distance of
the SAR image at different look angles. PLOS is short for a perpendicular line of sight. The black
outline in the figure represents the mountain topography profile, and the red dots A, B, C, and D
are the locations of the local ridges. Based on the assumption of the far-field electromagnetic wave
plane wavefront, the green dotted line is the wave distance gate emitted by satellite 1, the green dot
represents the intensity map of image S1, and the green dot on the red background represents the
corresponding position of the ridge in image S1. The black dotted line is the range gate of satellite
2, the black dot represents the intensity map of image S2, and the black dot on the red background
represents the corresponding position of the ridge in image S2. It can be seen that although the look
angles of satellites 1 and 2 are quite different, the distribution of A, B, C, and D in the image are
still isomorphic.

The keypoint matching is a key step to complete image matching. Existing feature-
based pipelines generally use some algorithms to solve the assignment problem [29] after
calculating the similarity matrix of the master and slave image descriptor sets, and then use
the RANdom SAmpling Consensus (RANSAC) [30] algorithm for outlier culling. This type
of pipelines generally pays attention only to the similarity between keypoint descriptors
(the distance between vectors) and ignores the inherent geometric topological relationship
between the keypoints. Although RANSAC is simple and clear algorithm, the calculation
cost in its iterative process is relatively large and the optimal solution cannot always be
found [31].

Analyzing Figure 3, it is found that the distributions of the extreme points of the image
intensity formed by SAR images with different look angles on ridges are still isomorphic.
Therefore, this paper proposes a Multi-Hypothesis Topological Isomorphism Matching
(MHTIM) method. This method converts the stable keypoint matching pairs generated by
RLKD into an initial topological structure graph hypothesis according to its topology. Based
on this, the method iteratively introduces the remaining unmatched keypoints to form a
hypothesis tree. When the hypothesis tree reaches a certain depth, the hypothesis score is
calculated, and the hypothesis tree is pruned to gradually complete the matching process.
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(a) (b) (c)

Figure 3. Schematic diagram of ridge characteristics and their distribution isomorphism. (a–c) show, respectively, the DEM
map, ascending stripe mode SAR image from Sentinel 1, and descending stripe mode SAR image from Sentinel 1. The
angle between the line of sight of (b,c) is greater than 90◦. The yellow circle in the figure marks the location of the main
mountain peaks in the area, and the yellow lines form an undirected weight graph to show their topological structure. The
red circle and red line mark, respectively, the vertices and edges formed by the ridge feature points that can be detected
only in (a,b), but can not in (c). It can be seen that even when SAR images are taken from opposite-side, the topological
structures composed of yellow circles and yellow lines in the three figures are still isomorphic.

2.2. Ridge Line Keypoint Detection Method

The RLKD method is divided into three parts: (1) Quick detection of the ridge line
intersection point, which ridge detection is performed in the distance and azimuth direction,
respectively, to quickly obtain the ridge intersection point; (2) keypoint generation and
description, which cluster the intersection point pixels to produce the keypoint, and a
keypoint descriptors are designed to measure their similarity; and (3) fast matching, which
calculates the distance matrix of ridge keypoints through the descriptor, and uses the
simulated annealing algorithm to solve the two-allocation problem for obtaining a small
number of stable keypoint matching pairs. As there exist many mathematical operators in
the following passage, for convenience, we define all the notations in Table 1.

2.2.1. Quick Detection of Intersection of Ridge Lines

Our method is based on the LoG to rapidly detect the intersection of ridge lines by
using two detectors rDec(Detector in range) and aDec(Detector in azimuth), which are
defined as follows:

rDec = ∂2

∂r2 G(r, a, σ) = r2−σ2

σ4 e
−(r2+a2)

2σ2

aDec = ∂2

∂a2 G(r, a, σ) = a2−σ2

σ4 e
−(r2+a2)

2σ2

 (1)

Among them, G(r, a, σ) is a two-dimensional Gaussian filter:

G(r, a, σ) =
1

2πσ2 e−(r2+a2)/2σ2
(2)

In the above formula, σ is the standard deviation. Due to the low-pass characteristics
of the Gaussian filter, fine textures can be eliminated and large-scale ridge features can be
retained while suppressing the influence of coherent speckles. In addition, if not otherwise
stated, r and a represent the distance pixel index and azimuth pixel index of the image,
respectively. Next, the intersection point is obtained based on the detected ridge line.
Assuming that the image gray function is I, IrDec and IaDec as the responses of I can be
obtained through aDec and rDec as follows:

IrDec = I ∗ rDec,
IaDec = I ∗ aDec

(3)
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where ∗ is the convolution operation. The edges of the image along the distance and the
azimuth directions exist at the position where the two adjacent pixel values have different
signs. The results of edge detection along the two directions can be produced by using the
following two equations:

Ire(r, a) =
{

0, IrDec(r, a) · IrDec(r, a + 1) ≥ 0
1, IrDec(r, a) · IrDec(r, a + 1) < 0

Ira(r, a) =
{

0, IaDec(r, a) · IaDec(r + 1, a) ≥ 0
1, IaDec(r, a) · IaDec(r + 1, a) < 0

(4)

The pixel with value of 1 in Ire and Ira is the edge. Now, Ire and Ira are to be superim-
posed, that is:

IE = Ire + Ira (5)

IE represents the final edge detection result. In IE, the pixel with the value greater
than 0 is the ridge, and the pixel with the value of 2 is the intersection of the ridge lines.

Table 1. Notation.

Notation Definition

rDec,aDec LoG operator in the range and azimuth direction
G(r, a, σ) Two-dimensional Gaussian filter
σ Standard deviation
IrDec,IaDec Responses of image function I through aDec and rDec
Ire(r, a), Iae(r, a) Ridge detection in range and azimuth direction
IE The final edge detection result
ki = (ri, ai) The coordinate of edge intersection in IE
v Keypoint produced by RLKD
s Keypoint descriptor produced by RLKD
d(s1, s2) The similarity between two descriptors
()∗ The conjugate operation
C (s1, s2) The real correlation coefficient matrix of s1 and s2
D The similarity matrix
Vm = {vm

i },i = 1, ..., Nm Keypoints detected in the master image
Vs = {vs

j},j = 1, ..., Ns Keypoints detected in the slave image
Vm

matched = {vm
k }, k = 1, ..., r The matching keypoint set of master image

Vm
unmatched = {vm

p },p = r + 1, ..., Nm The candidate keypoint set of master image
Vs

matched = {vs
k}, k = 1, ..., r The matching keypoint set of slave image

Vs
unmatched = {vs

q},q = r + 1, ..., Ns The candidate keypoint set of slave image
Dm = (di1,i2 )r×r The putative self-distance matrices of Vm

matched
Ds = (dj1,j2 )r×r The putative self-distance matrices of Vs

matched
Gm The master undirected weighted graph
Gs The slave undirected weighted graph
S(p, q) The closeness between vm

p and vs
q in their respective graphs

α(p, q) The node angle similarity
C =

{
vm

k , vs
k
}

, k = 1, 2, ..., r The final matching pair set

2.2.2. Keypoint Generation and Descriptor

A real ridge intersection generates a concentrated area in IE with a value greater than
1, which contains a lot of information about the ridge intersection. This paper uses the block
of this area as a keypoint descriptor, clusters these pixels, and uses the cluster center as the
keypoint. Suppose that in IE, the number of intersections generated is T, and ki = (ri, ai)
are the coordinates of the intersection in the image, where i = 1, 2, . . . , T. For the first
intersection, a traversal search is performed on the image block centered on this point
with a fixed radius, any other intersection in the image block will center on itself, continue
to search for other intersections within the same radius, and cluster to C. Additionally,
Cj represents the set of subscripts of the intersection points contained in the jth cluster.
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Equation (6) can be used to calculate the jth cluster center, which is the keypoint required
by the algorithm in this paper:

vj =
1∣∣Cj
∣∣ ∑i∈Cj

ki (6)

This paper uses a R × R IE block s with the keypoint position as the center of the
keypoint descriptor, where R is the block size, which we set to 9. This descriptor retains
the shape information of the ridge line around the keypoint. For two image blocks, the
measures of similarity include correlation, mutual information and cross entropy. The
correlation and mutual information are two basic and effective methods of similarity
measurement. The cross entropy [32] has high robustness and it is widely used in the
loss function in the framework of deep learning algorithms. However, it is usually used
to calculate the similarity of multi-spectral images with complex textures. As shown in
Table 2, for SAR images with large geometric distortion, we get the best result by using
cross-correlation as the descriptor similarity measurement method. The reason is explained
in more detail in Table 2 in Section 3. In particular, the larger the maximum value of
the correlation coefficient, the more similar the descriptors. Therefore, our method uses
the maximum value of the correlation coefficient to represent the similarity between two
descriptors, which is defined as follows:

d(s1, s2) = max(C(s1, s2)) (7)

In the above formula, C is the real correlation coefficient matrix of descriptors s1 and
s1, obtained by using formula (8), where ()∗ represents the conjugate operation and R is
the block size of s:

C(s1, s2) =

(
R

∑
u=1

R

∑
v=1

∣∣∣∣∣ R

∑
r=1

R

∑
a=1

s1(r, a)e−2jπ( ur+va
R ) ·

(
R

∑
r=1

R

∑
a=1

s2(r, a)e−2jπ( ur+va
R )

)∗∣∣∣∣∣e2jπ( ur+va
R )

)
(8)

In Figure 4, we show the SAR-SIFT keypoint detection results of the SAR image pair
in the mountain area under the typical parameters reported by Dellinger et al. [12]. We
present the keypoint detection and description results of our method in Figure 5. We can
find in Figure 4 that the detection results of keypoints in the mountain area, obtained by the
SAR-SIFT method, have two characteristics. Firstly, for images with different look angles,
the number of characteristic points is obviously different, and second, the keypoints mainly
exist on the back slope and are not even.

Figure 4. SAR-SIFT keypoint detection result. (a,b) show the SAR image (128 × 128 pixels) of the
same mountain area, where the look angle in (a) is 65◦ and that in (b) is 15◦. The red cross in (a,b)
identifies the keypoints of the SAR-SIFT detected.
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Figure 5. (a,b) show the ridge line and keypoint detection results of the SAR image shown in
Figure 4a,b, respectively. In (a,b), the green line is the detection result of ridge line, and the yellow
dot is the keypoint before clustering; (c,d) are the results after clustering. The red boxes marked
in (a–d) are the positions of the manually selected keypoints to reveal the descriptor and enlarged
patches in the 3rd row. Keypoints 1 and 2 of the master image correspond, respectively, to keypoints
1 and 2 of the same ground object in the slave image. The 4th row shows the calculated maximum
value of the two-dimensional correlation coefficient of the descriptor.

Figure 5a,b show the ridge line and keypoint detection results of the SAR image
shown in Figure 4a,b, respectively. In (a,b), the green line is the detection result of the ridge
line, and the yellow dot is the keypoint before clustering; (c,d) are corresponding results
after clustering. The red boxes marked in (a,b) and (c,d) are the positions of the manually
selected keypoints to reveal the descriptor and enlarged patches in the 3rd row. Keypoints
1 and 2 of the master image correspond, respectively, to Keypoints 1 and 2 of the same
ground object in the slave image. The 4th row shows the calculated maximum value of the
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two-dimensional correlation coefficient of the descriptor. It can be seen that the maximum
values of the correlation coefficient between keypoint 1 of the master image and keypoints
1 and 2 of the slave image are 0.86 and 0.74, respectively; while the maximum correlation
coefficients between keypoint 2 in the master image and keypoints 1 and 2 in the slave
image are 0.64 and 0.84, respectively. That is, keypoint 1 of the master image matched more
with keypoint 1 of the slave image, and keypoint 2 of the master image matched more with
keypoint 2 of the slave image, which is in line with the actual situation. Figure 5 shows
that the descriptor designed in this paper describes the similarity of keypoints effectively.

2.2.3. Quick Matching

Assuming that M and N keypoints are detected in the master and slave images,
respectively, an M × N-dimensional similarity matrix can be generated as
D =

{
d
(
si, sj

)
|i = 1, 2, ..., M, j = 1, 2, . . ., N

}
, where s is the keypoint descriptor. Find-

ing the best match between the keypoints of the master and slave images in the similarity
matrix is a typical optimization problem. Our method uses the simulated annealing algo-
rithm [33] to solve the optimization problem. Finally, the method proposed in this section
still uses the RANSAC [30] algorithm to delete outliers of matched pairs, and quickly finds
stable keypoints. It is worth mentioning that the application of the transformation model to
the image distortion mode in the RANSAC algorithm is very important for the registration
result. The two most basic transformation models, used in the task of large-distortion
SAR image registration, are projection transformation and affine transformation. For more
complex scenes, polynomials can be used to fit a transformation model. Since the geometric
distortion of a SAR image is more in the slant range direction, the Local Weighted Mean
(LWM) [34] transformation model is used. The LWM model introduced by Goshtasby [34]
is capable of the condition when parts of the image appear distorted differently, and the
distortion varies locally and piecewise in a nonlinear manner.

In Section 3, we compare the pros and cons of several models, and verify that the
LWM model is indeed the most suitable model for the scenario targeted in this article.

2.3. Multi-Hypothesis Topological Isomorphism Matching Method

The main aim of the MHTIM method is to transform the stable keypoints matching
from RLKD into two initial graph hypotheses according to their topological structures.
Based on the ridge feature topological isomorphism, it iteratively adds the remaining
unmatched keypoints to form a hypothesis tree. When the hypothesis tree reaches a certain
depth, the hypothesis score is calculated. Then, the hypothesis tree is pruned according to
the score, and subsequently the matching process is completed.

In this section, we first introduce the initialization of the hypothesis tree and the
sorting of candidate points. The subsequent iteration process is introduced one by one in
three steps as follows:

1. Multi-hypothesis generation: According to the ranking results, select the top candidate
keypoints and add them to the graph to generate new hypotheses.

2. Hypothesis score calculation: We use five graph indicators and node angle similarity
indicators to rank the new hypotheses. The hypothesis that ranks first in a single
indicator gets a certain score. The final score of a new hypothesis is the sum of the
scores assumed under each indicator.

3. Pruning: New hypotheses are sorted in terms of their final scores, pruning low-scoring
hypothesis branches, retaining high-scoring hypothesis branches, and updating the
root node, matching, and candidate point sets.

A schematic diagram of the above steps is shown in Figure 6. Through the above
steps, the keypoints that are not matched but have potential matches are gradually added
to the matching set.
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Figure 6. Schematic diagram of generation and pruning of hypotheses.

2.3.1. Hypothesis Initialization and Candidate Keypoints Sorting

Before starting iterations, the MHTIM method first initializes the root node of the
hypothetical tree. The specific process is shown in Figure 7.

We use v = (r, a) to represent the coordinates of the keypoint in the image. Suppose
that after RLKD, keypoints detected in the master and slave images are defined as point
sets Vm = {vm

i }; i = 1, · · · , Nm and Vs = {vs
j}; j = 1, · · · , Ns, respectively. After the

RLKD algorithm quick matching, Vm and Vs are divided into two parts: matching point set
Vm

matched = {vm
k } and Vs

matched = {vs
k}; k = 1, · · · , r, and candidate point set Vm

unmatched =
{vm

p }; p = r + 1, · · · , Nm and Vs
unmatched = {vs

q}; q = r + 1, · · · , Ns. Dm =
(
di1,i2

)
r×r and

Ds =
(
dj1,j2

)
r×r are the putative self-distance matrices of Vm

matched and Vs
matched, respectively,

where di1,i2 =‖ vm
i1
− vm

i2
‖2 and dj1,j2 =‖ vs

j1
− vs

j2
‖2.

First of all, this article quickly matches the keypoint pair initialization, generates the
master and slave undirected weighted graphs Gm and Gs, respectively, and vm and vs are
regarded as nodes in Gm and Gs, respectively. After that, if di1,i2 or dj1,j2 is greater than ε,
an edge em

i1,i2
= (vm

i1
, vm

i2
) or es

j1,j2
= (vs

j1
, vs

j2
) is generated, where ε is the threshold value

set according to the number of pixels in the image. Generally, ε is set to one half of the
diagonal length of the image as follows:

ε = 0.5
√

h2 + w2 (9)

In the above formula, h and w are the number of pixels of the image in the range
and azimuth directions, respectively. As shown in Figure 7, the master and slave initial
graphs show strong topological isomorphism. Please note that the distance in Figure 7 is
the unitless distance after a normalization operation, and ε is scaled in the same proportion.
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Figure 7. Schematic diagram of graph hypothesis initialization method. The distance here is the
unitless distance after a normalization operation, and ε is scaled in the same proportion.

We sort the candidate points by S to ensure the quality of the hypothesis generated
by the selected candidate points in each iteration of the algorithm. The definition of S is
as follows:

S(p, q) =
∣∣∣∣ 1
ζm
×
∥∥∥∥vm

p − ∑
v∈Vm

matched

v
|Vm

matched|
∥∥∥∥

2
−
∥∥∥∥vs

q − ∑
v∈Vs

matched

v
|Vs

matched|
∥∥∥∥

2
× 1

ζs

∣∣∣∣ (10)

The right-hand side of Equation (10) contains the first and second normalized value
terms, in which the distance from the candidate point vm

p of the master image to the
geometric center of the matching keypoint set Vm

matched, and the distance from the candidate
point vs

q of the slave image to the geometric center of the matching keypoint set Vs
matched.

ζm and ζs are the normalization factors, which are set according to the area covered by the
image on the ground and size of the image:

ζ =

√
h2 + w2

L2
r + L2

a
(11)

where, Lr and La are the length with a unit of meter of the area covered by the image on the
ground in the range and azimuth direction, respectively. It is worth mentioning that when
the master and slave images are geometrically registered and their scales are the same, ζm

and ζs can be set to 1 at the same time.
Equation (10) can be understood in terms of the similarity of the distance from the

candidate keypoints in the master and slave images to the respective geometric centers.
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The higher the similarity, the more likely the two candidate keypoints represent the same
ridge feature.

2.3.2. Multi-Hypothesis Generation

Referring to Figure 6, we assume that the maximum depth of the tree is H = 3, and
the leaf nodes of the tree generate at most W = 2 new hypothetical nodes at each iteration
to illustrate the iteration process. After initialization, suppose that at the beginning of the
(k− 3)th iteration, the root graph of each of master and slave trees has 4 nodes (as shown
in the (k− 3)th layer in Figure 6). After the first (k− 2) iterations, the first node vm

1st in the
sequence of the remaining candidate keypoints after sorting in the master graph is added
to Gm. For the slave tree, the two points in Vs

unmatched with the highest similarity to vm
1st are

added to Gs to form two hypotheses. At this point, the depth of the target hypothesis tree
from the root node is 2. The above steps are reproduced sequentially in the (k− 1)th and
kth iterations. At k, the target hypothesis tree has a depth of 4, and there are at most 8 leaf
nodes in the fourth layer. So far, in this example, the hypothesis tree has been generated.

We can find that the hypothesis tree retains multiple matching combinations. The
following steps are to calculate the scores of the hypotheses for evaluating their qualities,
and for pruning the hypothesis tree so as to remove the low-quality hypotheses and retain
the correct ones.

2.3.3. Hypothesis Score Calculation

The score of a hypothesis comes from the similarity of the newly added vertices of the
master and slave hypotheses. We use 5 common graph indicators and a custom indicator
of the newly added nodes in the graph to measure the similarity of hypotheses. The five
graph indicators are node centrality, betweenness centrality, proximity centrality, K kernel
number, and eigenvector centrality. In addition to the above general graph indicators,
the use of geometric constraints can enhance the matching accuracy of graph nodes in a
realistic scene [35]. We define a node angle similarity index. First, an angle vector is used
to describe the position of a node in the graph relative to the rest of the nodes. The vector
is defined as:

Φ(vi, G) = {φl}, φl = arctan(vi − vl), vl ∈ G, vl 6= vi (12)

After that, the node angle similarity α(p, q) is defined in terms of the mean absolute
value of the difference between the angle vectors of the newly added vertices of the master
and slave graph, namely:

α(p, q) =
||Φ(vm

p , Gm)−Φ(vs
q, Gs)||2

|Gm| − 1
(13)

where |Gm| represents the number of nodes in the master graph at the kth iteration.
After the calculation of the 6 indicators of the newly added nodes is completed, we

rank each hypothesis according to the similarity of each indicator.
After we get the 6 index values of the newly added vertices of the new hypothesis, we

sort each new hypothesis according to the similarity of each index. The hypothesis that
ranks high in an indicator gets a certain score, and the final score of the hypothesis is the
sum of the scores on each indicator.

2.3.4. Pruning

The purpose of pruning is to remove hypotheses with lower scores in the hypothesis
tree, and to update the root node to output a new pair of matched keypoints. After
obtaining the hypothesis score at the kth iteration, the branch that does not contain the
highest scoring hypothesis is deleted. After that, the k-H layer node of the reserved branch
is used as the new root node, and the matching point which added by this node is output
to Vm

matched and Vs
matched. Finally, the point is deleted from Vs

unmatched and Vs
unmatched, and

the next iteration is started.
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After all unmatched keypoints participate in the iterative process, the MHTIM termi-
nates the iteration process and outputs the final hypothesis with the highest score. At this
point, all the vertices in the master and slave graphs correspond one-to-one, and the final
matching pair set C =

{
vm

k , vs
k
}

, k = 1, 2, ..., r is formed.

3. Experiment

In this section, we use both simulated and measured data to verify the performance of
the two steps of our proposed method. The simulated data simulates a pair of SAR images
in mountain areas and different look angles to verify the matching effect of our method
under different look angles. The measured data is used to verify the matching effect of
our method for different types of terrain SAR images under the same difference in look
angles. We compare the performance of our method with those of SAR-SFIT and PSO-SIFT
to show that our method is more suitable for SAR images with large geometric distortion
matching than these two methods. More specifically, we compare the Mean-Absolute
Error (MAE) of matching results of these algorithms, Number of Keypoints Matched
(NKM), and Proportion of Keypoints Matched (PKM) to demonstrate the pros and cons of
these algorithms.

3.1. Data Set

The simulated SAR data is generated by the Space-borne Radar Advanced Simulator
(SRAS) system [36,37]. This batch of data is shown in Figure 8. It is a simulation of four
types of mountain terrains. The size is 512 × 512 pixels, and the range and azimuth
resolution is about 1 m. From area 1 to area 4, their elevation ranges are 350 m–470 m,
320 m–470 m, 390 m–550 m, and 395 m–570 m, respectively. Their look angles are 15◦, 20◦,
25◦, 30◦, and 40◦, respectively. The measured data are taken from the TerraSAR-X system,
which are L1A-level SAR images collected in the Alps and its vicinity. Master images were
collected on 12 January 2009, with a look angle of 35.8153◦, and slave images were collected
on 9 December 2008, with a look angle of 20.7765◦. As shown in Figure 9, we use four
terrain image blocks with a size of 512 × 512 pixels.

Figure 8. The simulated data and keypoint matching results of RLKD and SAR-SIFT on it. The green line in the figure is the
keypoint fast matching produced by RLKD, and the red line is the keypoint matching produced by SAR-SIFT.
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Figure 9. Measured TerraSAR-X data and the keypoint matching results of RLKD and SAR-SIFT on it. The green line is the
keypoint fast matching produced by RLKD, and the red line is the keypoint matching produced by SAR-SIFT.

3.2. Implementation Details

Refer to Dellinger et al. [12] and Ma et al. [22] for SAR-SIFT and PSO-SIFT, respectively.
When constructing the scale space, use the initial scale δ = 2, ratio coefficient k = 1.26,
and number of scale space layers Nmax = 8. The arbitrary parameter d of the SAR-Harris
function is set to 0.04, and the threshold is set to 0.8. For RLKD, we set the radius of
the search space to 5. For the SAR image after geometric registration, the feature scale
and direction in the image are almost the same. Therefore, the standard deviation of
the Gaussian function of the algorithm in this paper is set to σ = kNmax−1 for producing
large-scale features. In addition, for SAR-SIFT, PSO-SIFT and the method proposed in this
paper, the LWM model is set as the default transformation model between the reference
and the image.

We tested all the programs on an Ubuntu 18.04 system computer with 128 GB RAM,
which is equipped with an Intel i9-9700X CPU and two Nvidia RTX3090 graphics cards.

3.3. Evaluation Index

• Mean-Absolute Error (MAE):
MAE is capable to measure the alignment error of keypoints, which is defined as follows:

MAE = ∑(
vm

i ,vs
j

)
∈C

∥∥∥ vm
i Γ− vs

j

∥∥∥
2

|C| (14)

where, Γ is the transfer model, and |C| is the number of keypoint pairs that are correctly
matched, that is, NKM.

• Number of Keypoints Matched (NKM):
We use the final number of matching keypoints generated by each method as the number
of keypoints matched to measure the effectiveness of the transfer model fitting.

• Proportion of Keypoints Matched (PKM):
In order to evaluate whether the keypoints detected by the method are efficient, we
also use PKM as one of the evaluation indicators. PKM is defined as follows:
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γ =

∣∣Vs
matched

∣∣
|Vs| (15)

In the equation,
∣∣Vs

matched

∣∣ represents the number of matching keypoints in the master
image, and |Vs| represents the number of all keypoints detected in the master image.

3.4. Result Analysis

In order to verify the performance of the algorithm in this paper, we designed the
following experiments. First, in order to confirm the correctness of our choice of measure-
ment function and transformation model in the algorithm, we designed the experiments
and presented the results in Tables 2 and 3. Second, in order to verify the pros and cons
of the algorithm compared with other methods, we compared the MAE, NKM and PKM
values of the registration results of the four methods on SAR images with different incident
angle differences and different terrain undulations in Figures 8–13. Then fusion result of
our method on real data was showed in Figure 14. The rest of this section will provide a
detailed discussion of the results of these experiments.

For the descriptors proposed in this paper, Table 2 shows the effect of using different
similarity measurement functions on the fast matching results of RLKD on the simulation
data set under a difference of 5◦ look angles. In Table 2, MCC is the abbreviation for the
maximum value of the correlation function. We can observe that using the correlation
function, the proposed method produces the smallest MAE and the largest NKM, but the
average time is not increased significantly. Therefore, we choose the correlation function as
the measuring function of the descriptor similarity in the RLKD step.

Table 2. Results of different descriptor measuring functions in SAR image registration on the synthetic
data set with a difference of 5◦ in look angles.

Method MAE (pixel) NKM TIME

Correlation 0.59 21 0.90 s
Mutual information 0.67 18 0.84 s

Cross entropy 0.63 20 0.88 s

Table 3. Differences in the RLKD matching results of our method obtained by using different
transformation models.

Method
RLKD RLKD + MHTIM

MAE (pixel) NKM MAE (pixel) NKM

Similarity 1.44 11 2.61 20
Polynomial (order 2) 0.63 18 1.19 26

Affine 0.78 16 0.84 18
LWM 0.59 21 0.55 31

Table 3 shows the influence of different transformation models on the final matching
results of our method for the simulated data set with a difference of 5◦ in look angles.
It can be seen that after RLKD, the LWM model has the smallest MAE and the largest
NKM, which are significantly better than those of other models. The similarity model is
the simplest fitting model, but its result is the worst. The polynomial and affine models are
worse than LWM, and the simplest similarity model is the worst. After MHTIM, increased
NKM was produced by all the models. When the LWM model was used alone, the MAE of
the matching results decreased. This is because, in the RLKD stage, the LWM model creates
more stable matching result. The results presented in Table 3 also confirm our analysis in
Section 3, that is, when registering mountain SAR images, the LWM model may achieve
better results than other models.
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Figure 10. MAE results in different districts under different look angle differences. (The label DLA in
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Figure 8 shows the simulated data. In order to give an intuitive experience of the
matching effects of different algorithms, and to take into account the clarity of the figure,
this article shows only the matching keypoint results of the RLKD method and the SAR-
SIFT in the figure. We can observe that compared to SAR-SIFT, the RLKD method achieves
more matching points under large difference in look angles. It shows that the descriptors
proposed in this paper are more suitable for the matching problem of mountain SAR
images having large geometric distortion, which confirms the Section 2.1 of this paper. It
also confirms that the ridge structure remains relatively unchanged in SAR images with
different look angles.
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Figure 14. Matching fusion results of the RLKD + MHTIM method. The display mode is “checkerboard”. The difference in
the look angle of each column of the fused image is marked at the top of the figure.

Figure 10 shows the MAE values of the three registration algorithms for the simulated
data under different differences in look angles. Among them, the MAE of SAR-SIFT is the
largest, and the results are unstable in areas with different elevation differences. Overall,
except for the case where DIA is equal to 25◦ in district 2, our method obtains the smallest
MAE, and when the DIA increases, the MAE of the RKLD and MHTIM methods remain
stable. This result shows that the method proposed in this paper can effectively overcome
the geometric distortion caused by the large look angle difference and ensure the stability
of the registration process. From the comprehensive analysis of NKM in Figure 11, it can
be seen that for PSO-SIFT, the result of MAE is smaller than SAR-SIFT and its NKM is
higher. But from the perspective of PKM in Figure 12, only about 10% of the keypoints
detected by PSO-SIFT are matched. This value is not higher than SAR-SIFT. This suggests
that the keypoints detected by PSO-SIFT may not be more applicable than SAR-SIFT in
SAR images with large geometric distortion. The MAE of RLKD in this paper is smaller
than those of SAR-SIFT and PSO-SIFT. The RLKD+MHTIM method further reduces the
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MAE. This shows that the use of the isomorphism of the distribution structure of keypoints
increases the stability of our method.

Figure 11 shows the NKM of the matching results of each method for the simulated
data. Intuitively, PSO-SIFT is close to RLKD+MHTIM in district 1 and district 4, that is
because these two areas have richer textures. The NKM of the RLKD method is between
those of SAR-SIFT and PSO-SIFT, but the RLKD+MHTIM method greatly increases the
NKM. Comprehensive analysis of Figures 10 and 11 reveals that the RLKD+MHTIM
method has the largest number of matching keypoint and the smallest error.

Figure 12 shows the PKM value of the matching results of each method for the
simulated data. Except for district 3, the RLKD method produced slightly higher PKM
values than SAR-SIFT and PSO-SIFT. However, the PKM value of the RLKD+MHTIM
method is significantly higher than those of the other two methods.

In addition, the MAE of the matching result of the correlation-based method is shown
in Figure 13. Since this method does not look for keypoints, we present only the MAE re-
sults. Compared with the feature-based method, the MAE of this method is at a higher level.

Figure 9 shows the measured TerraSAR-X image data. As in Figure 8, in order to
give an intuitive experience of the matching effects of different algorithms and take into
account the clarity of the figure, this paper shows only the matching keypoint results of the
RLKD and SAR-SIFT methods. Figure 15 shows the histogram of NKM after matching the
TerraSAR image data set with three methods. We can see that in the Mountain (Big) area
with large terrain undulations, the number of matching keypoints produced by SAR-SIFT
is less than that produced by our RLKD method and the distribution of keypoints is uneven.
The performance of PSO-SIFT on this type of terrain is the most unstable. In the Mountains
(Big) 1, 2 and 4 areas, the number of matching point pairs it obtains is less than one half of
those obtained by the SAR-SIFT and RLKD methods. However, on the Mountains (Big) 3
area, the number of matching keypoint reached 39, surpassing SAR-SIFT’s 7 and RLKD
+ MHTIM’s 33. In the Mountains (Small) area with slightly smaller terrain undulations,
NKM obtained by the RLKD method is slightly more than that of SAR-SIFT, and, more
than that of PSO-SIFT except in area 3. The MHTIM method further matches the keypoints
of the ridge detected by the RLKD method and produces at least twice the number of
matching keypoints produced by the RLKD method.
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Figure 15. NKM of the matching results of different algorithms on the TerraSAR-X data.

In the areas of towns and others where the terrain is less undulating and more common,
the NKM obtained by the RLKD+MHTIM method still has an absolute advantage over
those of PSO-SIFT and SAR-SIFT, which proves that the RLKD+MHTIM method proposed
in this paper is not only effective and efficient in matching SAR images with large geometric
distortion, but also has advantages in registering general types of SAR images.
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Finally, Figure 14 shows the matching and fusion results of the TerraSAR-X data based
on the RLKD + MHTIM method. The shape of a grid can be seen in every plot because we
use “checkerboard” display mode. We can find that in the mountain area, the shape of the
ridge in the center of the image fits well. In areas with small terrain undulations, roads,
rivers and other terrains on the ground are well matched, which proves that our method
has good effectiveness to different types of terrains.

4. Discussion

In this paper, a Ridge Line Keypoint Detection (RLKD) method and a Multi-Hypothesis
Topological Isomorphism Matching method (MHTIM) are proposed to match SAR im-
ages with large geometric distortion. We designed adequate experiments to verify the
effectiveness of the intermediate links and final results of this method. Judging from the
experimental results, the LWM and MCC methods are the best choices in the middle part
of the method in this paper. Considering the registration results, the method proposed in
this paper is more stable than traditional methods when the relative geometric distortion
between SAR images increases. Thanks to the inherent isomorphism of the distribution
of ridge structures under different viewing angles, the MHTIM method outputs more
keypoints and obtains a smaller MAE. Compared with other methods, MHTIM also uses
the keypoints detected in RLKD more efficiently.

As shown by experimental results on simulated and real SAR images, the merits of
using RLKD and MHTIM are pretty well demonstrated. However, the key points obtained
by several types of methods are still unable to obtain a high-precision transformation
model to completely correct the SAR images. This shows that the isomorphism between
the distribution of ridge features from different look angles has not been completely
explored utilized.

5. Conclusions

Aiming at the problem of SAR image registration with large differences in look angles
and large terrain undulations, a Ridge Line Keypoint Detection (RLKD) method and a
Multi-Hypothesis Topological Isomorphism Matching method (MHTIM) are proposed.
First of all, this paper designs a method for detection and similarity description of ridge
keypoints. This method can quickly generate a small number of stable matching keypoint
pairs under large differences in look angles and large terrain undulations. This method
uses the local and global geometric relationship information between keypoints at the
same time, therefore, it is more effective than traditional methods when registering SAR
images with large geometric distortion. Experiments show that the proposed method can
match SAR images with large geometric distortions and can process different types of
terrains. It is worth mentioning that before using our method, it is best to perform rough
geometric registration first, so that the image regions to be registered roughly overlap. In
this way, it will be more efficient when using our method for higher precision registration.
In future work, we will conduct in-depth research on the features of ridge images from
the electromagnetic model and imaging geometry of the ridge terrain, in order to find a
feature description that can cope with the distortion caused by changes in scale, rotation,
and imaging look angle.
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