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Abstract: The application of remote sensing data to empirical models of inland surface water
chlorophyll-a concentrations (chl-a) has been in development since the launch of the Landsat
4 satellite series in 1982. However, establishing an empirical model using a chl-a retrieval algo-
rithm is difficult due to the spatial heterogeneity of inland lake water properties. Classification of
optical water types (OWTs; i.e., differentially observed water spectra due to differences in water prop-
erties) has grown in favour in recent years over traditional non-turbid vs. turbid classifications. This
study examined whether top-of-atmosphere reflectance observations in visible to near-infrared bands
from Landsat 4, 5, 7, and 8 sensors can be used to identify unique OWTs using a guided unsupervised
classification approach in which OWTs are defined through both remotely sensed reflectance and
surface water chemistry data taken from samples in North American and Swedish lakes. Linear
regressions of algorithms (Landsat reflectance bands, band ratios, products, or combinations) to lake
surface water chl-a were built for each OWT. The performances of chl-a retrieval algorithms within
each OWT were compared to those of global chl-a algorithms to test the effectiveness of OWT classifi-
cation. Seven unique OWTs were identified and then fit into four categories with varying degrees of
brightness as follows: turbid lakes with a low chl-a:turbidity ratio; turbid lakes with a mixture of high
chl-a and turbidity measurements; oligotrophic or mesotrophic lakes with a mixture of low chl-a and
turbidity measurements; and eutrophic lakes with a high chl-a:turbidity ratio. With one exception
(r2 = 0.26, p = 0.08), the best performing algorithm in each OWT showed improvement (r2 = 0.69–0.91,
p < 0.05), compared with the best performing algorithm for all lakes combined (r2 = 0.52, p < 0.05).
Landsat reflectance can be used to extract OWTs in inland lakes to provide improved prediction of
chl-a over large extents and long time series, giving researchers an opportunity to study the trophic
states of unmonitored lakes.
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1. Introduction

The turn of the century has seen an apparent increase in the frequency and magnitude
of harmful algal blooms in lakes, resulting in significant social, economic, and ecological
damage [1–3]. It is theorized that the increase in blooms is a result of atmospheric changes
(e.g., increased temperatures) and land use changes (e.g., agricultural intensification) [4].
The repercussions of frequent and intense blooms have motivated improved lake sampling
efforts; however, there is often a sampling bias towards large lakes close to settled areas,
while smaller lakes that scatter remote landscapes are often not sampled [5]. Lakes are
regarded as sentinels of change in atmospheric and terrestrial systems, with smaller lakes
often having a larger response compared to larger lakes [6,7].

Monitoring of lake algae typically relies on measurements of algal density and biomass
or biovolume [8]. While ground-based measurement options provide precise information,
remote sensing options are preferable—if not the only ones possible—in remote locations.
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Remote sensing can be used to provide estimates of chlorophyll-a concentration (chl-a) [9],
a proxy for algal biomass because of its unique optical signature and because it is the domi-
nant photosynthetic pigment in most algae [10]. The Landsat satellite series provides the
longest available time series of any spaceborne remote sensing system (1982–present), with
a spatial resolution (30 m for visible-NIR bands) capable of resolving smaller waterbodies.
However, monitoring of lake chl-a with Landsat is limited by a poor signal–noise ratio
(particularly with Landsat 5 TM (1984–2013) and 7 ETM+ (effective 1999–2003) sensors),
relative to other available satellite sensors (e.g., Landsat 8 OLI (2013–present), Sentinel 3-A
(2016–present)), and by wide radiometric bands [11,12]. Despite these limitations, Landsat
has a long history of being used as a remote measuring system for chl-a at small spatial and
temporal scales [13–22]. Other remote sensors may be more precise in discerning finer reso-
lution spectral signals; however, because of its long time series, further analysis of Landsat
product applicability will be instrumental in predicting historical surface algal biomass.

To compensate for Landsat’s bandwidth limitation, band radiances or reflectances are
often multiplied (band products), divided (band ratios), or combined into more complex
equations (band combinations), all of which are hereafter referred to as algorithms. Chl-a
is commonly identified through combinations of Blue (herein referred to as B) and Green
(herein referred to as G) bands [23–26], B and Red (herein referred to as R) bands [27,28], or
G and R bands [29–31]. However, chl-a retrieval based on these algorithms often fails to
account for interfering signals from non-algal particles [32,33]. Optically active non-algal
particles have less influence on absorption or reflectance in the near-infrared (NIR; herein
referred to as N) band [34], and many studies have found that the R–N ratio performed
best in retrieving chl-a in turbid waters [35–37]. Three-band algorithms have also been
used for chl-a retrieval in turbid waters, as first described by Gitelson et al. [38,39] and later
adapted by Keith et al. [40]. Effective use of these algorithms is, however, limited because
the composition and concentration of non-algal particles that interfere with the reflectance
properties of water will vary among lakes [41–44]. The application of a single common
algorithm over large spatial extents may therefore increase predictive errors.

To overcome the heterogeneity of freshwater optics, lakes can be separated into optical
water types (OWT) by their observed spectra. OWTs serve as a comprehensive classifica-
tion system, as different limnological conditions in turbid waters return unique spectral
signatures [45–47]. The separation of observations into OWTs may optimize chl-a retrieval,
as algorithm performance depends on the freshwater optics. While hyperspectral imagery
provides the most accurate retrieval of spectral profiles for determining OWTs [48,49]
(as higher spectral resolution may observe more unique optical signal patterns), stud-
ies have shown effective OWT classifications using only six visible and N radiometric
bands [44–46]. Classification of OWTs using the Landsat satellite series remains difficult,
due to the availability of only four visible-N bands.

This study has two research questions as follows: (1) Can lake OWTs be identified us-
ing Landsat data without in situ spectra? (2) Does the separation of lakes into OWTs using
Landsat data improve the performance of chl-a retrieval algorithms vs. applying those algo-
rithms globally? This study looks to use widely available water quality metrics (chl-a and
turbidity) from publicly available data sources to determine ways to optimize chl-a retrieval
from limited data. Positive findings to both questions will not only improve the ability of
researchers to estimate lake chl-a but may improve monitoring programs, expanding the
spatial and temporal range of chl-a estimation across the length of Landsat’s records.

2. Materials and Methods
2.1. Ground-Based Dataset

Ground-based chl-a (µg L−1) and turbidity (NTU) samples taken ≤1 m from the
water surface were acquired from various private and public lake water quality databases
throughout North America and Fennoscandia, spanning multiple ecoregions (temperate
continental forest, steppe, desert, mountain, subtropical humid forest, and tropical moist
forest) from July to October (1984–2016) (see Table S1 in the Supplementary Material for



Remote Sens. 2021, 13, 4607 3 of 27

more information). Ground-based samples were provided by the Government of British
Columbia’s Environmental Monitoring System (EMS) surface water data repository, the
USGS Storage and Retrieval (STORET) database, the USGS National Water Information
System (NWIS) database, and the Swedish University of Agricultural Science (SLU) Miljö-
data MVM Environmental database. Samples were selected in these ecoregions as they
provided consistent open data sources for lake water quality parameters. These databases
also helped provide a geographic spread of data from the tropics to northern temperate
ecoregions, which may provide a diverse range of potential water types. Geographic
clustering of data occurs as only specific ecoregions had frequently reported water quality
results. Only samples where both chl-a and turbidity were taken within ±3 days of a
Landsat 4, 5, 7, or 8 satellite overpasses were selected. This window size was chosen to
allow for an adequate number of matchups between samples and satellite overpasses while
maintaining a relationship with measured reflectance [50]. Limited samples of coloured dis-
solved organic matter and total suspended solids metrics were found within this window
and therefore were not used in this study. A total of 204 sample pairs within 142 lakes were
selected (Figure 1, Table S1). Lake sizes ranged from 5.3 to 86,661.9 ha (median = 119.3 ha).
Due to a lack of available metadata for public data records, differences in ground-based
measurement processing and calibration will occur and offer a source of potential error in
the remote sensing retrieval.
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2.2. Landsat Image Acquisition, Processing, and Analysis

Sample locations were mapped to the Worldwide Reference System (WRS-2) Landsat
catalogue system to identify the (longitudinal) paths and (latitudinal) rows in which the
samples were found. A total of 105 pairs of Landsat Level-1 and -2 images with <10% cloud
coverage and within ±3 days of sample dates were downloaded from the USGS EarthEx-
plorer data catalogue (https://earthexplorer.usgs.gov/, last accessed: 3 November 2021)
(72 Landsat 4-5 TM, 11 Landsat 7 ETM+ (SLC-on), and 22 Landsat 8 OLI) (Table S1).

Various atmospheric correction options are available for the remote sensing of water
quality using Landsat data (e.g., 6S, DOS, COST, iCOR); however, such methods often result
in errors due to the violation of the dark pixel assumption in turbid waters when estimating
aerosol optical thickness in the N [51,52]. While the SWIR band can be used in lieu of
the N, it often results in lower aerosol accuracy estimation due to a poorer signal–noise
ratio [53]. Some studies have instead opted for simple atmospheric correction of Rayleigh
scatter (and not of aerosol contributions) for chl-a retrieval in turbid waters [54–58]. To
reduce opportunities for overestimation of atmospheric contributions, this study corrected
Landsat data for Rayleigh scatter contribution only.

OWTs were identified from top-of-atmosphere (TOA) reflectance values (0–1) in B
(band 1 TM and ETM+, band 2 OLI), G (band 2 TM and ETM+, band 3 OLI), R (band 3 TM
and ETM+, band 4 OLI), and N (band 4 TM and EMT+, band 5 OLI) bands. TOA radiance
(W/(m2 × sr× µm)), measured by Landsat sensors, were scaled using multiplicative (gain)
and additive (bias) scaling factors to 8-bit (0–255; TM and ETM+) and 16-bit (0–65,000; OLI)
integer value ranges (digital numbers or DNs) for transmission and storage in Landsat
Level-1 products. DNs were recalibrated to TOA radiance using the standard equation [59],
as follows:

Lλ = (DNλ × gainλ) + biasλ (1)

where L is TOA radiance for wavelength (λ) range or band λ.
TOA radiances were corrected for Rayleigh scatter (attributed to the molecular proper-

ties of the atmosphere) using an inverse algorithm based on a simplified radiative transfer
model presented by Gilabert [60], as follows:

Lr(λ) =

(
ESUNλ × cos θs × Pr

4π× (cos θs + cos θ)

)
×
(

1− exp
(
−τr(λ)×

(
(

1
cos θs

) + (
1

cos θ
)

)))
× toz ↑ (λ)× toz ↓ (λ) (2)

where Lr is the Rayleigh path radiance for band λ, ESUN is the mean solar exo-atmospheric
irradiance for band λ, Pr is the Rayleigh phase function, θs is the solar zenith angle in
degrees, θ is the satellite viewing angle in degrees (equal to 0◦ for Landsat 4, 5, and 7 images
and for nadir-looking Landsat 8 images), τr is the Rayleigh optical thickness, and toz↑ and
toz↓ are upward and downward ozone transmittance, respectively.

The Rayleigh phase function (Pr) [61,62] describes the angular distribution of scattered
light and was calculated as follows:

Pr =
3
4
× 1− γ

1 + 2γ
×
(

1 + cos2 Θ
)
+

3γ
1 + 2γ

(3)

where Θ is the scattering angle (180◦ − θs), γ = δ/(2 − δ), and δ is the depolarization factor
that denotes the polarization of anisotropic particles at right angles—dependent on the
wavelength, atmospheric pressure (constant), and air mass (constant) [63,64].

Rayleigh optical thickness (τr) [65,66] was calculated as follows:

τr = 0.008569λ−4 ×
(

1 + 0.0113λ−2 + 0.00013λ−4
)

(4)

Ozone transmittance (toz↑ and toz↓) [67] were calculated as follows:

toz ↑= exp(−τoz) (5)

https://earthexplorer.usgs.gov/
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toz ↓= exp
(
−τoz

cos θs

)
(6)

where τoz is the ozone optical thickness, as calculated by [68].
Lr was subtracted from L for each band λ to determine Rayleigh-corrected TOA

radiance (L̂) as follows:
L̂λ = Lλ − Lr (7)

L̂ was then converted to unitless TOA reflectance (ρ; 0–1) for each band λ to avoid
issues regarding shifts in the solar zenith angle due to latitude and time of year, as follows:

ρλ =
π·L̂λ × d2

ESUNλ × cos θs
(8)

where d is the Earth–Sun distance in astronomical units.
Lake boundaries were delineated from Level-2 images using the dynamic surface

water extent (DSWE) model developed by Jones [69] and adapted by DeVries et al. [70].
Contiguous groups of pixels identified as water by the DSWE model were vectorized
without polygon simplification (i.e., lake vector boundaries matched the pixel boundaries),
and the vectors were then buffered inwards by 15 m (0.5 pixel width) to minimize the
spectral effects of edge pixels where the reflectances of vegetation and shallow depths mix
with the reflectance of water. Only buffered lake polygons ≥4.5 ha (50 pixels) were used in
this study to further minimize the spectral effects of edge pixels.

In each buffered lake polygon, pixels identified as having a high probability of cloud or
cloud shadow in the pixel quality assessment band, provided with Level-2 products, were
removed. Because ground-based samples were taken from multiple sources, an assumption
of spatial homogeneity in the water chemistry was made due to potential inaccuracies in
reported sampling coordinates. To meet this assumption, the standard deviation of ρ in
all remaining pixels in each buffered lake polygon was calculated for each visible-N band
ρλ; homogeneity is expressed as the sum of the band standard deviations (SSD; [71,72]);
and lakes with an arbitrary threshold of SSD larger than the median SSD of all lakes were
discarded. While a 3 × 3 or 5 × 5 filter may reduce the effects of homogeneity, some public
water quality data may only provide lake coordinates and not sampling coordinates. Filters
will not provide adequate smoothing for larger waterbodies, and thus lake averages and
SSD thresholds were used.

2.3. Identification of OWTs

OWTs are defined as waters with diverse water chemistry compositions resulting in a
wide range of spectral signatures in the visible-N spectrum [73]. Common methods of OWT
separation use unsupervised classifiers such as k-means or fuzzy c-means [44–46]; however,
the small number of Landsat bands limits the number of potential observable spectral
signatures. To overcome this limitation, a guided approach was implemented, whereby,
the ratio of chl-a:turbidity (Chl:T) was used in addition to ρλ in the visible-N bands in a
unsupervised hierarchical clustering method. The use of Chl:T indicates whether the optical
signal is influenced by a high biomass presence (high Chl:T) or a low biomass presence
(low Chl:T). The hierarchical clustering method was done in R using the “hclust” function
found in the base “STATS” package using the “Ward” method. The hierarchical clustering
distance values were calculated using the “Canberra” method. Distance is measured as
the space (referred to as Euclidian space) between data points in a multivariate dataset,
which represents how closely clustered points are. Chl:T and ρλ in the visible-N bands
were normalized in R using the “preProcess” function found in the “caret” package, with
“scale” selected as the method (i.e., dividing each column by its standard deviation) [74].
To determine the optimal number of classes, an elbow method was used, whereby the
total within sums of squares for numbers of clusters from 2 to 24 were calculated using
the “fviz_nbclust” function as part of the “factoextra” package in R [75]. A three-point
piecewise regression of total within sum of squares vs. number of clusters was fit to
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determine at which point the increase in clusters no longer significantly reduced the total
within sum of squares. Each OWT defined using this method was defined as OWT-Ah or
OWT-Bh, etc.

To be applicable to lakes where in situ water chemistry is unknown, a supervised
classifier was trained using normalized ρλ in the visible-N bands and the now defined
OWTs. A quadratic discriminative analysis (QDA) model was selected as it reduces
dimensionality and uses the mean vector of each class to define non-linear boundaries
between the defined classes. A random stratified sampling technique was used to select
70% normalized training and 30% normalized testing data using the “stratified” function
from the “splitstackshape” package in R (seed = 854) [76]. The QDA was calculated in R
using the “qda” function found in the “MASS” package [77]. Each OWT defined using this
method is defined as OWT-Aq or OWT-Bq, etc.

2.4. Development of Chl-a Retrieval Algorithms

A total of 82 algorithms—including all possible band products and ratios, as well as
commonly used multiband combinations found in the literature (Tables S2 and S3)—were
tested for the empirical retrieval of chl-a across all lakes (i.e., global models) and within
each OWT using linear regression. Chl-a and turbidity values were log-scaled to meet the
assumption of normality. Shapiro–Wilk tests were used to assess the normality (p ≥ 0.05)
of relationships between dependent and independent variables. Breusch–Pagan tests were
used to assess constant variance (p ≥ 0.05) between dependent and independent variables
using the “lmtest” R package [78]. Outliers in selected models were identified using Cook’s
distance >4/n prior to regression modelling of chl-a. Algorithm strength and significance
were evaluated using coefficients of determination (r2) and regression p-values: these
were used to compare the strength and significance (p < 0.05) of correlations between
mean lake ρλ to chl-a or turbidity using OWTs vs. global applications. The chl-a retrieval
algorithms were validated using ten-fold cross validation and the predictive performance
was measured by the root mean squared error (RMSE) as follows:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(9)

where ŷi is observed as chl-a and yi is the predicted value. To compare between different
groups of varying sample size and different scales of input chl-a, the RMSE were normalized
as follows:

NRMSE =
RMSE

σ
(10)

where σ is the standard deviation of the input chl-a. The root mean log squared error
(RMSLE) was calculated as follows:

RMSLE =

[
∑N

i=1 (ŷi − yi)
2

n

]1/2

(11)

Predictive performance was also measured by the mean absolute error (MAE), calcu-
lated as follows:

MAE =
∑n

i=1|ŷi − yi|
n

(12)

The median absolute percentage error (MAPE) was calculated as follows:

MAPE = 100×median o f
[
|ŷi − yi|

yi

]
f or i = 1, . . . , n (13)
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Bias was calculated as follows:

Bias =
∑n

i=1(ŷi − yi)

n
(14)

The MAE, RMSLE, MAE, and bias were calculated using the “metrics” R package [79],
while the MAPE was calculated using the “MLmetrics” package [80]. To showcase the
application of the OWT and chl-a retrieval algorithms, a testing image was used (Landsat
8 OLI, 15 August 2021, path = 17, row = 29), where per pixel OWT and modelled chl-a
are shown.

3. Results
3.1. Identification of OWTs

The number of OWTs was determined using a three-point piecewise regression in R,
where the total within sum of squares was calculated using normalized Chl:T and ρλ in
the visible-N bands, and which identified three breaks (k = 3, 7, and 11). The first, k = 3,
represents too few potential OWTs, while k = 11 resulted in clusters with too few samples
for the development of regressions. To maximize the number of OWTs and maintain
reasonable sample sizes, k = 7 was identified as the optimal number.

The unsupervised hierarchical clustering method defined which of the lakes belonged
to which OWT (Figure 2). Based on lake surface water chemistry (Table 1, Figure 3),
OWT-Eh had the highest Chl:T (median = 6.7) with high chl-a (median = 13.7 µg L−1)
and low turbidity (median = 1.9 NTU) measurements. While the Chl:T ratio was high,
the lakes were relatively dark compared to OWT-Ah, -Bh, and -Ch, but brighter in the
B band compared to OWT-Dh, -Fh, and -Gh (Figure 4a). OWT-Ah had the lowest Chl:T
(median = 0.5) with low chl-a (median = 4.0 µg L−1) and high turbidity (median = 7.8 NTU)
measurements. While optically bright in the B, G, and R bands, OWT-Ah had low ρλ(N) in
ranges similar to the optically dark lakes (Figure 4a). OWTs-Bh and -Ch had moderately
high Chl:T (median = 4.8 and 4.5, respectively) with a high chl-a (median = 33.6 µg L−1 and
20.2 µg L−1, respectively) and high turbidity (median = 6.7 NTU and 5.0 NTU, respectively)
measurements. OWT-Ch returned the highest ρλ of any OWT, with significantly higher
N ρλ. Both OWTs-Bh and -Ch had equally high chl-a and turbidity measurements, with
OWT-Ch displaying the greatest variance in its distribution compared to any other OWT
(Figure 4a). OWT-Dh had a low Chl:T (median = 1.1) with low chl-a (median = 1.3 µg L−1)
and low turbidity (median = 1.7 NTU) measurements. OWT-Dh remained optically dark
throughout all four visible-N bands, with little variation in ρλ (Figure 4a). OWTs-Fh
and -Gh had moderately low Chl:T (median = 2.5 and 3.0, respectively) with low chl-a
(median = 3.00 µg L−1 and 2.95 µg L−1, respectively) and low turbidity (median = 1.2 and
1.0 NTU, respectively) measurements. OWT-Gh exhibited the lowest ρλ with the lowest
reflectances in the G and R bands. While OWT-Fh shows an even distribution of chl-a and
turbidity, OWT-Gh has slightly higher chl-a relative to turbidity.

Table 1. Summary statistics of ground-based chl-a and turbidity within each OWT for two different methods: unsupervised
hierarchical clustering based on reflectance and water chemistry, and supervised quadratic discriminant analysis (QDA),
trained using the hierarchical classes and the associated mean lake TOA reflectance (ρλ) per band (B = Blue, G = Green,
R = Red, N = near infrared).

Chl-a (µg L−1) Turbidity (NTU) Chl:T Mean Lake ρλ

OWT Min Med Max Min Med Max Min Med Max B G R N n

Hierarchical Clustering

Ah 1.1 4.0 27.2 2.0 7.8 78.0 0.2 0.5 0.9 0.042 0.046 0.039 0.027 12
Bh 1.5 33.6 171.0 0.4 6.7 39.0 2.1 4.8 9.3 0.046 0.046 0.034 0.035 34
Ch 1.5 20.2 92.3 1.0 5.0 39.0 0.5 4.5 21.5 0.064 0.063 0.052 0.063 19
Dh 0.5 1.3 24.9 0.4 1.7 25.0 0.2 1.1 1.7 0.029 0.026 0.017 0.021 16
Eh 2.5 13.7 200.0 0.6 1.9 15.0 3.2 6.7 30.2 0.037 0.030 0.021 0.024 60
Fh 0.5 3.0 31.4 0.2 1.2 12.0 1.2 2.5 4.2 0.033 0.030 0.021 0.025 28
Gh 0.6 3.0 108.5 0.2 1.0 7.0 1.6 3.0 15.5 0.024 0.017 0.011 0.015 34

QDA

Aq 3.0 4.7 27.7 5.0 9.5 78.0 0.2 0.6 3.5 0.042 0.051 0.043 0.027 10
Bq 1.5 29.3 171.0 0.4 6.0 39.0 0.5 4.8 9.3 0.046 0.046 0.034 0.034 36
Cq 1.5 20.9 92.3 1.0 5.0 39.0 0.5 4.9 21.5 0.065 0.064 0.052 0.065 18
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Table 1. Cont.

Chl-a (µg L−1) Turbidity (NTU) Chl:T Mean Lake ρλ

OWT Min Med Max Min Med Max Min Med Max B G R N n

Dq 0.5 2.4 66.0 0.4 1.0 7.0 0.2 1.4 9.4 0.027 0.024 0.016 0.023 15
Eq 0.6 8.4 200.0 0.3 2.0 15.0 0.5 5.1 30.2 0.036 0.031 0.022 0.024 72
Fq 0.5 2.9 58.7 0.2 1.2 25.0 1.0 2.5 22.6 0.035 0.029 0.021 0.025 19
Gq 0.6 3.0 108.5 0.2 1.0 7.0 1.6 3.0 21.7 0.025 0.017 0.011 0.014 33
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Figure 2. OWT spectra with hierarchical clustering using normalized chl-a:turbidity ratio and visible-N reflectance (guided–
hierarchical). The dendogram on the right indicates the height (i.e., Euclidean distance) breaks of each OWT where (1) each
endpoint at the left of the dendogram represents a lake, (2) the first (top) and last (bottom) endpoints represent the two
most distance lakes in Euclidean space, and (3) the dashed line indicates the cut-off point for defining seven OWTs.
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served chl-a, (f) observed turbidity measurements, and (g) Chl:T in OWTs identified by unsupervised hierarchical clustering.
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The supervised QDA method provided a reasonably accurate prediction of OWTs,
with a testing accuracy of 75.4% (Figure 5a) and a total accuracy of 80.1% (Figure 5b).
OWTs-Bq, -Cq, -Dq, -Eq, and -Gq were reasonably predicted (i.e., ≥60.0%), but OWTs-Aq
and -Fq were poorly predicted (≤25%) (Figure 5a). The order of brightness, as represented
by mean ρλ(B, G, R, N) in OWTs, identified through the supervised QDA method and the
unsupervised hierarchical clustering method, were the same. OWT-Cq was the brightest
(mean ρλ(B, G, R, N) = 0.061); followed by OWTs-Aq (mean ρλ(B, G, R, N) = 0.041) and
OWTs-Bq (mean ρλ(B, G, R, N) = 0.040); then by OWT-Eq (mean ρλ(B, G, R, N) = 0.028),
OWT-Fq (mean ρλ(B, G, R, N) = 0.027), and OWT-Dq (mean ρλ(B, G, R, N) = 0.022); and
finally by OWT-Gq, which was the darkest (mean ρλ(B, G, R, N) = 0.017).

The supervised QDA method identified OWTs with comparable water chemistry
distributions to those of the unsupervised hierarchical clustering method (Table 1, Figure 6).
OWT-Eq had the highest Chl:T (median = 5.1) with high chl-a (median = 8.4 µg L−1) and low
turbidity (median = 2.0 NTU) measurements. OWT-Aq had the lowest Chl:T (median = 0.6)
with low chl-a (median = 4.7 µg L−1) and high turbidity (median = 9.5 NTU) measurements.
OWTs-Bh and OWTs-Ch had moderately high Chl:T (median = 4.8 and 4.9, respectively)
with high chl-a (median = 29.3 µg L−1 and 20.9 µg L−1, respectively) and high turbidity
(median = 6.0 NTU and 5.0 NTU, respectively) measurements. OWT-Dh had a low Chl:T
(median = 1.4) with low chl-a (median = 2.4 µg L−1) and low turbidity (median = 1.0 NTU)
measurements. OWTs-Fh and OWTs-Gh had moderately low Chl:T (median = 2.5 and 3.0,
respectively) with low chl-a (median = 2.9 µg L−1 and 3.0 µg L−1, respectively) and low
turbidity (median = 1.2 and 1.0, NTU, respectively) measurements. When observing the
placement of QDA OWTs in the chl-a vs. turbidity plot (Figure 4b), similar results to the
hierarchical clustering were found, with the greatest difference in OWT-Dq, which was
misclassified with OWTs-Fq and OWTs-Gq.
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Figure 5. (a) Confusion matrix showing testing accuracy of the QDA (i.e., QDA trained using training
subset of lakes). (b) Confusion matrix showing total classification accuracy using QDA (i.e., trained
using all lakes).

3.2. OWT Chl-a Retrieval Performance

In the absence of OWT separation, global algorithms demonstrated moderate to poor
performances for chl-a retrieval. The [(R/B) × (R/N)] algorithm exhibited the highest r2

(0.52, p < 0.05, n = 147) with the seventh lowest NRMSE and the fourth lowest MAPE out of
82 algorithms in total. Of the 10 algorithms with the highest r2, all included the use of the
R band, while 70%, 30%, and 30% included N, G, and B bands, respectively (Table 2), 70%
included both the R and N bands, and 40% included a ratio of R and N. Compared with
the best performing global algorithm, algorithm performances improved when separated
into OWTs using unsupervised hierarchical clustering and supervised QDA. The algorithm
performances were similar between OWTs identified by the two methods (Table 3), except
for OWTs-C (higher r2 in OWT-Cq), -D (higher r2 in OWT-Dh), -E (higher r2 in OWT-Eh),
and -F (higher r2 in OWT-Fq).

Table 2. Number of instances that each Landsat band (B, G, R, N) is present in one of the top ten
performing (as indicated by r2) algorithms for chl-a retrieval per OWT. Chl:T + Ref refers to results of
the unsupervised hierarchical clustering classification and QDA refers to the supervised classification.

OWT-Chl:T + Ref B G R N OWT-QDA B G R N

Ah 7 5 5 4 Aq 3 6 8 10
Bh 8 7 6 8 Bq 8 8 8 6
Ch 8 10 6 2 Cq 10 8 3 3
Dh 4 7 5 10 Dq 5 8 7 5
Eh 7 4 8 9 Eq 10 4 8 7
Fh 3 3 8 10 Fq 6 6 10 8
Gh 5 4 6 10 Gq 4 3 8 10



Remote Sens. 2021, 13, 4607 12 of 27

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 27 
 

 

The supervised QDA method identified OWTs with comparable water chemistry dis-
tributions to those of the unsupervised hierarchical clustering method (Table 1, Figure 6). 
OWT-Eq had the highest Chl:T (median = 5.1) with high chl-a (median = 8.4 μg L−1) and 
low turbidity (median = 2.0 NTU) measurements. OWT-Aq had the lowest Chl:T (median 
= 0.6) with low chl-a (median = 4.7 μg L−1) and high turbidity (median = 9.5 NTU) meas-
urements. OWTs-Bh and OWTs-Ch had moderately high Chl:T (median = 4.8 and 4.9, re-
spectively) with high chl-a (median = 29.3 μg L−1 and 20.9 μg L−1, respectively) and high 
turbidity (median = 6.0 NTU and 5.0 NTU, respectively) measurements. OWT-Dh had a 
low Chl:T (median = 1.4) with low chl-a (median = 2.4 μg L−1) and low turbidity (median 
= 1.0 NTU) measurements. OWTs-Fh and OWTs-Gh had moderately low Chl:T (median = 
2.5 and 3.0, respectively) with low chl-a (median = 2.9 μg L−1 and 3.0 μg L−1, respectively) 
and low turbidity (median = 1.2 and 1.0, NTU, respectively) measurements. When observ-
ing the placement of QDA OWTs in the chl-a vs. turbidity plot (Figure 4b), similar results 
to the hierarchical clustering were found, with the greatest difference in OWT-Dq, which 
was misclassified with OWTs-Fq and OWTs-Gq. 

 
Figure 6. Boxplots representing the distribution of (a) mean ρλ(B), (b) mean ρλ(G), (c) mean ρλ(R), 
(d) mean ρλ(N), (e) observed chl-a, (f) observed turbidity measurements, and (g) Chl:T in lakes, 
using supervised QDA classification. 
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(e) observed chl-a, (f) observed turbidity measurements, and (g) Chl:T in lakes, using supervised QDA classification.
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Table 3. Chl-a retrieval algorithm results (after outlier removal) for each OWT and for all lakes (“global”) using both
unsupervised hierarchical and supervised QDA clustering. r2—adjusted r2; root mean squared error—RMSE; normalized
RMSE—NRMSE; p-value—p; Breusch–Pagan constant variance—CV; Shapiro–Wilks normality—NM; mean absolute error—
MAE; median absolute percentage error—MAPE; and bias. Filled boxes indicate that assumptions of linear regressions have
been met (p < 0.05; CV and NM ≥ 0.05); empty boxes indicate that the assumptions have not been met.

OWT Algorithm r2 Adj. r2 p CV NM n RMSE
(µg L−1)

RMSLE
(µg L−1) NRMSE MAE

(µg L−1)
MAPE

(%) Bias

OWT-Ah (B/R) 0.91 0.90 � � � 9 NA NA NA NA 6.37% −0.02
OWT-Bh (B/G) 0.82 0.81 � � � 23 11.74 0.31 0.55 10.16 9.41% −2.27
OWT-Ch (B/G) × (R/G) 0.26 0.19 � � � 13 8.43 0.41 0.73 8.33 15.02% −2.54
OWT-Dh (G/N) 0.91 0.91 � � � 13 0.24 0.08 0.21 0.23 33.28% 0.04
OWT-Eh (B/N) 0.77 0.77 � � � 36 5.83 0.29 0.54 4.27 11.21% −0.63
OWT-Fh (G/R) × N 0.78 0.77 � � � 27 3.00 0.38 0.38 2.27 39.89% −0.51
OWT-Gh (B/G) × (R/N) 0.69 0.68 � � � 21 1.61 0.33 0.46 1.35 109.99% −0.26
OWT-Aq (R/G) × N 0.91 0.87 � � � 5 NA NA NA NA 11.10% −0.39
OWT-Bq (B/G) 0.85 0.84 � � � 26 11.83 0.34 0.53 10.07 11.72% −1.55
OWT-Cq (B*N) 0.59 0.54 � � � 10 17.45 0.43 0.55 17.45 14.45% −5.39
OWT-Dq R 0.56 0.50 � � � 10 0.66 0.23 0.57 0.66 70.61% −0.15
OWT-Eq (B/N) 0.47 0.46 � � � 56 8.93 0.58 0.61 6.40 21.44% −2.75
OWT-Fq G × (B + G + R) 0.98 0.98 � � � 13 0.88 0.10 0.07 0.87 33.60% −0.29
OWT-Gq (B/G) × (R/N) 0.68 0.67 � � � 24 2.84 0.43 0.51 2.40 103.92% −1.16
Global (R/B) × (R/N) 0.52 0.51 � � � 147 19.66 0.81 0.85 11.22 34.11% −4.13

Based on Chl:T, OWTs-Ah and OWTs-Dh represent lakes where the chl-a remains
relatively low despite higher relative turbidity measurements. In both OWT-Ah and
OWTs-Dh, [G × (B + G + R)] and [N/G] had the highest r2 (1.00, p < 0.05, n = 4; 0.97,
p < 0.05, n = 9, respectively); however, due to the small sample size after outlier removal,
the algorithm with the next highest r2, [B/R], and [G/N] was preferable (r2 = 0.91, p < 0.05,
n = 9; r2 = 0.91, p < 0.05, n = 13, respectively). Due to the small sample sizes (n < 10), most
error metrics (RMSE, RMSLE, NRMSE, and MAE) were not calculated; however, [B/R]
and [G/N] had the 23rd and the 3rd lowest MAPE respectively. In both OWTs, of the ten
algorithms with the highest r2, N was included in the largest number. In OWT-Aq, and
OWTs-Dq [(R/G) × N] and [R] had the highest r2 (0.91, p < 0.05, n = 5; 0.55, p < 0.05, n = 10,
respectively). [(R/G) × N] and [R] had the 7th and 15th lowest MAPE respectively. Of
the ten algorithms with the highest r2, N was included in the largest number in OWT-Aq,
while G was included in the largest number in OWT-Dq.

Based on Chl:T, OWTs-Bh and OWTs-Ch represent eutrophic lakes where both chl-a
and turbidity measurements were relatively high. In both OWT-Bh and OWTs-Ch, [B/G]
and [(B/G) × (R/G)] had the highest r2 (0.82, p < 0.05, n = 23; 0.26, p = 0.08, n = 13, respec-
tively), with 2nd and 18th lowest NRMSE and the 7th and 1st lowest MAPE, respectively.
Of the ten algorithms with the highest r2, B and N were included in the largest number
in OWT-Bh, with G the most frequent in OWT-Ch. Algorithm performances in OWT-Ch,
however, were consistently poor. In both OWT-Bq and OWTs-Cq, [(B/G)] and [(B × N)]
had the highest r2 (0.85, p < 0.05, n = 26; 0.59, p < 0.05, n = 10), with the 2nd and 1st lowest
NRMSE and MAPE respectively. Of the ten algorithms with the highest r2, B, G, and
R bands were included in the largest number in OWT-Bq, while B was included in the
largest number in OWT-Cq. While OWT-Cq does provide an improvement over OWT-Ch,
[(B × N)] was the only algorithm with an adequate performance as the next highest r2 was
found for [(B/G) × (R/G)] (r2 = 0.33, p < 0.05, n = 16).

Based on Chl:T, OWT-Eh represents lakes where the turbidity measurements remains
relatively low, despite the higher relative chl-a. In OWT-Eh, [B/N] had the highest r2

(0.77, p < 0.05, n = 36), with the 4th lowest NRMSE and the 2nd lowest MAPE. Of the ten
algorithms with the highest r2, N was included in the largest number. Conversely, in
OWT-Eq, [(B/N)] had the highest r2 (0.47, p < 0.05, n = 56) with the lowest NRMSE and
the 8th lowest MAPE. Of the ten algorithms with the highest r2, B was included in the
largest number.

Based on Chl:T, OWTs-Fh, and OWTs-Gh represent oligotrophic or mesotrophic lakes,
where both chl-a and turbidity measurements are relatively low. In both OWT-Fh and
OWTs-Gh, [(G/R) × N] and [(B/G) × (R/N)] had the highest r2 (0.78, p < 0.05, n = 27; 0.69,
p < 0.05, n = 21, respectively), with 12th and 1st lowest NRMSE, and the 4th and 44th lowest
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MAPE respectively. Of the ten algorithms with the highest r2, N was included in the largest
number in both OWTs. In OWTs-Fq and -Gq, [G × (B+G+R)] and [(B/G) × (R/N)] had the
highest r2 (0.98, p < 0.05, n = 13; 0.68, p < 0.05, n = 24, respectively), with the 1st and 4th
lowest NRMSE and the 4th and 29th lowest MAPE respectively. Of the ten algorithms with
the highest r2, R was included in the largest number in OWT-Fq, while N was included in
the largest number in OWT-Gq.

The described methods identified seven OWTs with unique water chemistry compo-
sitions, varying spectral curves, and levels of brightness. The supervised classification
returned similar OWTs with similar algorithm performances. In comparison with the global
algorithms, separation into OWTs provided significantly improved retrieval accuracy for six
of the seven OWTs. Scatter and validation plots for OWTs are presented in Figures 7 and 8,
respectively, for unsupervised hierarchical clustering, and in Figures 9 and 10, respectively,
for supervised QDA. Full algorithm performance metrics for hierarchical clustering and
QDA can be found in Tables S2 and S3, respectively. The application of the OWTs and the
subsequent modelling of chl-a can be seen in Figure 11, where a variety of OWTs were
retrieved per pixel for several lakes in central–eastern Ontario.
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Figure 7. Regressions of observed ln chl-a to (a) (B/R) results in OWT-Ah; (b) (B/G) results in OWT-Bh; (c) [(B/G) × (R/G)]
in OWT-Ch; (d) (G/N) in OWT-Dh; (e) (B/N) in OWT-Eh; (f) [(G/R) × N] in OWT-Fh; (g) [(B/G) × (R/N)] in OWT-Gh; and
(h) [(R/B) × (R/N)] in all lakes (“global”).
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Figure 8. Ten-fold cross validation results for linear regression predictions of observed chl-a to (a) (B/R) results in OWT-Ah;
(b) (B/G) results in OWT-Bh; (c) [(B/G) × (R/G)] in OWT-Ch; (d) (G/N) in OWT-Dh; (e) (B/N) in OWT-Eh; (f) [(G/R) × N]
in OWT-Fh; (g) [(B/G) × (R/N)] in OWT-Gh; and (h) [(R/B) × (R/N)] in all lakes (“global”).
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Figure 9. Regressions of observed ln chl-a to (a) [(R/G) × N] results for OWT-Aq; (b) (B/G) results for OWT-Bq; (c) (B × N)
for OWT-Cq; (d) (R) for OWT-Dq; (e) (B/N) for OWT-Eq; (f) [G(B + G + R)] for OWT-Fq; (g) [(B/G) × (R/N)] for OWT-Gq;
and (h) [(R/B) × (R/N)] for all lakes (“global”).
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Figure 10. Ten-fold cross validation results for linear regression predictions of observed chl-a to (a) [(R/G) × N] results for 
OWT-Aq; (b) (B/G) results for OWT-Bq; (c) (B × N) for OWT-Cq; (d) (R) for OWT-Dq; (e) (B/N) for OWT-Eq; (f) [G(B + G + 
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Figure 10. Ten-fold cross validation results for linear regression predictions of observed chl-a to (a) [(R/G) × N] results for
OWT-Aq; (b) (B/G) results for OWT-Bq; (c) (B × N) for OWT-Cq; (d) (R) for OWT-Dq; (e) (B/N) for OWT-Eq; (f) [G(B + G +
R)] for OWT-Fq; (g) [(B/G) × (R/N)] for OWT-Gq; and (h) [(R/B) × (R/N)] for all lakes (“global”).
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Figure 11. Retrieved OWTs (a) and modelled chl-a (μg L−1) (b) in central–eastern Ontario using a Landsat 8 image (15 
August 2021, path = 17, row =29). Retrieval is done per pixel and therefore a lake may represent more than one OWT. 
Basemap provided by ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, 
IGN, and the GIS User Community. 
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Figure 11. Retrieved OWTs (a) and modelled chl-a (µg L−1) (b) in central–eastern Ontario using a Landsat 8 image
(15 August 2021, path = 17, row =29). Retrieval is done per pixel and therefore a lake may represent more than one OWT.
Basemap provided by ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community.

4. Discussion

This study sought to determine the following: whether Landsat-derived ρλ have the
capacity to differentiate OWTs with unique spectral signatures and water chemistry distri-
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butions; whether OWT-specific algorithms improved chl-a retrieval accuracy compared
with that of a global algorithm. Given the limited number of Landsat’s broad radiometric
bands, a unsupervised classifier was developed using ρλ in the visible-N bands, guided
by Chl:T to produce seven OWTs with both unique spectral signatures and unique water
chemistry profiles. A supervised classifier was trained using the guided unsupervised
OWTs and applied to lakes where lake surface water chemistry was unknown. The super-
vised classifier provided reasonably accurate classification results, returning similar chl-a
retrieval algorithm performances compared to the guided unsupervised classifier.

4.1. Identifying OWTs

The guided, unsupervised classifier differentiated lakes as optically bright (OWTs-Ah,
-Bh, and -Ch) and optically dark (OWTs-Dh, -Eh, -Fh, and -Gh) (Figure 2). However, this
classifier also defined OWTs with unique water chemistry distributions. The optically
bright lakes had distinct spectral curves, mostly differentiated by Chl:T and the observed
ρλ in the N band (Figure 3). Among the optically bright lakes, OWT-Ah represented
lakes where ρλ was high with low chl-a. Despite the low biomass, turbidity remained
high along with a greater increase in ρλ in the R band and a smaller increase in the N,
indicating a potential for non-algal particle dominance in this OWT [33,81]. OWTs-Bh
and -Ch represented turbid lakes, as there was a relatively equal ratio of B–G and R–N ρλ.
OWT-Bh exhibited notably higher ρλ in the G and R bands compared with OWTs-Dh to
-Gh. The increased absorption in the R band due to chl-a was countered by the increase in
non-algal particulate scatter, as is often seen in turbid waters. OWT-Ch exhibited much
higher ρλ in the N band compared to other OWTs. Additionally, OWT-Ch represented a
much wider range of Chl:T values (Figure 3f). Exploration of the metadata showed that the
OWT-Ch lakes had the smallest surface area of all OWTs (median = 75.6 ha), suggesting
that these lakes may have exhibited high ρλ(N) due to shallow emergent vegetation or
shoreline contamination. The optically bright lakes returned significantly brighter G and R
bands relative to the B and N bands when compared to the optically dark lakes (with the
exception of the N band for OWT-Ch).

The optically dark lakes had similar spectral curves, mostly differentiated by the level
of brightness (Figure 2). Among the optically dark lakes, OWT-Dh represented oligotrophic
or mesotrophic lakes with low Chl:T where the spectral curve does not replicate that of
OWT-Ah, which is likely a result of low chl-a and turbidity measurements where water
absorption would dominate the spectra. OWT-Eh represented mesotrophic or eutrophic
lakes with high Chl:T and low ρλ in the R band, relative to other bands, as a result of chl-a
absorbance [10]. Lakes in which there is a significant spike in ρλ in the N band relative to R
suggest that most of the signal is a result of algal particles [81]. Non-algal particles are a
significant contributor to backscatter at all wavelengths, but the contribution decreases at
higher wavelengths, while algal particles increase backscatter at higher wavelengths [81].
OWTs-Fh and -Gh represented oligotrophic or mesotrophic lakes with low chl-a and turbid-
ity measurements. OWT-Fh represented a more even mix of chl-a and turbidity (i.e., the
lakes were closer to the 1:1 line in Figure 4), and resembled the spectral shape of OWT-Bh,
though optically darker. OWT-Gh had slightly lower relative turbidity and, therefore, more
closely resembled the spectra of OWT-Eh, though optically darker. For lakes classified as
optically dark, the B band returned the highest mean lake ρλ, G the second highest, and R
the lowest, with a slight increase in the N. The high B band ρλ was likely due to water as
the algal particles remained low [48,82]. Typically, N should remain the lowest observed
mean lake ρλ; however, due to the atmospheric correction of only Rayleigh scatter used
in this study, a higher proportion of observed visible radiance (B, G, and R bands) was
removed compared with that of radiance in the N band.

While the guided unsupervised classifier differentiated OWTs based on varying
magnitudes of brightness and distinct lake surface water chemistry, it required the water
chemistry to be known. The application of the chl-a retrieval algorithm would be used
when in situ chl-a and turbidity are unknown; therefore, the supervised classifier is required.
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The supervised classifier would need to accurately return similar OWTs compared to that
of the guided unsupervised classifier, where each OWT returns similar spectra and water
chemistry information.

As with the unsupervised classifier, the supervised classifier (QDA) differentiated
lakes as optically bright (OWTs-Aq, -Bq, and -Cq) and optically dark (OWTs-Dq, -Eq, -Fq,
and -Gq) (Figure 2). The QDA accurately defined the optically bright and dark lakes when
comparing the magnitudes of brightness observed (Table 1). OWTs with unique water
chemistry distributions were also observed when comparing the Chl:T value of each QDA-
derived OWT (Figure 6) to those derived by the unsupervised classifier (Figure 3). OWT
specific classification errors do occur particularly for lakes with a low Chla:T, as OWTs-Aq
and -Dq returned low classification accuracy. The difficulty in defining OWTs with a low
Chla:T may be due to the high variability in the observed ρλ for the visible bands (Figure 3),
as the composition of potential non-algal particles (e.g., white vs. red clays) can greatly
affect the visible spectra. OWT-Fh had also returned poor classification accuracy, often
misclassified as OWT-Eq. The misclassification tended to occur in mesotrophic lakes where
chl-a was high. Despite these issues, all other OWTs (i.e., OWTs-Bq, -Cq, -Eq, -Gq) returned
high classification accuracy, indicating the supervised classifier is capable of defining OWTs
when using Landsat-derived ρλ. The application of Landsat for chl-a retrieval in mixed
waters is limited due to its broad radiometric bands [83,84], and this limitation extends
to the identification of OWTs. Landsat has the capacity to resolve the difference between
optically bright and dark signals with a varying range of Chl:T at the lake level (using mean
ρλ in the entire waterbody); however, further resolution is unlikely (i.e., differentiating
sediment from detritus material, differentiating algal taxonomy). Additionally, dissolved
and particulate matter will increase backscatter and subsequent observed ρλ at visible
wavelengths, depending on the composition and concentration [33,85]. The minimal
difference in the observed spectra of these lakes is potentially due to the low signal–noise
ratio of the Landsat satellite series (particularly with Landsat 5 TM and 7 ETM+), in
which small incremental changes in water properties are not likely to be observed in the
spectra of dark lakes [12,86]. To define the Chl:T range among varying levels of brightness,
the application of lake surface water chemistry parameters in guiding the classification
of OWTs offers an improvement when using only Landsat observed ρλ. While in situ
spectroradiometers, hyperspectral imagers, and multispectral satellites have a higher
number of visible-N bands that may provide more accurate results, the methods outlined
in this paper are to be employed when such data are not available.

4.2. OWT Chl-a Retrieval Performance

Eighty-two chl-a retrieval algorithms were tested for each OWT to determine which
algorithm performed best. Algorithms performed at varying levels in each OWT, with
some patterns observed in the types of bands used. The best performing algorithms using
the supervised classifier (i.e., OWTs-Aq, -Bq, etc.) and the guided unsupervised classifier
(i.e., OWTs-Ah, -Bh, etc.) were then compared.

OWTs-Ah and -Dh represented a low Chl:T, where OWT-Ah was optically brighter
and consisted of higher turbidity measurements. Both OWTs returned high r2 and low
overall error; however, some of these fits were inflated due to small sample sizes after
outliers were removed. As the chl-a signal was relatively low despite the high brightness
observed, a low correlation was expected. The high r2 with algorithms using B and G
bands were likely false positives due to the high reflectivity of potential non-algal particles
at shorter wavelengths, particularly when chl-a is low [33]. Due to the classification errors
with both QDA-derived OWTs (particularly OWT-Aq), the best performing algorithms as
indicated by r2 did not match well. The best performing algorithms frequently utilized the
R and N bands for OWT-Aq and the G and R bands for OWT-Dq, which is expected for
turbid waters. While the performance as measured by r2 did not provide a good match
for OWT-Dq, other error metrics such as NRMSE provided a slightly better match, where
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the same algorithms derived from unsupervised and supervised classifiers had similar
retrieval errors.

OWTs-Bh and -Ch represented eutrophic lakes, where both chl-a and turbidity mea-
surements are high relative to the training data distribution. For optically complex and
turbid lakes, an R–N ratio is traditionally used [35–37]. According to Gitelson [39], this
ratio should capture the R edge to N transition (~700 nm), which is currently not possible
with Landsat; however, N bands have been used in past studies as an alternative [87].
The best performing algorithms in both OWTs typically used B and G bands, with the
best performing algorithms in OWT-Bh also commonly including the N band. Both OWTs
returned algorithms using a B–G ratio, which is commonly used for oligotrophic waters
due to increased water column penetration, lack of non-algal particles increasing scatter,
and highest ρλ in the G band [88]. It is possible that the influence of non-algal particles
in OWT-Bh was driving the observed r2. OWT-Ch returned a very poor performance
compared to OWTs-Bh, which may reflect the small median lake size, potential emergent
vegetation, or shoreline contamination. OWT-Bh provided some algorithms with an ade-
quate performance that would be expected to provide a better chl-a signal in turbid waters,
such as [(R/B) × (R/N)], which exhibited the lowest NRMSE and used the R–N ratio
(r2 = 0.77, p < 0.05). As the supervised classification accuracy was high, both OWT-Bq and
-Cq provided similar algorithm results.

OWT-Eh represented lakes with a high Chl:T, where the turbidity was relatively low
given higher relative chl-a. The lakes are considered optically dark, a result of low turbidity,
where the signals may be influenced by a lack of non-algal particles increasing ρλ in the B
band (due to water reflectance) and decreasing ρλ in the G and R bands; moreover, other
factors such as DOM, which typically increases absorption at shorter wavelengths, may not
be present as well [89]. The spectra therefore resemble those of other optically dark OWTs,
although the brightest of the dark OWTs on average. Algorithms with lower NRMSE
use the G–B ratio and the R–N ratio which are commonly used chl-a retrieval metrics [9].
OWT-Eq had returned highly similar algorithms albeit with far poorer performance metrics.

OWTs-Fh and -Gh represented oligotrophic and mesotrophic lakes, where both chl-a
and turbidity measurements were low relative to the training data distribution. While the
lake surface water chemistry values were low, there was a relatively even distribution of
chl-a and turbidity measurements. The best performing algorithms for both OWTs were
suited to retrieving chl-a in turbid mixed lakes, with OWT-Fh using a G–R ratio and OWT-
Gh using both B–G and R–N ratios. A G–R ratio was used for chl-a retrieval in turbid lakes
for other studies similar to the R–N edge, as both implement a maximal absorption and
reflectance peaks for chl-a [30]. When classified using the QDA method, similar algorithm
performances were found in OWT-Gq in which the best performing algorithm as the same
as in -Gh, while OWT-Eq does suffer from misclassification, particularly with OWT-Fh. The
misclassification of OWT-Eq with -Fh may explain the improved performance of OWT-Fq,
which, as a result, covered a much larger range of chl-a measurements (Table 1), in which
higher chl-a often has a stronger observable signal when using Landsat.

4.3. Comparison of Global Algorithms to OWTs

Optically bright lakes exhibited unique algorithm performances, while optically dark
lakes returned similar performances with the same algorithms (Figure S1). All OWTs
provided unique algorithm performances in comparison to the global models. OWTs
consistently had improved retrieval accuracy and lower error (RMSE, NRMSE, RMSLE,
and MAE) compared with those of the global algorithms, with the exception of OWT-Ch
(Table 3). Instances of global algorithm performance exceeding that of an OWT may also
be a result of the following assumptions and methods established within this study. This
study used mean ρλ in each lake to identify a singular OWT; however, multiple water types
can exist within one lake due to differences in morphology, weather, and land use [47].
The use of a mean ρλ may help in reducing noise in observed ρλ, improving the linear
regression at the global level. The use of a mean ρλ, however, may also reduce the capacity
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for classifiers to define unique spectra, as seen in the optically dark lakes. Lakes—especially
large lakes—may represent more than one OWT due to spatial (e.g., multiple lake basins,
local point sources of detritus, nutrient, or sediment runoffs; Figure 11) and temporal (e.g.,
shifts in water chemistry due to precipitation, lake mixing, or algal growth events) factors.
Therefore, the separation of OWTs may not provide significant chl-a retrieval performance
over that of a global model for lakes that exhibit multiple optical signals prior to outlier
removal. When these lakes are placed into OWTs and used in a regression, the variability
they introduce is more statistically impactful on the correlation when the sample size is
smaller; therefore, the global algorithm is less affected by the variability introduced by this
method. Additional variability will also be introduced due to the effects of atmospheric
aerosol contribution.

This study made use of simple empirical algorithms such as band ratios and com-
binations. Bio-optical models [90], such as water colour simulator (WASI) [91], have
shown promising results for chl-a retrieval in optically complex waters [92]. However,
these physics-based models require knowledge of the absorption and backscatter of IOPs,
which were not available in public water quality data records and were, therefore, not
employed in this study. Additionally, various bio-optical models require specifically cen-
tred bands which are not provided for by Landsat and require spectral calibration using in
situ reflectances [93]. Alternative empirical methods such as machine learning, Empirical
Orthogonal Function (EOF) analysis, and line-height algorithms options may also provide
improvement to chl-a retrieval in optically complex waters [7,90,91,94]. Machine learning
methods such as artificial neural networks require significant training data for accurate
results [95]. The separation of data into OWTs limits the available training and testing data;
therefore, a machine learning approach was not appropriate for this study. EOF is a type of
principle component analysis that is not commonly used for chl-a retrieval but has shown
potential in some studies [96]. Line-height algorithms typically use chl-a fluorescence peaks
at which Landsat bands are not centred. New methods such as colour space transforma-
tions have been applied to improve chl-a retrieval [97,98] by converting a multiband RGB
to a hyper–hue–saturation–intensity image [99]. While this study looked to improve upon
traditional band algorithms, colour space transformation may be an optimal method to use
in future studies. Future studies may also look to integrate externally derived OWTs using
more refined techniques [47,100] to improve upon OWT identification in Landsat imagery.

5. Conclusions

There has been an increase in the number of algal bloom reports in lakes, for which
remote sensing retrieval of chl-a for small inland waters is needed to develop a predictive
understanding of algal bloom occurrence. Landsat provides the largest historical image
record of any sensor and has a long history of chl-a retrieval. This study showed that a
guided OWT classification system using Landsat normalized ρλ and Chl:T to define OWTs
provided significant improvements in chl-a retrieval algorithms. Seven OWTs based on ρλ

in Landsat visible-N bands and on Chl:T were able to retrieve chl-a for inland lakes ranging
from eutrophic to oligotrophic, and from turbid to clear, with significantly improved
accuracy compared to a global chl-a retrieval algorithms. The separation of lakes into
OWTs did improve chl-a retrieval, including in areas where algal blooms occur within
less frequently studied, but equally important, lakes. Future work should focus on seeing
if the performance of Landsat data for identifying OWTs and predicting chl-a could be
further improved by improving supervised classification techniques, and by implementing
additional water chemistry data that may help in further differentiating distinct OWTs.

Supplementary Materials: The following are available online at https://www.mdpi.com/artic
le/10.3390/rs13224607/s1, Figure S1: Pearson correlation (r) matrix of chl-a retrieval algorithms
performance results, Table S1: Ground-based water chemistry samples, corresponding images, and
source summary, Table S2: Chl-a retrieval algorithm results summary for OWTs-Ah–Gh, Table S3:
Chl-a retrieval algorithm results summary for OWTs-Aq–Gq, Spreadsheet 1: Optical water type
spectral and water quality data.
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