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Abstract: The detection of rice leaf folder (RLF) infestation usually depends on manual monitoring,
and early infestations cannot be detected visually. To improve detection accuracy and reduce human
error, we use push-broom hyperspectral sensors to scan rice images and use machine learning and
deep neural learning methods to detect RLF-infested rice leaves. Different from traditional image
processing methods, hyperspectral imaging data analysis is based on pixel-based classification and
target recognition. Since the spectral information itself is a feature and can be considered a vector,
deep learning neural networks do not need to use convolutional neural networks to extract features.
To correctly detect the spectral image of rice leaves infested by RLF, we use the constrained energy
minimization (CEM) method to suppress the background noise of the spectral image. A band selection
method was utilized to reduce the computational energy consumption of using the full-band process,
and six bands were selected as candidate bands. The following method is the band expansion
process (BEP) method, which is utilized to expand the vector length to improve the problem of
compressed spectral information for band selection. We use CEM and deep neural networks to detect
defects in the spectral images of infected rice leaves and compare the performance of each in the full
frequency band, frequency band selection, and frequency BEP. A total of 339 hyperspectral images
were collected in this study; the results showed that six bands were sufficient for detecting early
infestations of RLF, with a detection accuracy of 98% and a Dice similarity coefficient of 0.8, which
provides advantages of commercialization of this field.

Keywords: rice; rice leaf folder; hyperspectral imaging; band selection; hyperspectral image classifi-
cation; target detection

1. Introduction

Rice leaf folder (RLF), Cnaphalocrocis medinalis Guenée, is widely distributed in the
rice-growing regions of humid tropical and temperate countries [1], and the developmental
time of RLF decreases with an increase in temperature [2]. Due to global warming, RLF
has become one of the most important insect pests of rice cultivation [3]. The larvae of
RLF fold the leaves longitudinally and feed on the mesophyll tissue within the folded
leaves. The feeding of RLF generates lineal white stripes (LWSs) in the early stage and
then enlarge into ocher patches (OPs) and membranous OPs [4]. As the infestation of RLF
increases, the number and area of OPs will increase. The feeding of RLF not only reduced
the chlorophyll content and photosynthesis efficiency [4] but also provided a method for
fungal and bacterial infection [5]. Therefore, the severe damage caused by RLF may cause
63–80% yield loss [6], and the highest record of the damaged area to rice cultivation in a
single year exceeded 30,000 hectares [7].
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The economic injury level of RLF, which is important for the determination of in-
secticide applications, has been established as 4.2% damaged leaves and 1.3 larvae per
plant by the International Rice Research Institute [8]. However, it is laborious and time-
consuming to visually inspect for damage. In addition, RLF is a long-distance migratory
insect pest. The uncertain timing of the appearance of RLF means that farmers are unable
to predict pest arrival, so to avoid damage by undetected infestations, farmers often preven-
tively spray chemical insecticides, which generates unnecessary costs and environmental
pollution [9,10].

Hyperspectral imaging (HSI) is a novel technique that combines the simultaneous
advantages of imaging and spectroscopy and that has been investigated and applied in
crop protection [11–15]. HSI, which contains spatial and spectral information, is given
in Figure 1. The external damage and internal damage caused by pest infestations, such
as yellowing/attenuation/defects and loss of pigments/photosynthetic activity/water
content, respectively, can be identified by this system through image or spectral reflectance.
Further automatic detection can be fulfilled by taking advantage of pest damage detec-
tion algorithms. For instance, constrained energy minimization (CEM) [16] and principal
component analysis (PCA) [17] have been employed for band selection, and support vec-
tor machines (SVMs) [18], convolutional neural networks (CNNs) [19], and deep neural
networks (DNNs) [20] are utilized for classification. Fan et al. [21] applied a visible/near-
infrared hyperspectral imaging system to detect early invasion of rice streak insects. Us-
ing the successive projection algorithm (SPA) [22], PCA, and a back-propagation neural
network (BPNN) [23] as classifiers to identify key wavelengths, the classification accu-
racy of the calibration and prediction sets was 95.65%. Chen et al. [24] also employed a
visible/near-infrared hyperspectral imaging system to acquire images and further devel-
oped a hyperspectral insect damage detection algorithm (HIDDA) to detect pests in green
coffee beans. The method combines CEM and SVM and achieves 95% accuracy and a 90%
kappa coefficient. In addition, spectroscopy technology has been applied to detect plant
diseases [25], the quality of agricultural products [26], and pesticide residues [27].

Figure 1. Two-dimensional projection of a hyperspectral cube.

To effectively manage RLF with a rational application of insecticides, an artificial-
intelligent inspection of economic injury levels is necessary. The purpose of this study is to
establish a model for detecting early infestation of RLF based on visible light hyperspectral
data exploration techniques and deep learning technology. The specific objectives include
(1) predefining the region of interest (ROI); (2) data preprocessing through a band selection
and band expansion process (BEP); (3) simultaneously combining a deep learning network
to train the model and to classify multiple different levels of damage; (4) using an auto-
matic target generation program (ATGP) algorithm [28] to test unknown samples to fully
automate the process and optimize the process to shorten the prediction time; and (5) es-
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tablishing the spectral signatures of damaged leaves caused by RLF, which can serve as an
expert system to provide valuable resources for the best timing of insecticide application.

2. Materials and Methods
2.1. Insect Breeding

The RLF in this study was collected from the Taichung District Agricultural Research
and Extension Station. The larvae were raised in insect rearing cages (47.5× 47.5× 47.5 cm3,
MegaView Science Co., Ltd., Taichung, Taiwan) with corn seedlings (agricultural friend
seedling Yumeizhen) and maintained at 27 ± 2 ◦C and 70% relative humidity during a
photoperiod of 16:8 h (L:D). The adults were reared in a cage with 10% honey at 27 ± 2 ◦C
and 90% relative humidity, which allows adults to lay more eggs.

2.2. Preparation of Rice Samples

The variety Tainan No. 11, which is the most prevalent cultivar planted in Taiwan,
was selected for this study. Larvae were grown in a greenhouse to prevent the infestation
of insect pests and diseases. To obtain different levels of damage caused by RLF, e.g.,
LWS and OP, 1st-, 2nd-, 3rd-, 4th-, or 5th-instar larvae of RLF were manually introduced
to infest 40-day-old healthy rice for seven days, and three replicates were conducted for
each treatment. Three different types of samples shown in Figure 2, e.g., healthy leaves
(HL), LWS, and OP caused by RLF, were prepared for imaging acquisition and spectral
information extraction.

Figure 2. Appearance of healthy and damaged leaf types. (a) Healthy leaves, (b) lineal white stripe
(LWS) caused by RLF (blue arrow) and LWS enlarge into ocher patch (OP) (yellow arrow) on Day 1
(D1), (c) LWS and OP on D2, and (d) OP on D6.

2.3. Hyperspectral Imaging System and Imaging Acquisition
2.3.1. Hyperspectral Sensor

The hyperspectral scanning system employed in the experiment is shown in Figure 3.
The hyperspectral image capturing system was composed of the following equipment:
hyperspectral sensor, halogen light source, conveyor system, computer, and photographic
darkroom isolated from external light sources. The hyperspectral sensor utilized in the
study was a V10E-B1410CL sensor (IZUSU OPTICS), which contained visible and near-
infrared (VNIR) bands with a spectral range from 380–1030 nm, a resolution of 5.5 nm,
and 616 bands for imaging. The type of camera sensor is an Imspector Spectral Camera,
SW ver 2.740. The halogen light sources used to illuminate the image were “3900e-ER”,
and the power was 150 W. Halogen lights were simultaneously illuminated on the left and
right sides and focused on the conveyor track at an incident angle of 45 degrees to reduce
shadow interference during the sampling process. The temperature and relative humidity
in the laboratory were kept at 25 ◦C and 60%, respectively. A conveyor belt was designed to
deliver rice plants for acquiring hyperspectral images by line scanning (Figure 3). Both the
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speed of the conveyor belt and the halogen lights were controlled by computer software.
The distance between the VNIR sensor and the rice sample was 0.6 m.

Figure 3. Hyperspectral imaging system.

2.3.2. Image Acquisition

The damage to leaves infested with different RLF larvae (from 1st to 5th instar larvae)
for various durations of feeding (1–6 days) was assessed using VNIR hyperspectral imaging.
Leaves were placed flat on the conveyor belt to scan the image at every 90◦ turn to enlarge
the dataset. The exposure time for scanning was 5.495 ms, and the number of pixels in
each scan raw was 816. Healthy leaves without RLF infestation were selected as the control.
Before taking the VNIR hyperspectral images, light correction was conducted, and all
processing of images was conducted in a dark box to avoid interference from other light
sources. In total, 339 images, including 52 images of healthy leaves and 69, 32, 48, 52, 52,
and 34 images of leaves infested for 1 day to 6 days, were taken.

2.3.3. Calibration

To eliminate the impacts of uneven illumination and dark current noise, the object scan,
reference dark value, and reference white value are needed to perform the normalization
step. To reduce noise and avoid the influence of dark noise, the original hyperspectral
image must be calibrated according to the following formula [21]:

RC =
R0 − B
W − B

(1)

where R0 is the raw hyperspectral image, RC is the hyperspectral image after calibration,
W is the standard white reference value with a Teflon rectangular bar, and B is the standard
black reference value obtained by covering the lens with a lens cap.

2.4. Spectral Information Extraction

Removing the background of the image will help extract useful spectral informa-
tion and reduce noise. The background removal process performs binary segmentation
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through the Otsu method, dividing the image into background and meaningful parts with
similar features and attributes [29], including healthy, RLF-infested, and other defective
leaves. To reduce unnecessary analysis work, the first step is to separate plant pixels
from non-plant pixels. This task directly converts the grayscale image from the true-color
image or generates a single channel image (grayscale image) based on a simple index
(e.g., Excess Green [30]). Second, the threshold value is obtained using the Otsu method;
the grayscale value of each pixel point is compared with the threshold value, and the pixel
is classified as a target or background based on the result of the comparison [31]. Since
plants and backgrounds have very different characteristics, they can be separated quickly
and accurately.

Third, the images that had been removed from the background were applied to
determine the ROI using the CEM algorithm [16]. CEM has been widely employed for
target detection in hyperspectral remote sensing imagery. CEM detects the desired target
signal source by using a unity constraint while suppressing noise and unknown signal
sources; it also minimizes the average energy of output. This algorithm generates a finite
impulse response filter through a given vector as the d value to suppress regions that are
not related to the features of the ROI. The vector indicates the spectral reflectance of a pixel
in this study, and the ROI was predefined as an RLF-infested region in the images of rice
leaves, e.g., Figure 2b,c. The results of the CEM processing of the image show the enhanced
characteristics of pixels similar to the target feature d value. Using the Otsu method, if the
pixel value exceeds the threshold, the feature similarity is set to 1; otherwise, it is set to
0. Last, a binary image is obtained. This algorithm is an efficient method of pixel-based
detection [32].

2.5. Band Selection

Since HSIs usually contain hundreds of spectral bands, full-band analysis of the
spectrum is not only time-consuming but also too redundant. To decrease the analysis
time and redundancy, the first step of data analysis is to determine the key wavelengths.
The way to achieve this goal is to select highly correlated wavelengths by comparing the
reflectance and to maximize the representativeness of the information by decorrelation.
Various band spectral methods based on certain statistical criteria have been selected to
achieve this purpose [33]. The concept of band selection is similar to feature extraction in
image processing, which can improve the accuracy of identification and classification.

2.5.1. Band Prioritization

In the band prioritization (BP) part, the priority of the spectral bands will be calculated
by statistical criteria [27]. Five criteria—variance, entropy, skewness, kurtosis, and signal-
to-noise ratio (SNR)—were chosen to calculate the priority of the spectral bands in this
work. Thus, each spectral band has a priority and can be ranked with high priority.

2.5.2. Band Decorrelation

When applying BP in the band selection process, the correlation between each band
will highly affect the priority score. Neighboring bands will frequently be selected because
of the high correlation between each band. Nevertheless, these redundant spectral bands
are not helpful for improving detection performance. Therefore, to solve this problem,
band decorrelation (BD) is utilized to remove these redundant spectral bands.

In this study, spectral information divergence (SID) [34] was applied for BD and
utilized to measure the similarity between two vectors. By calculating the SID value, a
threshold will be set to remove the bands with high similarity. The formula is:

k
(
bi, bj

)
= D

(
bi ‖ bj

)
+ D

(
bj ‖ bi

)
(2)

The parameter “b” represents a vector of spectral information, and D
(
bi ‖ bj

)
denotes

Kullback–Leibler divergence, that is, the average amount of difference between the self-
information of bj and the self-information of bi, and vice versa.
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2.6. Band Expansion Process

Although the band selection-acquired spectral images can reduce storage space and
processing time, some of the original features of the spectra were lost. To solve the problem
of information loss after band selection, the difference in reflectivity can be increased by
expanding the band to increase the divergence. The concept of the BEP [35] is derived from
the fact that a second-order random process is generally specified by its first-order and
second-order statistics. These correlated multispectral images provide missing but useful
second-order statistical information about the original hyperspectral images. The second-
order statistical information utilized for the BEP includes autocorrelation, cross-correlation,
and nonlinear correlation to create nonlinearly correlated images. The concept of generating
second-order, correlated band images coincide with the concept of covariance functions
employed in signal processing to generate random processes. Even though there may be
no real physical inference for the band expansion process, it does provide an important
advantage for addressing the problem of an insufficient number of spectral bands.

2.7. Data Training Models

Hyperspectral imaging data analysis is based on pixel-based classification and target
recognition, using low-level features (such as spectral reflectance and texture) as the
bedding, and the output feature representation at the top of the network can be directly
input to subsequent classifiers for pixel-based classification [36]. The classification of this
pixel is particularly suitable for deep learning algorithms to learn representative and
discriminative features from the data in a hierarchical manner. In this study, the input
neuron is the reflectance of a pixel. The input layer has 466 neurons in the full band, 6
neurons after band selection, and 27 neurons after band expansion. As shown in Figure 4a,b,
the reflectivity of the HL, D1 OP, and D6 OP samples was divided into three categories.
The model is trained with four hidden layers, and the learning rate parameter is 0.001.
A softmax classifier was provided in the DNN terminal, and the classification results of
the spectrum were obtained. The classified result was compared with the ground truth to
calculate the accuracy. The model repeated the cross-validation ten times and averaged it
as its overall accuracy (OA).

Figure 4. Cont.
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Figure 4. (a) DNN model architecture. (b) Flowchart of classifying reflectance using DNN.

Figure 5 depicts the data training flowchart of this study, starting with hyperspectral
image capture. First, the reflectivity is extracted from the ROI as a ground truth, which
was selected by the entomologist. Second, the reflectance dataset applied in the full-band
spectrum was processed in the same way to build DNN models after band selection. Last,
the band selection dataset was processed by the BEP to build a DNN model.

The DNN model is constructed using three processes: full bands, band selection, and
BEP. Each classification model has the best weight evaluated by its own model. Three
DNN classification process models are constructed based on randomly distributed datasets,
including 70% training, 15% validation, and 15% testing (as shown in Table 1). In the
testing phase, the accuracy of each classification situation will be compared, and the OA
of multiple classifications will be integrated. As a result, the most suitable model for
identifying the classification was obtained.

Table 1. Number of pixels used for band section, training, and testing in the rice dataset.

Sample Types

HL D1 OP D6 OP

Band selection 1 297 301
Pixel numbers used for DNN Training 5936 6015 6962
Pixel numbers used for DNN Testing 1000 1000 1000

1 Band selection number = 5% of training number.
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Figure 5. Data training flowchart of full bands, band selection, and band expansion process.

2.8. Model Test for Unknown Samples

To apply the spectral reflectance of unknown samples of healthy leaves, early and
late OPs leave machine learning. The first step is to quickly determine the ROI to reduce
the time required for image recognition. To achieve this goal, a method that combines an
ATGP [28] and CEM is proposed. The ATGP is an unsupervised target recognition method
that uses the concept of orthogonal subspace projection (OSP) to find a distinct feature
without a priori knowledge. The ATGP method was employed to identify the target pixel
in the hyperspectral image, and all the similar pixel data obtained were averaged as the d
value of CEM.

Figure 6a,b shows the flow chart of the unknown sample prediction model. To au-
tomate the detection process, first, the full-band HSI, band selection, and BEP of the
rice sample must be calibrated. Second, through the combined method of the ATGP
and CEM, the Otsu method is utilized to mark the ROI. The ROI obtained from the
full band, band selection, and BEP is classified by the corresponding DNN model and
is labeled HL, early OP, or late OP by entomologists according to the occurrence of
damage caused by RLF. The labeled ROI will be utilized to verify the prediction re-
sults of the DNN model. Five analysis methods, such as CEM_Full-band→DNN_Full-
band, CEM_band selection→DNN_band selection, CEM_band selection→DNN_BEP,
CEM_BEP→DNN_band selection, and CEM_BEP→DNN_BEP, are established to evaluate
the prediction performance.
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1 
 

 
Figure 6. (a) Flow chart of the DNN model is used to predict unknown samples. (b) Flow chart of
DNN model prediction.

Last, the model classification results were visualized and overlaid on the original true-
color images, and agricultural experts verified the actual situation afterward to compare
the performance of the models.

2.9. Predict Unknown Samplings

After a cross-validated predictive model has been established, a completely unknown
sample with different data from the training set is needed to test its robustness. Eligible
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samples were obtained from the field. To fix other conditions, the retrieved samples were
also photographed with a push-broom hyperspectral camera.

Many different evaluation metrics have been mentioned in the literature. The con-
fusion matrix [37] was selected as a measure of model accuracy. A true positive (TP) is a
correct detection of the ground truth. A false positive (FP) is an object that is mistaken as
true. A false negative (FN) is an object that is not detected, although it is positive.

However, it is not enough to rely on the confusion matrix alone. An additional pipeline
of common evaluation metrics was needed to facilitate a better comparison of classification
models. The following metrics were employed for the evaluation in this study:

(i) recall

Recall =
TP

TP + FN
(3)

(ii) precision

Precision =
TP

TP + FP
(4)

(iii) Dice similarity coefficient

Dice similarity coefficient = 2× TP
(2× TP + FP + FN)

(5)

The recall is the ability of the model to detect all relevant objects, i.e., the ability of the
model to detect all detected bounding boxes of the validation set. Precision is the ability
of the model to identify only relevant objects. The Dice similarity coefficient (DSC) is an
ensemble similarity measure function that is usually applied to calculate the similarity
between two samples in the value range between 0 when there is no overlap and 1 when
there is complete overlap.

3. Results and Discussion
3.1. Images and Spectral Signatures of Healthy and RLF-Infested Rice Leaves

When larvae of RLF feed on rice leaves, they generate LWS or OP on the leaves. As
time passes, the LWSs are enlarged into a patch; the color of the patch gradually turns
from white to ocher; and the images and spectral signatures of these patches also change
during this process, as shown in Figure 7a,b, respectively. The spectral signatures of HL
and OP in Figure 7b were obtained manually, according to entomological experts. The
OPs have higher reflectance than HL in the blue to red wavelength range. Among these
spectral bands, the longer the infestation period is, the higher the reflectance, e.g., day
6 (D6) > D5 > D2 > D1. However, only the reflectance of D6 OP is higher than that of
HL at the NIR wavelength (Figure 7b). The reflectance of D1-OP is much lower than the
HL reflectance, and the reflectance of D2- and D5-OPs is approximately the same as that
of healthy leaves. The decrease in reflectance in D1 OP at NIR was mainly due to the
destruction of leaf structure, which caused photon scattering [38]. These results suggest
that the early defects caused by RLF have very different spectral signatures of vectors from
the subsequent damage of infestation. Differences in the spectral properties between the
early phase of damage and the late phase of damage, which could serve as a basis for the
early identification of RLF infestations.
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Figure 7. (A) Hyperspectral images of healthy leaves on day 0 (a) and ocher patches (yellow arrow) infested by rice leaf
folders on day 1 (b), day 2 (c), day 5 (d), and day 6 (e). (B) Spectral signature and corresponding hyperspectral images of
the healthy leaves (D0) and ocher patches (from D1 to D6) caused by RLF.

3.2. Band Selection and Band Expansion Process

The HSI and spectral signature from the full band system shown in Figure 7a,b contain
considerable redundant information that slow the analysis efficiency and consume too
much storage space. Therefore, band selection and the BEP were employed to select the
most informative bands to increase the analysis efficiency and reduce storage space. To
more effectively detect early RLF infection, the number of training sessions for HL and D1
OP was 5%, as shown in Table 1; these sessions were chosen to perform band selection.
Five criteria were utilized in BP to calculate the priority of each band from the full-band
signature of HL and D1 OP, and then, a value of 2.5 for SID was chosen as the threshold for
BD to remove the adjacent bands with high similarity for D1 OP. Six bands of 489, 501, 603,
664, 684, and 705 nm, which had the largest difference in reflectance between HL and D1 OP,
were selected as candidates through BP and BD using the criteria of entropy (Figure 8a,b).
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To adapt to the cheaper and easy-to-use, six-band handheld spectrum sensor, we only chose
the six-band spectrum. The results of band selection using the other four criteria are shown
in Supplementary Table S1 and Figure S1. Furthermore, the six bands were expanded to 27
bands using the BEP to improve the deficiency caused by band selection.

Figure 8. Bands selected through band prioritization (a) and band decorrelation (b) using criteria of
entropy. Red circles denote bands selected from band prioritization, and purple diamonds denote
bands selected after band decorrelation.

3.3. ROI Detection with CEM in Full Bands, Band Selection, and Band Expansion Process

CEM, a standard linear detector, was selected as a filter in this study to quickly identify
the ROI. CEM increases the accuracy of automated detection and reduces the analysis
time. The spectral signature of the OP that appeared on D1 in Figure 7b was employed
as the d value of CEM to detect damaged leaves caused by RLF. Figure 9 shows the effect
of different degrees of enhancement on ROI detection in the case of the full band, band
selection, and BEP and the results of k-means clustering as a contrast. In the case of full
bands, very minimal damage caused by RLF was detected (Figure 9b). The abundance
of spectral data increases the complexity of detection and reduces the spectral reflectance
resulting from RLF. On the other hand, the ROI detection in the cases of band selection
reveals almost all the damage shown in Figure 9a. This finding indicates that band selection
can achieve the best performance in ROI detection through CEM (Figure 9c). In the case of
the BEP, the result of CEM is better than the full bands but not as good as band selection
(Figure 9d).

Figure 9. Region of interest detection with k-means (k = 10) or constrained energy minimization
algorithm on different datasets using the reflectance of the D1 ocher patch as a d value on rice leaves.
(a) True-color image, (b) k-means in full bands, (c) CEM in full bands, (d) band selection, and (e) band
expansion process.
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3.4. DNN Model for Classification of Testing Dataset

The DNN multilayer perceptron model is suited for HSI data for classification because
the spectral reflection of each pixel can form a vector. Even if we have fewer images, we
can still use enough pixels as samples for analysis. Therefore, this study does not require
thousands of images to train a set of deep learning models, which greatly reduces the
tedious work of collecting samples and the difficulty of controlling sample conditions.

Table 2 describes the results of the OA verification using the DNN models of the full
bands, band selection (6 bands), and BEP (27 bands). The confusion matrix [37] was utilized
to evaluate the classification performance; the complete confusion matrix calculated for
DNN classification is shown in Supplementary Figure S2. In the case of full bands, the OA
(95%) and performance are the best in the classification of various situations, but a longer
time (14.88 s) is needed than band selection and BEP in classification. The application of
band selection saves approximately half the time of full bands, but it will also reduce the
classification accuracy. Except for HL, the accuracy of early and late OPs decreased after
band selection, which may be attributed to a decrease in some spectral information. The
accuracy of the BEP is not higher than that of band selection, as expected, and it is possible
that BEP amplifies the noise and interferes with the classification ability. Among the five
criteria, the OA of classification is the best among the bands selected by entropy. In terms
of entropy, the accuracy of early OP from band selection is approximately 4% higher than
that from BEP.

Table 2. Results for the testing dataset for DNN classification in different bands. The best performance
is highlighted in red.

Model Criteria
Accuracy (%)

OA 3 (%) Time (s)
HL Early 1 OP Late 2 OP

Full-band - 97.3 93.6 94.0 95.0 14.88

Band selection
(6 bands)

Variance 96.0 84.4 85.1 88.5 7.18
Entropy 97.2 87.1 86.5 90.3 5.79

Skewness 95.7 82.5 81.6 86.6 4.96
Kurtosis 97.4 78.7 86.5 87.5 6.32

SNR 97.8 78.4 78.9 85.0 6.98

Band expansion
process

(27 bands)

Variance 97.0 83.3 84.1 88.1 7.88
Entropy 97.1 82.8 83.5 87.8 6.83

Skewness 96.6 76.2 81.7 84.8 5.85
Kurtosis 96.3 78.2 86.8 87.1 6.79

SNR 96.9 78.0 81.3 85.4 7.43
1 Early OP comprises a set of D1 and D2 OP. 2 Late OP comprises a set of D5 and D6 OP. 3 OA is an abbreviation
for overall accuracy.

3.5. Prediction of Unknown Samples

The predictions were carried out using ROIs obtained from full bands, band selection,
and the BEP, as shown in Figure 6. CEM was applied to suppress the background and to
detect the ROI. The DNN models of full bands, band selection, and the BEP were used as
classifiers to predict unknown samples through five analysis methods. For band selection
and the BEP, bands selected by entropy were selected as examples according to the results
of Table 2 to execute the prediction. Figure 10 shows the results of the true-color image
(a), ground truth (b), and predictions from an unknown sample (c–g). The ground truth
was determined by entomologists and given different colors to distinguish HL (green)
from OP (red). Figure 10c–g shows the classification results from the full bands and band
selection/BEP, respectively, which were also colored for visualization. Figure 10d,e shows
the best results as expected, in which the predicted areas of the ROI were approximately
the same as the ground truth (Figure 10). However, the predicted ROI in Figure 10c was
distributed over the rice leaves in addition to the ROI of the ground truth.
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Figure 10. Prediction of spectral information from unknown rice sample: (a) true-color image,
(b) Ground Truth, (c) CEM_Full-band→DNN_Full-band, (d) CEM_band selection→DNN_band
selection, (e) CEM_band selection→DNN_BEP, (f) CEM_BEP→DNN_band selection, and (g)
CEM_BEP→DNN_BEP.

The performance of the pixel classification of DNN models was verified by com-
paring the prediction results with ground truth using a confusion matrix; the results are
shown in Tables 3 and 4. Similar to the results in Figure 10, the analysis methods show
that CEM_band selection→DNN_band selection showed the best prediction performance
(Table 3) because this method showed the highest TP (correct identification of OP) and
overall accuracy (OA) and the lowest FN (misidentification of OP). However, very high
false positives (FPs) were obtained from the methods of CEM_Full-band→DNN_Full-
band, CEM_band selection→DNN_band selection, and CEM_band selection→DNN_BEP
(Figure 10c–e). The high FP value of CEM_Full-band→DNN_Full-band may be derived
from the scattered distribution of predicted ROI, while the high FP values of CEM_band
selection→DNN_band selection and CEM_band selection→DNN_BEP predicted area of
ROI may be derived from the predicted areas of ROI that are undetectable by the naked
eye. To prove the above observation, the images of Figure 10d or Figure 10e were overlaid
with ground truth (Figure 10b). The extra predicted area around the ROI of ground truth in
Figure 11d,e should be the early infestation of RLF that cannot be detected by human eyes.

To verify the necessity of using CEM to extract ROI, the DNN classification results of
the background-removed images are shown in Supplementary Table S2 and Figure S3. The
results show that the accuracy of DNN classification after CEM processing is approximately
22% higher than that of the DNN applied directly to remove the background.
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Table 3. Accuracy of DNN classification evaluated by the confusion matrix.

Analysis Method
Pixel Number

OA (%)
TP 2 FP 3 TN 4 FN 5

CEM_Full-band→DNN_Full-band 317 341 11,781 289 95.05
CEM_band selection→DNN_band selection 1 497 138 11,984 109 98.05

CEM_band selection→DNN_BEP 488 138 11,984 178 97.98
CEM_BEP→DNN_band selection 318 17 12,105 288 97.60

CEM_BE→DNN_BEP 302 18 12,104 304 97.47
Positive 6 Negative 7

Ground Truth 606 12,122
1 Bands selected by Entropy. 2 TP represents the correct identification of OP; 3 FP denotes the health misidentification of HL; 4 TN indicates
the correct identification of health HL; 5 FN represents misidentification of OP; 6 OP is positive, and 7 non-OP is negative.

Figure 11. Overlaid images of the predicted ROI with the ground-truth ROI for evaluating the performance of DNN
classification. (a) Predicted ROI with CEM_band selection→DNN_band selection, (b) predicted ROI with CEM_band
selection→DNN_BEP, (c) Ground Truth, (d) Overlay with (a,c,e) Overlay with (b,c).
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The performance of DNN classification was further evaluated by the metrics of recall,
precision, accuracy, and DSC, as shown in Table 4. The analysis method of CEM_band
selection→DNN_band selection was again rated as the best model for predicting un-
known samples, as it had the highest accuracy, recall, and DSC and took the shortest
time. Although the analysis method of CEM_band selection→DNN_BEP also showed rea-
sonably good performance, the overall results indicated that six bands obtained from
band selection are good enough to detect the early OP caused by RLF. The analysis
method of CEM_BEP→DNN_band selection has the highest precision, but its recall and
DSC are lower than those of CEM_band selection→DNN_band selection and CEM_band
selection→DNN_BEP.

Table 4. Evaluation metrics of DNN prediction. The best performance is highlighted in red color.

Analysis Method Recall Precision Accuracy Dice Similarity Coefficient Time (s)

CEM _Full-band→DNN_Full-band 0.523 0.482 0.951 0.670 3.672
CEM_band selection→DNN_band selection 0.820 0.783 0.981 0.801 0.336

CEM_band selection→DNN_BEP 0.805 0.780 0.980 0.755 0.381
CEM_BEP→DNN_band selection 0.525 0.949 0.976 0.676 0.559

CEM_BEP→DNN_BEP 0.498 0.915 0.974 0.652 0.604

Taking the OP as an example, the pixels of the ROI were utilized for prediction evalu-
ation, and a confusion matrix was employed for performance in this study. As shown in
Table 4, all analysis methods were successful in classification, and their accuracies reached
at least 95%. The area of the block classified as OP is smaller than the actual situation,
which is the case in Figure 11f. As shown in Figure 11d, CEM_band selection→DNN_band
selection, the distribution of false positives was observed around the OP, which means
that the earlier defects caused by insect pests could be identified as false-positive areas in
hyperspectral images but could not be recognized in true-color images or human eyes.

3.6. Discussion

Automatic detection of plant pests is extremely useful because it reduces the tedious
work of monitoring large paddy fields and detects the damage caused by RLF at the early
stage of pest development and eventually stop further plant degradation. This study pro-
poses an automatic detection method that combines CEM and the ATGP. CEM is an efficient
hyperspectral detection algorithm that can efficiently handle subpixel detection [39]. The
quality of the CEM results is determined by the d-value used as a reference. Therefore, it is
important to provide a plausible spectral feature. The ATGP was applied to identify the
most representative feature vector as the d-value from an unknown sample. Another prob-
lem with the CEM is that it only provides a rough detection result. The DNN was selected
to classify the reflectance of the ATGP→CEM detection results. In addition, band selection
and the BEP were chosen to identify the key wavelengths among the five criteria to save
time and improve accuracy. The accuracy of CEM_band selection→DNN_band selection
in predicting the performance of unknown samples reached 98.1%. Traditional classifiers
such as linear SVM (support vector machine) and LR (logistic regression) can be attributed
to single-layer classifiers, while decision trees or SVM with kernels are considered to have
two layers [40,41]. However, deep neural architectures with more layers can potentially
extract abstract and invariant features for better image or signal classification [42]. Our
previous studies to detect Fusarium wilt on Phalaenopsis have shown this result [43]. In
addition, we have used the Entoscan Plant imaging system to detect the infestation of RLF,
but this system only covers 16 bands (390, 410, 450, 475, 520, 560, 625, 650, 730, 770, 840,
860, 880, 900, 930, and 960 nm) to obtain the Normalized Difference Vegetation Index. The
results are shown in Supplementary Figure S4. It may not be specific enough to distinguish
the damage caused by different pests. Therefore, we attempt to find a more representative
vector from the spectral fingerprint of the hyperspectral imaging system to detect the
infestation of RLF. At the same time, the band selection was used to remove redundant
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information to achieve the time required for the automatic detection process. It is not only
reducing the time by 2.45 times (from 8′11” to 3′20”) but also reach higher accuracy (0.981)
than that (0.951) in the full band. The time required for each stage of the prediction process
is shown in Supplementary Figure S5. The six bands (489, 501, 603, 664, 684, and 705
nm) obtained through band selection are more representative than bands supplied by the
Entoscan Plant imaging system and can be applied to the multispectral sensor of UAVs and
portable instruments for field use. The methods, algorithms, and models we established in
this paper will be applied to other important rice insect pests and verified in the field by
using either UAVs or portable instruments that carry the multispectral sensor. In addition,
a platform to integrate all this information will be established to interact with farmers.

Other studies [44,45] used conventional true-color images, which can only classify
spatial information based on their color and shape and identify damage that is clearly
visible by the naked eye. Compared with previous studies, the DNN was based on high
spectral sensors to provide spectral information, which can detect pixel-level targets and
retain the spatial information of the original image. The authors [44,45] employed the CNN
to detect pests and achieved a classification accuracy of 90.9% and 97.12%, respectively. The
method proposed in this paper is slightly higher than the final accuracy of CNN. Although
it can simultaneously classify multiple insect pests and diseases, it often causes confusion.
In addition, their studies were conducted with images of the late damage stage and could
not classify the level of infestation. In addition, most image classifications are trained by a
CNN. CNNs often need to collect a large number of training samples, and it is difficult to
obtain a large number of sufficient training images in a short period of time. In contrast,
hyperspectral image classification based on spectral pixels can be trained by a DNN, which
means that even a single hyperspectral image can have a large amount of data for training.

4. Conclusions

HSI techniques can provide a real-time monitoring system to guide the precise appli-
cation and reduction of pesticides and to provide objective and effective options for the
automatic detection of crop damage caused by insect pests or diseases. In this research, we
propose a deep learning classification and detection method that is based on band selection
and a BEP that can be applied to determine the lowest cost to achieve the monitoring of
leaf defects caused by RLF. To compensate for the deficiencies caused by band selection,
the BEP method was selected to improve the detection efficiency. The results of the test
dataset show that the use of the full-band classification is the best, and the band selection
classification is better than the BEP. Except for criteria on skewness and signal-to-noise
ratio, the accuracy of full-band classification is nearly 95%.

After using the trained model to predict the unknown samples, the results show that
the CEM_band selection→DNN_band selection analysis method is the best model and
has reached the expected prediction. The maximum DSC is 0.80, which means that its
classification is 80%, which is identical to the classification recognized by entomologists.
In addition, we discovered that the predictive area of the model was larger than the
area observed by the human eye. This phenomenon may indicate that RLF damage may
produce changes in parts of the spectrum that cannot be easily detected by the human eye.
In addition, comparing the implementation of prediction operations based on the full-band
DNN model and the band selection-based DNN model, the band selection method only
needs 1% of the full-band time, which provides a vast potential for wider applications and
has good rice identification capabilities. Only six bands are needed while reducing the
technical cost required for on-site monitoring.

By providing more training data, the method also has significant room for improve-
ment by implementing a data argumentation process or extending other data, such as
the mean or variance-generating structures. While the current research has only been
conducted in the laboratory or used non-specified multispectral images in the field, the
handheld six-band sensor provided very good results, and its portability means that it
could be adapted for use in the field to obtain realistic multispectral images on-site using
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band Selection methods. In addition, most of the existing UAVs use CNN or vegetation
indices for analysis and have not been studied much in spectral reflectance. As mentioned
in Section 3.5, the HSI prediction model can detect infested areas before noticed by the
human eye. This technique can be extended to UAV in the future to monitor the invisible
spectral changes on the leaf surface. This technology can be extended to UAV in the future
to monitor the invisible spectral changes on the leaves. Combining HSI techniques and
deep learning classification models could provide real-time surveys that give on-site early
warning of damage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13224587/s1, Figure S1: Bands selected through band prioritization and band decorrelation,
Figure S2: Confusion Matrix result of DNN model, Figure S3: Prediction of spectral information
from unknown rice sample, Figure S4: Entoscan Plant imaging system, Figure S5: Approximate time
required for each step of the prediction of unknown samples, Table S1: Results of the first six bands
of band selection using different criteria, Table S2: The accuracy of DNN classification evaluated by
confusion matrix.
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