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Abstract: Optimisation plays a key role in the application of machine learning in the spatial pre-
diction of landslides. The common practice in optimising landslide prediction models is to search
for optimal/suboptimal hyperparameter values in a number of predetermined hyperparameter
configurations based on an objective function, i.e., k-fold cross-validation accuracy. However, the
overhead of hyperparameter optimisation can be prohibitive, especially for computationally expen-
sive algorithms. This paper introduces an optimisation approach based on meta-learning for the
spatial prediction of landslides. The proposed approach is tested in a dense tropical forested area
of Cameron Highlands, Malaysia. Instead of optimising prediction models with a large number of
hyperparameter configurations, the proposed approach begins with promising configurations based
on several basic and statistical meta-features. The proposed meta-learning approach was tested
based on Bayesian optimisation as a hyperparameter tuning algorithm and random forest (RF) as
a prediction model. The spatial database was established with a total of 63 historical landslides
and 15 conditioning factors. Three RF models were constructed based on (1) default parameters
as suggested by the sklearn library, (2) parameters suggested by the Bayesian optimisation (BO),
and (3) parameters suggested by the proposed meta-learning approach (BO-ML). Based on five-fold
cross-validation accuracy, the Bayesian method achieved the best performance for both the training
(0.810) and test (0.802) datasets. The meta-learning approach achieved slightly lower accuracies than
the Bayesian method for the training (0.769) and test (0.800) datasets. Similarly, based on F1-score
and area under the receiving operating characteristic curves (AUROC), the models with optimised
parameters either by the Bayesian or meta-learning methods produced more accurate landslide
susceptibility assessment than the model with the default parameters. In the present approach,
instead of learning from scratch, the meta-learning would begin with hyperparameter configurations
optimal for the most similar previous datasets, which can be considerably helpful and time-saving
for landslide modelings.

Keywords: landslide susceptibility; machine learning; bayesian optimisation; meta-learning; GIS;
LiDAR; remote sensing

1. Introduction

Landslides are a threat to human society in most parts of the world today [1], leading
to substantial economic losses and deaths [2]. For that reason, landslide spatial prediction
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is important for managing landslide-prone areas [3]. There are many factors affecting
landslides, such as topography, lithology, hydrology, rainfall, vegetation, and human
activity [4–7]. Such factors are known as causative or conditioning factors that have
complex and nonlinear relationships [8,9]. These factors or dataset can be extracted from
remote sensing sensors employed in the landslide modelling data preparation process.
Nowadays, more remotely sensed data such as satellite images, aerial photogrammetry,
including light detection and ranging (LiDAR), and radio detection and ranging (RADAR)
can be obtained for landslide data equationtion, making landslide susceptibility modelling
(LSM) more efficient in response to landslide disaster management [10–12].

Machine learning and statistical modelling are among popular methods for landslide
susceptibility assessment [13–15]. In the literature, the effect of data quantity and quality
on statistical and machine learning models’ performance was widely investigated [16–18].
For example, the significance of input data [19], the role of absence of landslide data [16,20]
effect of balanced and imbalanced data [21,22] and effect of feature transformation on
optimisation [12] have been addressed in recent studies [23]. For such purpose of LSMs,
software such as ArcGIS, QGIS, and GRASS GIS has been widely used for spatial analysis
and visualization, while platforms such as Python, R, R studio, and Matlab have been
broadly utilized for prediction and modelling [24].

In recent years, machine learning methods, including deep learning techniques such
as convolutional neural networks (CNN) and recurrent neural networks (RNN), have been
found successful in landslide modeling compared to costly methods requiring site inves-
tigations or domain experts [25]. Machine learning methods have achieved substantial
results in assessing landslide susceptibility due to the absence of prior knowledge require-
ments [7,26,27]. Machine learning approaches also achieve higher prediction accuracy
because they can reliably identify nonlinear relationships between causative factors and
the likelihood of landslide occurrence [28,29].

Nevertheless, machine learning algorithms need hyperparameter optimisation to
optimise prediction capacity, which is an expensive task computationally and requires
additional validation datasets [30]. Hyperparameters are parameters set before starting
the training process. Optimisation of machine learning algorithms can be achieved with
manual search or automatic search methods. Manual search attempts to set the hyper-
parameters manually. Expert users should identify key parameters with a greater effect
on the performance of the model. Professional background and practical experience are
required for a manual search. Therefore, tuning hyperparameters with a manual search
is not effective and cannot be reproduced easily [31]. Automatic search algorithms are
proposed to overcome the drawbacks of a manual search. The most common automatic
search methods include grid search, random search, and Bayesian optimisation [32]. Grid
search tries each combination of possible hyperparameter values on the training set and
evaluates the performance on the cross-validation set according to a pre-defined metric.
Although this method achieves automatic tuning, it suffers from the curse of dimensionality.
Random search attempts to use random combinations of a range of values. Compared to
the grid search, the random search is more efficient in high-dimensional space [31]. Another
efficient algorithm and smarter than the grid and random search is Bayesian optimiza-
tion (BO) [33]. With grid and random search, each hyperparameter guess is independent.
However, Bayesian approaches use knowledge of previous algorithm iterations.

Grid and random search were commonly used to optimise support vector machines
for spatial prediction of landslide studies [3,34–38]. Recently, Bayesian optimisation was
also used to select hyperparameters of machine learning models to determine landslide
susceptibility. Scholars used Bayesian optimisation to select optimal hyperparameters of a
CNN for landslide susceptibility assessment [33]; this study showed that Bayesian optimi-
sation could enhance CNN’s accuracy by nearly 3% compared to default configurations,
outperforming the artificial neural network (ANN) and support vector machine (SVM). Sun
D. et al. [39] used Bayesian optimisation to select the hyperparameters of a random forest
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(RF) model for assessing landslide susceptibility. Their findings showed that the optimised
model had higher reliability and landslide prediction compared to non-optimised models.

In addition to the above optimisation methods, many studies have developed other
optimisation techniques for machine learning-based landslide susceptibility. The most
common methods are population intelligence-inspired (or metaheuristic), including
biogeography-based optimizations. Pham et al. [40] used swarm intelligence optimisa-
tion named moth flame optimiser (MFO) to find optimal hyperparameters of a CNN
model for the assessment of landslide susceptibility. They used MFO to optimise two
main hyperparameters of the CNN model, which are a number of convolutional filters
and a number of neurons in the fully connected layers. The results of their research
suggested that the MFO-optimised CNN model could produce better results than RF,
random subspace, and CNN without optimising hyperparameters.

Though the problem remains with the above optimization methods, which are com-
putationally expensive and require additional data sets for complex machine learning
algorithms. A substantial number of evaluations are required to find optimal models. A
promising approach is to apply meta-learning to the hyperparameter search problem [41,42].
Meta-learning refers to systematically and data-driven learning from prior experience. The
key concept behind meta-learning for hyperparameter search is to recommend appropriate
configurations for a new dataset based on well-known configurations based on similar
previously tested datasets [43]. The first step in meta-learning optimization is to obtain
meta-data, which is data identifying prior learning tasks and previously learned models.
It includes the exact configurations of the algorithms used to train the models, hyper-
parameter settings, pipeline compositions and/or network architecture. It also includes
the resulting model evaluations, such as accuracy and training time, the learned model
parameters, as well as measurable properties of the task itself, also known as meta-features.
The second step is to learn from this meta-data, extract, and transfer information to direct
the search for optimum models for new tasks.

Prior knowledge on LSM, especially their optimised hyperparameters is important
but not utilised in previous studies. This research fills this gap by developing a meta-
learning-based optimisation of a RF algorithm for spatial prediction of landslides. It aims
to speed up optimisation by starting from promising configurations based on several basic
and statistical meta-features. The contribution of the research involves developing a set of
meta-features that are spatial or statistical appropriate for this research aims. The proposed
approach may also naturally be integrated into other machine learning algorithms, making
it useful for practical applications.

2. Materials and Methodology
2.1. Study Area

The study area is a sub-area of Cameron Highlands located in the north-eastern tip of
Pahang State, Malaysia (latitudes 101◦24′00′′ E and 101◦25′10′′ E, longitudes 4◦30′00′′ N
and 4◦30′55′′ N) (Figure 1). It is a tropical mountainous region with frequent occurrence of
landslides and flash flooding triggered by strong, prolonged rainfall [44]. The combination
of topography, climate, and human activities creates natural hazards that pose a major
threat to Cameron Highlands [20,44]. Government reports and previous research indicate
that landslides in this area have been common, and that there has been significant damage
to property in the past [20].

Geomorphology of the area is mostly hilly landforms, mainly the western and northern
parts. The land slope ranges from 0◦ to 78◦ and the lowest and highest altitudes are 1153 m
and 1765 m. Forest and tea plantations, temperate vegetables and flower farms are the
main vegetation cover of the area. The primary lithology in this area is megacrystic biotite
granites, the other geological structures being schists and phyllite [44]. Cameron Highlands
has a mild climate with average annual rainfall between March and May and November to
December. The average daytime and night-time temperatures are 24 ◦C and 14 ◦C, respectively.
Approximately 8% (5500 ha) of the area is agricultural land, 86% (60,000 ha) is cultivated,
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4% (2750 ha) is housed, and the rest is used for recreation and other activities. The selected
sub-area occupies about 25 km2.

Figure 1. Maps of the study area and the historical landslide events (located within Cameron
Highlands, Malaysia).

2.2. Geospatial Database

Valid datasets are required to assess landslide susceptibility with machine learning
methods ranging from digital elevation models, geological data to geographic informa-
tion system (GIS) data such as stream network, road network, and administrative divi-
sion/subdivision to historical landslides aka landslide inventory. The datasets collected
and prepared in the current research are shown in Table 1. A 0.5 m digital elevation
model (DEM) was generated using LiDAR point clouds and down-sampled to 2 m. The
details of the LiDAR data and campaign are documented in Table 1. The DEM was gener-
ated by removing non-ground points by the Multiscale Curvature Classification (MCC)
algorithm [45] and the Inverse Distance Weighted (IDW) interpolation techniques were
implemented in ArcGIS Pro 2.4. The DEM is then used to generate other causative factors
such as altitude, slope, aspect, plan curvature, profile curvature, ruggedness index, relative
topographic position, topographic wetness index, and sediment transport index. Satellite
images from Landsat 7/ETM+ were used to generate vegetation density and normalised
difference vegetation indices. Geological data such as lithology and lineaments have also
been analysed in this study. However, the study area contained only one type of lithol-
ogy (granite) and was therefore not considered being a factor in the prediction models.
Lineament data was used to prepare the distance from lineaments factor using the GIS
Euclidean distance function. Additionally, GIS data such as stream and road networks,
land use, administrative divisions/subdivisions, and historical landslides, were used to
prepare other causative factors and to prepare training and test samples.

This research was conducted using open-source libraries including Numpy, Scikit-
learn, and Pandas in Python platform. In addition, ArcGIS Pro 2.4 was implemented for
data preparation, spatial analysis, and result presentation. All experiments were conducted
in Python using Scikit-Learn and Keras on a computer with a Core i7-4510U CPU running
at 2.60 GHz, 16 GB of RAM, and a x64-based processor.
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Table 1. List of datasets used to model landslide susceptibility at the study area.

Data Data Source(s) Type Scale or Spatial Resolution

LiDAR data
The data were acquired with an airborne-based
system on 15 January 2015. The system had a

25,000 Hz pulse frequency rate
Point clouds

8 points/m2 (point density). The
absolute vertical and horizontal

precisions were 0.15 m and 0.3 m,
respectively.

High-resolution
orthophotos

The data was acquired using the same LiDAR
system and at the same time. Grid

10 cm ground sampling distance at
1/1000 scale.

A digital elevation
model (DEM)

The data was created from the LiDAR point clouds
using only ground points. Grid 2 m

Satellite images Landsat 7/ETM+ Grid 30 m

Administrative divi-
sion/subdivisions https://gadm.org/ (access on 8 October 2020) Vector

Land use Aerial photos + LiDAR data Vector

Geological data Vector

River network Extracted based on DEM Vector

Road network Vector

Historical landslides Prepared based on an existing inventory map [46]. Vector/Datasheet

2.2.1. Landslide Inventory

Landslide inventory data is essential for training and validating machine learning and
statistical predictive models. A typical landslide inventory database contains information,
such as the location of past and recent landslide events, type of landslides, and other
statistical information about the landslide sites and their impacts. The landslide inventory
data of the area was prepared by [46] in their previous works in the same area. A total of
63 landslides were identified in the area, as shown in Figure 1. The database shows that
most of the landslides are shallow rotational and a few translational in type. Landslide
data has been randomly split into a training set (80% of the landslides; 50) and test set (20%
of the landslide; 13). Table 2 shows the descriptive statistics of landslide causative factors
at landslide locations calculated with mean values from a 10 m circular buffers.

Table 2. The descriptive statistics of landslide causative factors at landslide locations.

Factor Min Max Mean (µ) Std (σ)
Altitude (m) 1443 1909 1603.48 74.67

Slope (◦) 4.7 42 30.79 8.30
Aspect (◦) 34 286 165.60 63.81

Plan curvature 4.300e+02 4.102e+13 3.061e+12 8.770e+12
Profile curvature −19,634 122,469 4121.13 18,128.16

Distance from roads (m) 6.2 233 43.74 41.57
Distance from streams (m) 3.8 114 49.80 27.40

Distance from lineaments (m) 9.6 203.5 85.55 45.92
Land use Categorical variable

Normalised difference vegetation index 0.099 0.52 0.377 0.081
Vegetation density Categorical variable
Ruggedness index 0.61 73 3.92 9.55

Relative topographic position −0.007 0.48 0.15 0.12
Topographic wetness index 0.64 3.6 1.37 0.61
Sediment transport index 0.68 57 10.18 7.23

2.2.2. Landslide Causative Factors

This work involved a total of 15 causative factors, two of which were categorical
while the others were numerical. All factors were selected based on previous works done

https://gadm.org/
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in the same area, which showed a significant correlation to landslide events. Although
some research indicates that numerical factors should be reclassified from continuous to
categorical; this study did not reclassify numerical factors into categorical to allow more
reliable calculation of meta-features required in the proposed meta-learning, reduce the
predictive model’s sensitivity to the type of reclassification models and range of values
used to convert continues values into categorical and reduce the time-complexity of the
models as they do not have to do extra processes with new examples during prediction.
Thus, two factors, namely vegetation density and land use, as well as 13 numerical factors,
as indicated in Table 3, are included in this research (the maps of landslide causative
factors are provided in Appendix A). The categorical data were transformed to numerical
form. The one-hot encoding was used for the ordinal representation. The integer encoded
variable is removed and one new binary variable is added for each unique integer value
into the variable. Each category value is converted into a new column in this strategy and
assigned a 1 or 0 (representing true/false) value to the column [47].

2.3. Methodology
2.3.1. Overall Research Methodology

Figure 2 shows the overall methodology for evaluating spatial prediction of landslides
using RF and a meta-learning approach for optimising hyperparameters.

Several geospatial datasets were obtained and pre-processed, including a 2 m digital
elevation model, geological data (i.e., lineaments), land use, stream network, road network,
and satellite images. Following that, a proper geospatial database was developed to
include 15 causative factors from the collected datasets. These include altitude, slope,
aspect, plan curvature, profile curvature, distance from roads, distance from streams, and
distance from lineaments, land use, normalised difference vegetation index, vegetation
density, ruggedness index, relative topographic position, topographic wetness index, and
sediment transport index. The database also included the research area boundary (area of
interest, short AOI) and historical landslides, which are essential to prepare training and
test samples for the modelling phase.

In addition to historical landslides, non-landslide samples are required to prepare
training and test samples. They are created randomly at far-off locations by a particular
distance to existing landslides. The total number of non-slide samples is equal to the
number of landslide locations to prevent data set imbalances. The non-slide samples
produced are combined with landslide samples to create the training (80%) and test (20%)
samples used to train and test the modelling technique. From training samples, 15 percent
were held aside to optimise model hyperparameters. The selection process of non-landslide
samples should be performed carefully. There are several strategies for selecting training
samples in the literature. The fundamental approach is random sampling which we used
in this study [10,11]. The non-landslide samples were collected from the rest of the area,
exhibiting different features such as buildings, trees, etc. We utilized landslide inventories
as a guide to select these non-landslide points. Accordingly, the generation of the non-
landslide points was performed randomly via ArcGIS Pro 2.4. tool, satisfying the following
conditions. First, any non-landslide sample needs to be buffered at a minimum distance of
500 m away from landslides. Second, the distance between any two non-landslide samples
must be more than 100 m.

Three RF models were developed using three different hyperparameter configurations
such as (1) default values from sklearn library, (2) best values from Bayesian optimisation
(BO), and (3) best values from the proposed meta-learning optimisation method (BO-ML).
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Table 3. List of landslide causative factors used in this research, their calculation method and rationale.

Factor Equation/Calculation Method Rationale

Altitude (m) Extracted from the smoothed version of DEM (calculated by the de-noising
algorithm described by [48].

Elevated area affects slope loading. Higher altitude areas increase the
likelihood of landslides, especially if the orientation of the sliding plane
is closer to open excavation [49], Altitude also affects the extent of rock

weathering [50].

Slope (◦)

slope = arctan0.5
(

f 2
x + f 2

y

)
,

fx =
z3−z5+2(z2−z6)+z1−z7

8×∆x ,

fy =
z7−z5+2(z8−z4)+z1−z3

8×∆y

A significant topographic parameter in any landslide susceptibility
study and commonly used in previous research [3,44]. Higher landslide

frequency is often found in steep slopes [33,44].

Aspect (◦) aspect = 180− arctan
(

fy
fx

)
+ 90

(
fx
| fx |

) Regulates topographic moisture levels influenced by solar radiation and
precipitation [51].

Plan curvature
Calculated using the equation for the calculation of plan curvature as [52]. Plan
curvature is negative for diverging flow along ridges and positive for convergent

areas, e.g., along valley bottoms.

Curvature represents slope changes along a curve’s tiny arcs,
influencing slope instability by altering landform character [53]. Plan
curvature is the curvature perpendicular to the direction of the peak

slope. The convex surface drains moisture immediately while the
concave surface holds moisture for long.

Profile curvature

Calculated using the same equation for the calculation of plan curvature as [52].
Profile curvature is negative for slope increasing downhill (convex flow profile,

typical of upper slopes) and positive for slope decreasing downhill (concave,
typical of lower slopes).

Profile curvature refers to the convergence and flow divergence across a
surface.

Distance from roads (m) For each cell, the Euclidean distance to the closest road feature was calculated.

A landslide susceptibility assessment routinely uses anthropogenic
factors such as distance from roads. Some of the most common actions

during construction are shallow to deep excavations, foreign load
application, and vegetative cover removal along highways and roads

[54].

Distance from streams (m) For each cell, the Euclidean distance to the closest stream feature was calculated.

A hydrological community’s intermittent flow regime and gullies
encompass erosive and saturation processes. Subsequently, pore water

pressure may increase, leading to landslides in areas adjacent to
drainage channels [54].
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Table 3. Cont.

Factor Equation/Calculation Method Rationale

Distance from lineaments (m) For each cell, the Euclidean distance to the closest lineament feature was
calculated.

Lithological factors are used in many landslide research; these affect the
type and mechanism of landslides as rocks differ in terms of internal
structure, mineral composition, and susceptibility to landslides [55].

Land use

Prepared from 10m SPOT 5 satellite images using maximum likelihood
classification. 10 land use and land cover types were identified, e.g., water,

transportation, agriculture, residential and bare land. The classified map’s overall
accuracy was 87.20%, verified with field surveys.

Human activities influence patterns of land use, contributing to
landslides [56], more common in barren areas than forests and

residential areas [57].

Normalised difference vegetation
index (NDVI) NDVI = NIR−RED

NIR+RED

NDVI is highly correlated with photosynthesis activity, hence with
vegetation density [58] Greater NDVI values mean more amount of

vegetation cover.

Vegetation density

The area was divided into four classes of vegetation densities, i.e.,
non-vegetation, low-density, moderate-density, and high-density vegetation.

Non-vegetated areas were identified based on aggregating non-vegetation classes
of land use data. The three density levels of vegetation were determined by

classifying the NDVI raster using (0.176–0.286, 0.287–0.417, 0.418–1.0) ranges for
the three classes, respectively.

Vegetation cover plays an important role in causing landslides in
Cameron Highlands. Such areas are vulnerable to unstable erosion. The

vegetation root leads to hill slope stabilization and reduction in
landslide occurrences. The higher vegetation density value indicates the

higher vegetation concentration per area unit.

Ruggedness index (RI)
For each grid cell in the DEM, the root-mean-square-deviation (RMSD) is

calculated using the residuals (i.e., elevation differences) between a grid cell and
its eight neighbours. Details can be found in [59].

Used to describe and quantify local relief. It also affects erosion and
deposition rate, activity rates, and age of deposits. Changes in gradient

result in increased rainfall accumulation and infiltration.

Relative topographic position
(RTP)

RTP =
z0−µ

µ−zmin
, i f z0 < µ,

RTP =
z0−µ

zmax−µ , i f z0 ≥ µ

An effective factor for landslides describes the expression of the
geomorphological settings (slope, ridge, valley, etc.) in a quantitative

way. It is included in landslide susceptibility studies because landslide
events usually take place on the ridges.

Topographic wetness index (TWI) TWI = ln
(

As
tan β

) A steady-state wetness index representing flow accumulations down
the slope impacting runoff velocity, hydrologic conditions.

Sediment transport index (STI) STI = (n + 1)
(

As
22.13

)n( sin β
0.0896

)m
Related to the delivery of sediments from terrain into the channel
during landslide events. The amount of sediment in a catchment

indicates the potential sediment supply to the debris at the catchment
mouth.

* ∆x and ∆y are the grid resolutions in the x and y direction, respectively. * n is specific contributing area SCA exponent, m is slope exponent value, A_s is the upslope contributing area per unit contour length, β
is slope gradient measured in degrees. * NIR and RED are the near-infrared and red bands.
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Figure 2. The overall research methodology developed and tested in this work.

To optimise RF hyperparameters with the proposed meta-learning method, the fol-
lowing steps are followed. First, a total of 110 datasets were created by random sample
features and samples from the available data. For each dataset, a set of basic and statistical
meta-features were calculated. Additionally, for each dataset, the best hyperparameters
of RF were obtained through Bayesian optimisation. Each dataset contained a pair of
meta-features and best values of hyperparameters. Datasets were then randomly split into
training datasets (100) and validation datasets (10). To find best hyperparameter values
for a new dataset, k nearest datasets were determined by comparing meta-features with k
nearest neighbour algorithm and running Bayesian optimisation by starting from a list of
hyperparameter configurations suggested by meta-learning.

Lastly, the model predictive ability was evaluated based on three accuracy metrics,
including k-fold cross-validation accuracy (k = 5 in this work), F1-score, and area under
the receiving operating characteristic curves (AUROC).

2.3.2. Modelling: Random Forest

Random forest (RF) developed by Breiman, L. [60] in 2001 is a common supervised
classification algorithm based on the learning of decision trees [60]. It can also be extended
to other tasks such as regression, clustering, and detecting interactions. A forest is formed
by constructing several binary trees. Each tree fits a bootstrap sample from the training set
with a random subset of features and samples selected at each node to minimize correlation
among the generated trees [61]. The random selection of the data set may affect the model’s
performance, so using a collection of several trees helps ensure model stability. For each
tree grown on a bootstrap sample, the error rate “out-of-bag” (OOB) equal to the standard
deviation error between predicted and observed values is calculated using samples left out
of the bootstrap sample. OOB samples are also used to establish a ranking of importance
for the features. Majority vote of all trees decides the final predictions.
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When splitting a node during tree construction using the concept of the largest Gini
coefficient, the selected split is no longer the best split among all features [62]. Alternatively,
the split is the best split among a random subset of features. Because of this randomness,
the bias of the forest typically increases marginally (regarding a single non-random tree
bias) [63,64]. Nevertheless, due to averages, its variance often decreases, typically more
than compensating for the increase in bias, producing a better overall model.

RF estimates the relative importance and ranks input features concerning the pre-
dictability of landslides using features used as decision nodes in the trees [36]. Features
used at the top of the tree contribute to the final prediction decision of a larger fraction of
the input samples. Thus, the estimated fraction of the samples they contribute to can be
used to estimate the relative importance of the features. Here, the fraction of samples a
feature contributes to is combined with the decrease in impurity from splitting them to
create a normalised estimate of the predictive power of that feature. Other benefits of the
RF algorithm include [65]:

• RF is ideal for working with mixed variables, i.e., both categorical and numerical,
most likely in landslide modelling,

• In RF, each tree has access to specific subspace feature sets. This random selection of
features to split each node contributes to a favourable error rate. This randomness
also offers high accuracy rates for outliers in predictors, and

• RF is a good feature engineering tool. That means finding the most relevant features
from the training dataset.

The challenge with RF is to optimise a number of hyperparameters to increase effi-
ciency and predictive capacity [66]. The most important parameters include the number
of trees in the forest, maximum depth of the trees, the maximum number of features con-
sidered at each split, minimum samples required in a leaf, minimum samples required to
split a node, and the function to measure split quality (also known as criterion). Selecting
optimised values for these parameters can reduce the model’s time complexity, increase
model generalization (minimize the OOB error), and produce a more accurate estimation
of feature importance. Appendix B contains more information on these parameters [60].

2.3.3. Optimisation: Bayesian Optimisation

This research uses Bayesian optimisation (BO) to determine optimal landslide
predictive models-hyperparameters. Unlike grid and random search, BO finds optimum
hyperparameters faster, relying on prior knowledge gained through iterations. The
algorithm depends on the Gaussian process (GP) model to fit the posterior distribution
of an objective function by increasing the number of samples, allowing it to find the
optimal solution and optimise the hyperparameter [39]. GP model can easily determine
a predictive distribution of objective function. The model’s predictive distribution
determines the possible values of the objective function at each point of the input space.
By considering this predictive distribution, BO methods guide the search, focusing on
those input space regions that are expected to provide the most information about the
solution to the optimisation problem.

In this research, BO was used to optimising six RF model hyperparameters as shown
in Table 4. It was based on 20 iterations, also known as calls (n). As an objective function,
negative minimum AUROC with five-fold cross-validation was used. After each iteration,
the better model configuration was found until the 20-call convergence. At the cost of
additional processing time, better configurations can be found when looking for larger
search spaces.
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Table 4. Main hyperparameters in the RF model and optimised by the BO method.

Hyperparameter Value Type Search Space
Number of estimators Integer [5, 500]

Criterion Categorical [“gini”, “entropy”]
Maximum depth Integer [1, 15]

Maximum features Integer [1, 15]
Minimum samples leaf Integer [5, 30]
Minimum samples split Integer [2, 100]

2.3.4. Proposed Meta-Learning Optimisation Approach

Meta-Learning:
The idea of meta-learning is to find the best values of RF hyperparameters for new

datasets based on previous knowledge regarding best hyperparameters. For a new dataset,
the Bayesian optimisation, instead of learning from scratch, would begin with hyperpa-
rameter configurations that were optimal for the most similar previous datasets. The
similarity between datasets can be measured using common distance metrics such as
p-norm distance.

Let us denote the best hyperparameter configurations as θ̂1, . . . , θ̂N for the previously
encountered datasets D1, . . . , DN , respectively. For a new dataset, first, the algorithm
computes the p-norm distance (dp) from this dataset to all the training (encountered)
datasets and sort them by increasing distance to the new dataset. The similarity between
the datasets was measured based on their meta-features, which can be computed for the
training and validation (new) datasets.

dp
(

Di, Dj
)
= ‖ mi −mj ‖p (1)

where dp is the p-norm distance between Di and Dj datasets, and mi and mj are the set of
meta-features for the two datasets.

Then, t hyperparameter configurations will be determined based on the most t sim-
ilar datasets based on dp. In this research, t was set to 10. Starting from these best t
hyperparameter configurations, Bayesian optimisation will run for 10 calls to find the best
hyperparameter values for the new dataset. This will help to save time and computing
resources as there will not be a need to search large hyperparameter spaces.

Implemented Meta-Features:
To evaluate the proposed meta-learning approach, a number of basic and statistical

meta-features were implemented. This research implemented 13 basic meta-features such as
the number of instances and the number of features, describe the basic dataset structure [67].
Further, it implemented 14 statistical meta-features which characterise the data via descrip-
tive statistics such as kurtosis and skewness [68]. Such meta-features can characterize the
complexity of datasets providing an evaluation of the performance of the algorithm [69].
Broad data characterization, deep data exploration and various meta-learning-based data
assessments can be obtained by extracting numerous meta-feature functions [69]. These
meta-features can be general information (e.g., simple measures, number of instances,
attributes, and classes) and statistical information (e.g., standard statistical measures describ-
ing data distribution and discriminant measures including Min., Max, Standard deviation,
Skewness, Kurtosis, etc.). These meta-features can be simply extracted by instantiating
the “MFE class” in Python. It calculates a group of meta-features as summary functions
to abstract these values. After fitting, the “Extract” method extracts the corresponding
measures [70]. The details of these meta-features are given in Appendix C.

Datasets:
The evaluation of the meta-learning optimisation was based on datasets randomly

sampled (both factors and samples) from the datasets of Cameron Highlands. A total of
110 datasets were created with a different number of factors and a number of samples.
For developing and training the meta-learning models, this research used 100 datasets
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randomly selected from the generated datasets. The remaining 10 datasets were kept for
validating the method. Table 5 shows the shape and the list of causative factors selected in
each validation dataset.

Table 5. The shape and list of selected causative factors on the validation datasets.

Dataset # Shape ( n, p) List of Chosen Factors

1 (70, 9) [Vegetation density, Aspect, RI, Altitude, Slope, Distance from
road, Distance from streams, LULC, distance from lineament]

2 (100, 15)
[Altitude, WI, NDVI, RTP, Distance from

road, Distance from streams, Aspect, Distance from lineament, STI, Slope, LULC, Plan curvature,
RI, Vegetation density]

3 (50, 8) [Distance from lineament, Slope, Vegetation density, NDVI, RI, Profile curvature, Altitude,
Aspect]

4 (120, 15) [RTP, Aspect, Plan curvature, Distance from streams, Distance from roads, Vegetation density,
Distance from lineament, LULC, NDVI, Profile curvature, Slope, Altitude, STI, RI, WI]

5 (70, 7) [Plan curvature, RTP, Profile curvature, Aspect, WI, Distance from roads, Altitude]

6 (50, 13) [STI, WI, RI, Distance from roads, Altitude, LULC, Profile curvature, Vegetation density, Distance
from lineament, Slope, NDVI, RTP, Distance from streams]

7 (50, 7) [LULC, Distance from streams, NDVI, Slope, Altitude, Aspect, WI]

8 (90, 14) [RTP, Distance from roads, NDVI, Distance from lineament, Altitude, Aspect, STI, WI, RI, LULC,
Vegetation density, Slope, Plan curvature, Distance from stream]

9 (80, 4) [Distance from lineament, Distance from road, RTP, WI]
10 (50, 8) [Slope, Distance from lineament, Altitude, Plan curvature, RI, WI, NDVI, RTP]

For each training dataset, this research first shuffled the samples and then split it
in stratified fashion into 80% training and 20% validation. Before training any machine
learning model, the dataset needs to be well-shuffled to avoid bias or patterns in the split
datasets for training, testing, and validation datasets. If shuffling is neglected, the data can
be sorted, or similar data points could lie next to each other, leading to slow convergence.

Moreover, stratified sampling seeks to split a dataset so that every split is similar with
respect to datasets to ensure the same distribution of classes on datasets. It is often desired
to ensure that the train and test sets have almost a similar percentage of samples of each
target class as the complete set.

Then, we computed the validation performance (AUROC) for Bayesian optimisation
by five-fold cross-validation using the validation dataset. For each training and validation
dataset, the basic and statistical meta-features were computed and stored on disk. As such,
the computed datasets stored on the disk were the meta-features and performance of RF
with best hyperparameters found by the Bayesian optimisation for the training dataset and
only meta-features for the validation datasets.

2.3.5. Performance Assessment

The performance of the proposed models was evaluated using three standard accuracy
metrics including k-fold cross-validated accuracy, F1-score, and area under receiving
characteristic curves (ROC) (i.e., AUROC).

k-fold cross-validated accuracy:
Accuracy is the most common metric for classification tasks, including landslide

susceptibility mapping. It is the fraction of the correctly predicted sample and can be
calculated using the following equation [71]:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP is true positive, the number of positive samples correctly predicted, TN is true
negative, the number of negative samples correctly predicted, FP is false positive, the
number of positive samples wrongly predicted as negative, and FN is false negative, the
number of negative samples wrongly predicted as positive.
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To avoid miscalculating the accuracy of a model, it is suggested to use k-fold cross-
validation, which is a model validation approach based on partitioning the data into k
subsets (k = 5 in this research). The basic idea behind this approach is to hold a set at a time
and train the model on the remaining set. Then, test the model on hold out set. However,
accuracy is not always the best metric for evaluating classification models because it does
not care about positive events. Therefore, additional metrics are often used to explain the
performance of the proposed models.

F1-score:
The F1-score is the harmonic mean of recall (r) and precision (p), with a higher score

as a better model. Precision (p) is determined by dividing the true positives (number of
landslide pixels) with the total number of pixels classified as a landslide. The sensitivity (r)
is the degree of true positives correctly predicted and distinguished and can be defined
as the number of true positives divided by the total number of pixels belonging to the
landslide class. The F1-score is calculated using the following equation [72]:

F1− score = 2× p × r
p + r

(3)

p =
TP

TP + FP
(4)

r =
TP

TP + FN
(5)

The problem with the F1-score metric is assuming a 0.5 threshold for selecting which
samples are predicted as positive. Changing this threshold would change performance
metrics. ROC curve is a very common method to solve this problem.

ROC curves and AUROC:
ROC, a graphical representation of model success and predictive accuracy, is another

important accuracy metric often used to assess models of landslide susceptibility. The area
under ROC is known as AUROC, a quantitative measure summarizing model performance.
ROC curves help to understand the balance between true-positive and false-positive rates.
A perfect model has 1.0 AUROC, and 0.5 AUROC indicates random models. The closer the
AUROC to 1.0, the higher the model’s performance [73].

ROC curves plot y-axis sensitivity and x-axis specificity, corresponding to decision
thresholds [74,75]. AUROC calculates a trapezoidal equation as follows:

AUROC =
1
2

n−1

∑
i=1

(Ti+1 − Ti)(Ci+1 + Ci − 2B) (6)

where Ti is the ith percent landslide susceptibility, Ci is the ith cumulative percentage of
landslide occurrence, n is the number of the percent landslide susceptibility index value,
and B is the baseline value (i.e., B is usually equal to zero).

2.3.6. The Relative Importance of Causative Factors

The influence of every conditioning factor on the occurrence of landslides varies [76,77];
thus, examining the importance of the factors for landslide occurrence can provide valuable
information. To date, there is no agreement on the selection of reliable landslide conditioning
factors due to the complexity of landslides [7,78]. However, several strategies can support
the identification of the most and least contributing factors. RF is a popular technique that is
widely used for this purpose due to its ability to feature importance/selections.

Multicollinearity can occur when a predictor variable in a multiple regression model
can be linearly predicted from the others with superior accuracy. However, decision
trees algorithms (such as RF) are resistant to multicollinearity or outliers by nature [79].
Moreover, the success of a meta-learning technique significantly relies on the quality and
quantity of the meta-data features employed for learning. To well characterize the meta-
data, a collection of many meta-features discriminating among various learning tasks is
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needed [79]. This ability of meta-learning can offer a better generalization to other areas
with almost similar geo-environmental and topographical characters. Nevertheless, we
have selected the most essential and best available causing factors based on the previous
projects in the study area [20].

In the present study, we used RF as the standard algorithm for the modelling, as the
accuracy of RF is not certainly affected by the multicollinearity loads [80–83]. In fact, this is
one of the main advantages of RF, which meta-learning could benefit and learn from the
features in a convenient scheme.

3. Results

This paper developed a meta-learning approach to optimising RF models for the
assessment of landslide susceptibility at Cameron Highlands. This proposed approach was
compared to RF with default hyperparameter settings (sklearn) and Bayesian optimisation
to evaluate its predictive ability.

3.1. Performance of RF with Default Values of Hyperparameters

Table 6 shows the default values of the critical RF hyperparameters taken from the
sklearn software package (https://scikit-learn.org, access on 1 September 2020). RF, with
these default values, achieved AUROC of 0.779 and 0.761 for the training and test datasets,
respectively. Comparing the default model with random models on the test dataset
achieved AUROC of 0.742 ± 0.015 for 20 randomly sampled parameters. Figure 3 shows
the ROC plots of these random models. The results suggest that RF with the default
parameters compares to a random model, indicating the need to optimise these critical
parameters systematically to produce more accurate landslide predictions.

Table 6. The default values of the RF model used in this research (taken from sklearn).

Parameter Value Explanation
Number of estimators 100 The number of trees in the forest.

Criterion Gini The function to measure the quality of a split.
Maximum depth None The maximum depth of the tree.

Maximum features Auto The number of features to consider when looking for the best split.
Minimum samples leaf 1 The minimum number of samples required to be at a leaf node.
Minimum samples split 2 The minimum number of samples required to split an internal node.

Figure 3. ROC plots of RF model with a random selection of hyperparameter values.

https://scikit-learn.org
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3.2. Performance of RF with Optimised Values of Hyperparameters

Table 7 shows the performance of the RF model with two optimisation methods,
i.e., Bayesian method and the proposed meta-learning based approach compared to the
model with the default parameters. Considering the five-fold cross-validation accuracy
metric, the Bayesian method achieved the best performance for both the training (0.810)
and test (0.802) datasets. The meta-learning approach achieved slightly lower accuracies
than the Bayesian method for the training (0.769) and test (0.800) datasets. The model
with the default parameters achieved the worse performance. Similarly, the Bayesian
method outperformed the other two models based on F1-score on both the training and test
datasets. Based on this metric, the meta-learning approach (BO-ML) also achieved better
results than the model with the default parameters. Finally, based on the AUROC metric,
the models with optimised parameters either by the Bayesian or meta-learning methods
produced more accurate landslide predictions than the model with the default parameters
of the sklearn. Figure 4 illustrates the ROC plots of the three investigated models using the
test dataset.

Table 7. Performance of optimised RF compared with default values of hyperparameters based on five-fold cross-validation
accuracy, F1-score, and AUROC.

Five-Fold Cv Accuracy F1-Score AUROC
Dataset

Default BO BO-ML Default BO BO-ML Default BO BO-ML
Training (80%) 0.751 0.810 0.769 0.745 0.850 0.826 0.779 0.861 0.823

Test (20%) 0.732 0.802 0.800 0.727 0.852 0.832 0.761 0.864 0.820

Figure 4. ROC plots of the tested models using the test dataset. The black dashed line shows a
random model.

To further evaluate the proposed meta-learning optimisation method, Table 8 shows
the best hyperparameter settings obtained by the Bayesian method for the 10 validation
datasets (see Section 2.3.4). These best hyperparameter configurations were obtained based
on the search space given earlier in Table 4. The performance of the three RF models (i.e.,
default parameters, Bayesian method, meta-learning approach) are given in Table 9 for
the training dataset and Table 10 for the test dataset using the three different evaluation
metrics, i.e., five-fold cross-validation accuracy, F1-score, and AUROC.
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Table 8. Best values of hyperparameters obtained by the Bayesian method for the 10 validation datasets used to evaluate
the meta-learning approach.

Dataset # Number of
Estimators Criterion Max.

Depth
Max.

Features

Min.
Samples

Leaf

Min.
Samples

Split
1 5 Entropy 15 9 5 2
2 500 Entropy 15 14 5 7
3 5 Entropy 1 8 5 2
4 97 Entropy 4 3 13 15
5 500 Gini 4 6 5 2
6 500 Gini 15 1 5 2
7 500 Gini 15 1 5 2
8 462 Entropy 6 4 8 5
9 61 Gini 15 3 7 12
10 500 Gini 15 1 5 2

Table 9. Performance of the three investigated models on the 10 validation datasets using the training subset.

Five-Fold Cv Accuracy F1-Score AUROC
Dataset #

Default BO BO-ML Default BO BO-ML Default BO BO-ML
1 0.777 0.833 0.792 0.829 0.848 0.864 0.819 0.847 0.834
2 0.774 0.781 0.811 0.813 0.875 0.850 0.813 0.876 0.850
3 0.754 0.825 0.799 0.758 0.864 0.803 0.768 0.864 0.813
4 0.723 0.800 0.740 0.800 0.875 0.817 0.800 0.875 0.817
5 0.769 0.874 0.785 0.794 0.882 0.810 0.794 0.881 0.810
6 0.776 0.822 0.799 0.802 0.869 0.825 0.801 0.868 0.824
7 0.625 0.797 0.704 0.696 0.869 0.775 0.697 0.869 0.776
8 0.747 0.837 0.792 0.771 0.872 0.816 0.771 0.859 0.816
9 0.699 0.775 0.738 0.751 0.834 0.790 0.750 0.826 0.789
10 0.725 0.811 0.775 0.821 0.882 0.871 0.816 0.882 0.866

Mean 0.737 0.815 0.773 0.783 0.867 0.822 0.783 0.865 0.819

Table 10. Performance of the three investigated models on the 10 validation datasets using the test subset.

Five-Fold Cv Accuracy F1-Score AUROC
Dataset #

Default BO BO-ML Default BO BO-ML Default BO BO-ML
1 0.714 0.817 0.771 0.754 0.825 0.775 0.854 0.917 0.871
2 0.718 0.792 0.751 0.750 0.825 0.800 0.855 0.944 0.909
3 0.700 0.800 0.760 0.792 0.890 0.797 0.792 0.829 0.808
4 0.708 0.778 0.783 0.782 0.831 0.812 0.776 0.864 0.800
5 0.757 0.800 0.771 0.771 0.837 0.781 0.783 0.844 0.783
6 0.700 0.708 0.700 0.700 0.814 0.799 0.725 0.833 0.817
7 0.800 0.814 0.800 0.792 0.814 0.792 0.792 0.809 0.792
8 0.662 0.708 0.692 0.778 0.816 0.821 0.718 0.817 0.773
9 0.744 0.808 0.763 0.792 0.814 0.807 0.786 0.809 0.807
10 0.708 0.752 0.738 0.724 0.783 0.744 0.724 0.835 0.824

Mean 0.721 0.777 0.753 0.763 0.825 0.793 0.780 0.850 0.818

3.3. Landslide Susceptibility Maps

The successfully tested models were used along with the training dataset to prepare
the landslide susceptibility maps of the study area. For each pixel, the probability of
landslide occurrence was computed using RF with the default parameters, Bayesian
method, and the proposed meta-learning approach. The resulted data was used in
GIS and the three susceptibility maps were produced. The maps were reclassified
into five susceptibility classes, namely very low, low, moderate, high, and very high
susceptibility using the natural break classification method implemented with the
ArcGIS Pro 2.4 function (Figure 5). Then, the number of landslides were identified in
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each susceptibility class in the produced susceptibility maps to quantify the landslide
density (number of landslides/susceptibility class area). Figure 6 shows the area in
pixels of the five susceptibility classes and the landslide density graphs based on the
results from the three tested models. The three models identified the largest number of
landslides in the higher susceptibility classes. Higher susceptibility values found in
areas with high altitudes, far from roads, and close to streams.

As the five susceptibility levels by the natural break classification approach are based
on the histogram of data distribution, the classes were therefore distributed within the
five class ranges as (very-low (<0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and
very-high (>0.8) which is common in natural break classification [84]. Figure 6a shows that
almost more than 51% of the area belongs to very-low and low classes, while almost 3% of
the area ranges in a very-high susceptible area which seems logical within the study area.
More importantly, as is shown in the landslide density graph in Figure 6b, the historical
landslides mostly fell into the high and very-high susceptibility regions, revealing a good
correspondence with the map generated by the present meta-learning approach (BO-ML).

Figure 5. Landslide susceptibility maps of the study area: (a) RF with default values of hyperparameters, (b) Bayesian
method BO, and (c) meta-learning approach BO-ML (this work).
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Figure 6. (a) The area of different susceptibility classes, and (b) landslide density graphs.

4. Discussion

LSMs are essential tools for managing landslide-prone areas. The models are also
required to have a high predictive ability and be stable to be used successfully by gov-
ernmental agencies to develop landslide risk strategies. This paper contributes to the
improvement of RF models with Bayesian optimisation and meta-learning for accurate
landslide susceptibility mapping at Cameron Highlands. Unlike existing studies which
optimise machine learning models from scratch, the proposed optimisation approach
starts with promising hyperparameter configurations that performed well on encountered
datasets. This approach saves time and computing resources as it runs at fewer iterations
compared to other grid and Bayesian methods.

This research used RF as a prediction model because it showed a encouraging per-
formance and stable predictions in previous studies [15,24,85]. In the present study, as
meta-learning begins with promising configurations based on several basic and statistical
meta-features, RF appears an attractive method for dealing with such meta-features. It
searches for the best feature among a random subset of features instead of searching for
the most critical feature while splitting a node, which provides additional randomness
to the model. Moreover, it is a powerful method that is less sensitive to multicollinearity,
noise, and outliers since it employs random features for the modelling [86,87]. These
random features in the learning process make the overfitting issue to be minimal. Another
advantage is its ability to recognize the most and least important causing factors, which is
an additional benefit to support the aim of the present work.

Since RF can assess the relative importance of the landslide causative factors, we
looked at how it performs with different hyperparameter configurations. Figure 7 shows
the relative importance of the causative factors obtained by the default model, Bayesian
method, and the proposed meta-learning approach.

The three models agreed that the distance from roads and vegetation density are the
most and least important causative factors regarding the predictability of landslides in the
study area, respectively. These results were also confirmed as most of the landslides have
occurred along the roadside (Figure 8).
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Figure 7. The relative importance of landslide causative factors in the study area as computed by the three investigated models.

Figure 8. Map of the roads and the landslide inventory distribution in the study area.

The default model identified NDVI and distance from streams as the second and third
most important factors and plan curvature and distance from lineaments as the second and
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third least important factors. Instead, the Bayesian method showed that STI and distance
from streams are the second and third most important factors. This model also showed
that distance from lineaments and TWI are the second and third least important factors
in the study area, respectively. Finally, the meta-learning approach calculated altitude
and distance from streams as the second and third most important factors. This approach
agreed with the default model that the plan curvature and distance from lineaments are
the second and third least important factors regarding the predictability of landslides in
Cameron Highlands. While the three models agree on some factors as the most or least
important in the study area, further analyses should be carried out if computing factor
importance is the research focus rather than the accuracy of landslide predictions

However, the same meta-learning approach can be used to optimise other machine
learning models, especially those require extensive computing power, e.g., neural networks
and ensemble models. The meta-learning optimisation can also be a promising solution
when many models need to be tested as it provides faster optimisation to those models.

Meta-learning also can be used with other optimisation methods other than Bayesian
techniques such as evolutionary approaches [40]. As those are already being tested for
landslide prediction, it could be worth exploring meta-learning with such optimisation
techniques. Since the application of meta-learning as an approach of optimisation is very
rare in landslide prediction studies, advances in these techniques can improve the accuracy
and efficiency of landslide prediction models which ultimately can lead to better landslide
risk management.

This research confirms that optimising the RF hyperparameters can lead to more
accurate prediction of landslides. The use of Bayesian optimisation with RF yielded
more accurate predictions by ~7% (five-fold cross-validation accuracy), ~0.125 F1-score,
and ~0.103 AUROC compared to the model with default parameters. The meta-learning
approach achieved predictions better than the default model by ~6.8% (five-fold cross-
validation accuracy), ~0.105 F1-score, and ~0.059 AUROC. The critical parameters of
RF investigated and optimised in this research have controls to model bias, variance,
and overfitting issues, which explains why the optimised parameters yield more ac-
curate predictions than the default parameters. The results highlight the importance
of integrating optimisation techniques such as Bayesian and meta-learning to RF and
possibly other machine learning models to achieve significant improvements in prepar-
ing landslide susceptibility maps. Other related studies also reported improvements to
the RF [39] and deep learning methods [33] with Bayesian optimisation for landslide
susceptibility assessment.

Although the Bayesian optimization and meta-learning optimization techniques were
relatively close to each other, BO-ML was successfully able to identify the largest number
of landslides in the higher susceptibility classes as per density graphs in Figure 6b, which
is a promising result. From another side, the Bayesian optimization effectively tunes a
few hyper-parameters; however, its productivity reduces a lot when the search dimension
grows in large amounts, leading to a situation where it is at the same level as random
search [88]. In addition, it can suffer from a high computational cost if the number of
evaluations is high.

Nevertheless, the proposed optimisation approach starts with promising hyperpa-
rameter configurations that performed well on encountered datasets. This approach saves
time and computing resources as it runs at fewer iterations compared to other methods.
As the meta-learning optimisation technique is very limited in the landslide prediction,
advances in these techniques can boost the accuracy and efficiency of landslide modeling,
especially when the data are large and more complex that needs a massive processing
time. It can improve model generalization and produce a more accurate estimation of
contributing factors. In addition, in previous studies, the prior knowledge extracted from
those techniques was not used to optimise prediction models, but rather optimal values
were found by searching large hyperparameter search spaces. It is therefore simple to
execute and can be quickly utilized to off-the-shelf hyperparameter optimizers.
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As a guideline for employing meta-learning in landslide prediction domain, the
selected set of meta-features represents a first footstep in the direction of the meta-learner
design, which is capable of suggesting the proper bias for base-learning in landslide
studies. To generate such a meta-learning scheme, we recommend the researchers further
evaluate the chosen meta-features’ applicability in characterizing diverse learning domains,
including groups of related features that need to be considered.

As a limitation of the study, as with any machine learning algorithm, the success of a
meta-learning technique significantly relies on the quality of the meta-data employed for
learning. To characterize meta-data, a compilation of many meta-features, discriminating
among various learning tasks is to be identified/considered. Additionally, careful analysis
and usage are needed as complex models need more time to adapt; therefore, it could be
challenging to assess their final operation in the early stages of learning.

5. Conclusions

A large number of previous studies have optimised the spatial prediction of landslides.
The knowledge extracted in such studies may play a significant role in studies in areas with
similar topographic and geological characteristics. However, this prior knowledge was not
used to optimise prediction models, but rather optimal values were found by searching
large hyperparameter search spaces. This paper introduced the use of meta-learning to
optimise spatial prediction, improving the optimisation process of spatial prediction models
of landslides. The approach was based on a set of spatial and statistical meta-features for
input data, which can be easily calculated for a given datasets. In this way, the optimisation
algorithms can be directed towards the optimal values of the hyperparameters faster and
as a result yielding improved optimisation.

To test the proposed approach, RF was used as a benchmark prediction model for its
generalisation ability and based on previous studies as it often achieved accurate predic-
tions. The meta-learning optimisation was used to find best values of critical parameters
of the model can be compared to a benchmark method (Bayesian optimisation) and the
model with default values of parameters commonly used in machine learning tools such
as Python’s scikit-learn library. Experiments on comparing RF with default parameters to a
random model suggested the need to optimise critical parameters systematically. Based on
the AUROC metric, optimised models (Bayesian or meta-learning) produced more accurate
results than the model with the default parameters.

Despite the successful landslide prediction results obtained in this research with
Bayesian and meta-learning optimisation techniques, further research is required to
identify and implement more specific meta-features to landslides and spatial data,
i.e., spatial distribution, spatiotemporal data clusters, landslide types, and landslide
geometry. The more meta-features, the more accurate estimation of data similarity can
be obtained which will result in better identification of suboptimal hyperparameter
values. As a result, the prediction models can be more accurately and reliably be
optimised and used on new datasets.

Overall, advancing our understanding of hyperparameter optimisation of a landslide
prediction model can have a positive impact on decision making for planning and man-
aging landslide-prone areas. By implementing a proper meta-learning scheme, further
generalized state-of-the-art models can be developed for the landslide modelings. Al-
though, in this research, we conducted a comparative study on a relatively small region,
implementing the model on even larger configuration spaces can be considered to assess
the model’s exportability. Furthermore, the study could be simulated in other topograph-
ical set-ups with a variety of factors and different kinds of landslides (e.g., debris flow,
rockfall, deep-seated landslides, etc.).
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LiDAR light detection and ranging
RADAR radio detection and ranging
CNN convolutional neural networks
RNN recurrent neural networks
BO bayesian optimization
BO-ML bayesian optimization via meta-learning
ANN artificial neural network
SVM support vector machine
RF random forest
MFO moth flame optimiser
DEM digital elevation model
MCC multiscale curvature classification
IDW inverse distance weighted
NDVI normalised difference vegetation index
RI ruggedness index
RMSD root-mean-square-deviation
RTP relative topographic position
TWI topographic wetness index
STI sediment transport index
AOI area of interest
AUROC receiving operating characteristic curves
OOB out-of-bag
GP gaussian process
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Appendix B

Table A1. List of the most critical hyperparameters of RF.

Parameter Explanation Necessity of Tuning

Number of estimators
or trees Number of trees to create the RF.

At higher numbers of trees, the RF is relatively stable, but at
one point it can still overfit and time complexity of the

model can increase. This should be tuned.

Criterion
Function to measure split quality. Gini
impurity and information gain are two

common functions.

Both Gini and information gain impurity metrics work well.
However, the latter is more computationally heavy due to

the log in the Entropy equation.

Maximum depth
Tree’s maximum depth. The longest path

between root and leaf node or max
number of splits possible within each tree

Since this parameter is used to control over-fitting as higher
depth allows the model to learn very detailed relationships

to a particular sample, it should be tuned.

Maximum features
Number of features to consider when
looking for best splitting. These are

randomly selected.

The square root of the total number of features is suggested
as a thumb-rule. The lower is greater for the reduction of

variance, however, the bias will increase. Higher values can
lead to over-fitting. It should, therefore, be tuned.
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Table A1. Cont.

Parameter Explanation Necessity of Tuning

Minimum samples leaf Defines the minimum samples required
in a terminal node or leaf.

This can smooth the model. A smaller leaf makes the model
more prone to capturing noise in train data and should,

therefore, be tuned.

Minimum samples
split

Specifies the minimum number of
samples required for splitting in a node.

To control over-fitting. Higher values prevent a model from
learning relationships that could be very specific to the

particular sample selected for a tree. Too high values can
also contribute to underfitting.

Appendix C

Table A2. List of implemented meta-features.

Meta Features Equation Explanation Rationale
Basic features (simple features related to dataset attributes)

Nr instances n The number of samples in the dataset.
Speed, Scalability

Log Nr instances log n Natural log of the number of samples.

Nr features p The number of causative factors in the dataset. Curse of
dimensionalityLog Nr features log p Natural log of the number of causative factors.

Nr numeric features ∑ pnum. The number of causative factors that are numeric. Complexity,
imbalanceNr categorical features ∑ pcat. The number of causative factors that are categorical.

Ratio numerical/nominal ∑ pnum.
∑ pcat.

The ratio between numerical to categorical factors. Complexity,
imbalanceRatio nominal/numerical ∑ pcat.

∑ pnum.
The ratio between the categorical to numerical factors.

Dataset ratio p
n

The ratio between the numbers of factors to the
number of samples.

Curse of
dimensionality

Log dataset ratio log p
n

Natural log of the dataset ratio (Number of causative
factors divided by number of samples).

Inverse dataset ratio n
p

The ratio between the numbers of samples to the
number of factors.

Log inverse dataset ratio log n
p

Natural log of the inverse dataset ratio (Number of
samples divided by number of causative factors).

Num. symbols c The number of unique labels in categorical factors. Complexity,
imbalance

Statistical features (features describe statistical properties of the dataset)

Kurtosis E(X−µX)
4

σ4
X

List of kurtosis values for the causative factors. It
identifies as whether the tails of data distribution of a

given X values contain extreme values. The
distributions with large kurtosis values are ones where

there is the possibility of extreme values, and vice
versa. Feature normality

Kurtosis (min) min(Kurtosis) Minimum kurtosis.

Kurtosis (max) max(Kurtosis) Maximum kurtosis.

Kurtosis (mean) Kurtosis/p Mean kurtosis.

Kurtosis (std.) σ(Kurtosis) Standard deviation kurtosis.
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Table A2. Cont.

Meta Features Equation Explanation Rationale
Statistical features (features describe statistical properties of the dataset)

Skewness E(X−µX)
3

σ3
X

List of skewness values for the causative factors. It
defines the measure of the symmetry of data

distribution for a given X value. When X is far below
its mean (X− µx)

3 is a big negative number, and
when X is far above its mean

(X− µx)
3 is a big positive number. Feature normality

Skewness (min) min(Skewness) Minimum skewness.

Skewness (max) max(Skewness) Maximum skewness.

Skewness (mean) Skewness/p Mean skewness.

Skewness (std.) σ(Skewness) Standard deviation skewness.

Minimums min Minimum values of the causative factors.

Locality, Data
distribution

Maximums max Maximum values of the causative factors.

Means µ Mean values of the causative factors.

Stds σ Standard deviation values of the causative factors.
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