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Abstract: We conducted a systematic review and inventory of recent research achievements related
to spaceborne and aerial Earth Observation (EO) data-driven monitoring in support of soil-related
strategic goals for a three-year period (2019–2021). Scaling, resolution, data characteristics, and
modelling approaches were summarized, after reviewing 46 peer-reviewed articles in international
journals. Inherent limitations associated with an EO-based soil mapping approach that hinder its
wider adoption were recognized and divided into four categories: (i) area covered and data to be
shared; (ii) thresholds for bare soil detection; (iii) soil surface conditions; and (iv) infrastructure
capabilities. Accordingly, we tried to redefine the meaning of what is expected in the next years
for EO data-driven topsoil monitoring by performing a thorough analysis driven by the upcoming
technological waves. The review concludes that the best practices for the advancement of an EO
data-driven soil mapping include: (i) a further leverage of recent artificial intelligence techniques
to achieve the desired representativeness and reliability; (ii) a continued effort to share harmonized
labelled datasets; (iii) data fusion with in situ sensing systems; (iv) a continued effort to overcome
the current limitations in terms of sensor resolution and processing limitations of this wealth of EO
data; and (v) political and administrative issues (e.g., funding, sustainability). This paper may help
to pave the way for further interdisciplinary research and multi-actor coordination activities and to
generate EO-based benefits for policy and economy.

Keywords: deep learning; soil organic carbon; earth observation; spectral signatures; carbon farming;
hyperspectral; common agricultural policy; food security

1. Introduction

The interest in soils has recently increased since there pressures are being faced due to
intensive agriculture, inappropriate land management practices (e.g., overuse of fertilizers),
and the amplifying presence of climate change [1]. For instance, new policy regulations,
such as the reform of the European Common Agricultural Policy (CAP) (see Abbreviations
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for a complete list of the abbreviations used in this study) and the Sustainable Develop-
ment Goals (SDGs), have brought together the relevant stakeholders (e.g., farmers, policy
makers, etc.) ahead of a great challenge to tackle soil health issues, e.g., to enhance Soil
Organic Carbon (SOC), improve soil fertility, and address other issues. Despite this need
for unbiased quantified information at high spatial resolution over a large geographi-
cal coverage area, the existing digital soil maps consist of rather coarse grid cells (i.e.,
500 m × 500 m) and are based on legacy data that are not up to date.

Spaceborne and aerial Earth Observation (EO) means provide critical data sources
for monitoring the soil ecosystem. EO has the potential to further support the needs of
providing robust and widely affordable information services [2,3]. Thus, a radically new
EO-based monitoring and service delivery framework promises to make it easier to identify
potential critical areas, monitor trends, highlight policy successes or failures, and optimize
gain from investments for various economic activities. Subsequently, an EO data-driven
approach should be prioritized if progress towards the soil policy and economic strategic
goals is to be accelerated.

Nowadays, EO is closely intertwined with the fourth industrial revolution since
it is being driven by emerging technologies, such as artificial intelligence (AI), cloud
computing, and more [4]. Undoubtedly, the forthcoming increase in low altitude systems
(e.g., unmanned aerial systems (UAS)), along with space-based missions (from both space
agencies and commercial providers) covering different spectral domains and obtaining
data with higher spatial and temporal resolution, will result in a massive increase in EO
big data. All of this and much more will usher in a new era in soil monitoring, redefining
the meaning of what the future holds for EO data-driven soil monitoring and mapping.

The scope of this paper is twofold. First, we aim to complement previous efforts by
reviewing this broad topic to provide a comprehensive updated review of what EO has to of-
fer efficient topsoil monitoring and to highlight its current limitations.
Then, we redefine the meaning of what is expected in the coming years by the emer-
gence of new technological possibilities in support of informed decision making related to
soil monitoring. For the purpose of this review, we neither focus on specific comparisons
among the various methods or research findings nor do we recommend any single best way
of using specific EO techniques for soil property estimation. Rather, we redirect the readers
to more specific reviews or papers when necessary by citing the major references—and
preferably, the most recent ones (2019 and onwards). We desire to further boost the devel-
opment of scientific applications and raise awareness amongst key stakeholders (scientists,
policy makers, farmers, etc.).

This paper, after a short presentation of the methodological framework, is divided
into three main sections. The first section focuses on specific requirements in support
of policy targets and market needs by presenting the main soil properties that could be
estimated by EO. The second section provides an outline of the existing EO techniques that
are relevant for topsoil monitoring and demonstrates the plethora of capabilities offered by
AI to retrieve them accurately. Last, we provide a synthesis of the emerging opportunities
that should strengthen the role of EO in providing robust services for the applications that
were mentioned in the previous sections.

2. Methodological Framework

Essential information is urgently needed for the implementation of soil management
systems in support of policy making and business activities (Where do we want to be?,
Section 2.1). However, before we go on, we should present the methodology used through-
out this work, allowing us to be in a position where we can seek evidence-based answers
to understand the current landscape (Where are we now?, Section 2.2), and afterward, to
draft meaningful insights regarding the provision of services able to support informed soil
management decision making in the coming years (How can we get there?, Section 2.3).
The methodology followed to develop this review, relied on three main steps (Figure 1).
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Figure 1. The methodological framework to answer the main key questions regarding the review of various components of
EO data-driven soil monitoring.

2.1. Defining Policy Requirements and Market Needs

Policy makers have increasingly recognized the unprecedented pressure placed on the
soil ecosystem and the role played by various economic sectors. Using the findings of the
analysis by Keesstra et al. [5] and insights provided in the form of soil-related strategies,
we extracted the priorities that were used to facilitate decisions in relation to the imple-
mentation of soil targets. Given that agriculture occupies an important percentage of the
global land surface and has a strong interlinkage with the soil ecosystem, its contribution
to the maintenance of soil resources is substantial. In that regard, this section summarizes
the main international policies and treaties (the SDGs, the European CAP, Land Degra-
dation Neutrality, and others) in which careful monitoring of specific soil properties is
considered mandatory. Noteworthy here, it is also the vision of the European Commission
and the Australian Government to set up and implement carbon farming schemes on
their continents.

2.2. Constructing a Thorough View of the Current State of EO Approaches

To construct a thorough view of the current state-of-the-art of EO-based approaches
to topsoil monitoring, a systematic literature review from 2019 to 2021 was conducted
using Elsevier’s Scopus and the Web of Science citation databases. This time period was
selected since it follows up on the recent reviews of Chabrillat et al. [6] and Angelopoulou
et al. [7]; hence, the literature published before the reviews in 2019 were not considered in
the current study. We based our analysis on the preferred reporting items for systematic
reviews and meta-analyses methodology [8]. Some earlier articles that were deemed
particularly relevant were also included. We carried out a keyword-based search, and we
only focused on journal papers by applying the query below:

[“Earth observation” OR “Remote Sensing”] AND [“Soil Property”]

The keyword “Soil Property” refers to those properties that resulted from an analysis
of the needs related to policy and market requirements for soil information. We found
588 potentially suitable studies, after removing the duplicates from the initial 2053 studies.
We reached 105 potential studies after screening the relevance of the abstracts of each
study. The full text of each study was then assessed for eligibility, and 55 studies were
excluded that did not meet the criteria of this review (e.g., regression analysis, spectral
imagery data, etc.). Finally, we selected 46 manuscripts written in the English language
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(see Appendix A). It should be mentioned that we focused on studies in the literature that
directly applied AI algorithms either to spectral imagery or to reflectance composites that
were built by merging large time series over agricultural areas, which is a topic that only
recently emerged. We then executed an in-depth analysis of the selected papers, looking
into the current state-of-the-art to identify (i) the dominant sources and types of EO data,
(ii) the soil properties that were predicted, and (iii) the current limitations that hindered
prediction performance and affected the quality of the soil data.

To complete the review with relevant grey literature, qualifying documents published
by international agencies were considered. In this context, the conclusions of the 21st World
Congress of Soil Science (held in 2018) summarized valuable research activities aimed
at reporting innovative EO products or methods in response to authoritative end-users’
requirements, ranging from policy makers to individual farmers. In addition, the European
Space Agency (ESA) organized a user consultation workshop (2019) to promote the use and
uptake of EO among policy makers, informing them of the concrete benefits stemming from
the use of EO in soil mapping. Last, the WORLDSOILS User Requirements Consolidation
Workshop (held in 2021) reflected valuable insights towards the implementation of a SOC
monitoring system based on EO satellite data, with the active involvement of stakeholders
from the policy and user domain. Considering the output of these events and building
on the authors’ rich scientific background and the preliminary state-of-the-art analysis
described in the above paragraphs, we shaped a valuable pool of knowledge that will
guide our research to provide an answer to the question “Where are we now?”

2.3. Shaping the Future of EO Data-Driven Soil Modeling

The domain of EO data-driven soil monitoring in terms of data and services is currently
undergoing a significant shift. EO is being driven by emerging technologies, such as Deep
Learning (DL), Blockchain, and Citizen Science, as well as by the ever-increasing availability
and accessibility of forthcoming enhanced EO data in terms of spectral and spatial resolution
from all domains (UAS to satellites). We focused on the emergence of new possibilities
around these tech buzzwords. In particular, we utilized the following query:

[“Soil”] AND [“Blockchain” OR “Citizen Science”]

We focused on articles from 2019 to 2021 to include the most up-to-date trends in new
technologies. Previous reviews and surveys [9] were further examined for related works.
Considering the DL approaches, we reviewed the most recent architectures for evaluating
whether they were “fit-for-purpose” in EO data-driven soil mapping activities.

3. Understanding the Pathway from Data to Wisdom for Soil-Related Targets

This chapter lays out the analysis of a wealth of research findings collected throughout
an extensive review procedure of current and forthcoming Information and Communica-
tions Technologies (ICT) related to EO-driven topsoil monitoring and potential improve-
ments. Additionally, we focused on the main international policies, treaties, and business
sectors in which soil monitoring is considered mandatory.

A set of soil spatial indicators is required to help decision makers and potential geospa-
tial data users realize the value of these products as baseline information for downstream
institutional and commercial applications and services (e.g., reporting, soil management
systems, agricultural applications). The aforementioned activities are targeted at different
stakeholder groups. First, these users, such as the national mapping agencies or those
involved in the agricultural sector, constitute a group of non-traditional stakeholders who
are adopting EO as both data consumers and information producers (EO prosumers).
Moreover, we identified two additional broad stakeholder groups with specific interest in
and influence on the pathway from data to wisdom towards reliable EO-based soil monitor-
ing applications. Thus, learning from the current technological and scientific innovations,
the various EO coordinators and data providers could act as key stakeholders to broaden
the use of EO and ICT to address issues related to scientific, institutional, regulatory, and
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technological challenges (Figure 2). With all of this in mind, we proceed with presenting
the pathway from data to wisdom for soil-related targets, followed by a discussion of each
action under the three main dimensions presented therein.
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who are adopting EO as both data consumers and information producers—have a key role to play in generating knowledge
using EO to monitor and drive progress on soil mapping and reporting (inspired from Kavvada et al. [10]).

3.1. Policy Requirements and Market Needs—Where Do We Want to Be?

Different policy frameworks exist around the world that either explicitly mention
soil functions (e.g., plant growth) or implicitly refer to soil protection closely related to
specific properties. Here, we review the main policies for which topsoil property moni-
toring is required, starting from international treaties and focusing on European policies.
Moreover, moving forward from policy to finance, the huge amount of EO data presents
an enormous opportunity for boosting the innovation and competitiveness of traditional
economic sectors (e.g., agriculture), as well as for boosting emerging industries, such
as carbon offset schemes, in response to key economic and environmental challenges.
This aspect is also addressed in the current section.

3.1.1. Understanding the Governance Framework to Implement and Monitor Soil-
Related Policies

On a global scale, the most important contribution of EO is driven by the 2030 SDGs’
agenda. Although the agenda is anchored by 17 SDGs and their 169 associated targets,
surprisingly there is not even a single SDG dedicated solely to soil. However, nearly all
land-related SDGs directly or indirectly have an impact on the soil ecosystem. This was
demonstrated by Bouma and Montanarella [11] through six transdisciplinary case studies.
They highlighted the cross-sectoral nature of soil among different ecosystems by providing
examples of its services that contribute to address six SDGs (2, 3, 6, 12, 13, and 15). Similarly,
a framework linking SDGs that critically rely on healthy soils was also presented by the
recent review of Keesstra et al. [5]. Thus, an operational sequence is defined starting with
the SDGs, next considering relevant ecosystem services and the contributions that soils
can make to enhance those services. Despite these, the need to monitor pH, soil structure,
and soil organic carbon, as well as soil pollutants, was highlighted among others to meet
the ambitious targets related to environment, biodiversity, and climate. In addition, the
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indicator of SOC was also included in good practice guidelines of the Intergovernmental
Panel on Climate Change (IPCC) as one of the five carbon pools for monitoring and
reporting within the framework of Greenhouse Gas (GHG) inventories.

At the European Union level, existing policies relating to soil are still largely frag-
mented, and thus, the definition of policy priorities or parameters for soil protection is
difficult to extract [12]. Mainly, the policies and direct measures of soil protection refer to
agricultural land, which is threatened by the intensification of agriculture. In that regard,
the Common Monitoring and Evaluation Programme (CMEF) of the EU Common Agricul-
tural Policy (CAP) contains an impact indicator on SOC in arable land (C41) that measures
policy interventions over the longer term. On the other hand, soil protection outcomes are
mostly derived from delivering environmental targets that are not mainly soil focused, such
as reducing contamination, offsetting GHG emissions, and avoiding other environmental
threats. In this context, soil erosion is also an indicator that contributes to the assessment of
CAP performance; however, because it is mainly a model-driven indicator, it is out of the
scope of this review. In addition, Panagos et al. [13] recently recommended the use of soil
nutrient data sets both as individual indicators (phosphorus, nitrogen, and potassium) and
as a composite indicator of soil fertility.

The European Commission aims to solve some of the greatest global challenges,
such as adapting to climate change, protecting our oceans, and living in greener cities.
Among the main priorities are soil health and food security, which can be achieved by
leveraging novel monitoring techniques, including proximal and Remote Sensing (RS).
An example of such priorities is the proposed mission of Caring for Soils, which aims by
2030 to have at least 75% healthy soil in each EU Member State or for each EU Member
State to show a significant soil improvement towards meeting accepted thresholds of
indicators. The second objective of this mission is to conserve and increase carbon stocks.
More recently, the European Green Deal has adopted several policies for which data on
agricultural soils will be required, such as the Farm-to-Fork strategy, the EU Biodiversity
strategy, and the Zero Pollution Action plan (Table 1).

Table 1. The policy frameworks relevant to soil and information needs that can be supported by
EO data.

Policy Framework Information Needs EO Spatial Explicit
Indicators

United Nations—Sustainable
Development Goals

(SDGs)

Soil fertility and the role of
soils for food security; soil

and public health; soil water
interdependencies; impact of
climate change on soils and
opportunities for mitigation;
functions of soil biodiversity;
implementation of effective

soil conservation

pH, soil texture, SOC

United Nations—Framework
Convention on Climate

Change—Intergovernmental
Panel on Climate Change

(UNFCC-IPCC)

Mitigation value (carbon
stores, sequestration rate,

avoided loss, and
rehabilitation potential);

specific inputs for tier one
reporting

SOC

Common Monitoring and
Evaluation Framework

(CMEF)

Maintenance of soil organic
matter (SOM) level SOC

Common Agricultural Policy
(CAP) Maintenance of SOM level SOC
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Table 1. Cont.

Policy Framework Information Needs EO Spatial Explicit
Indicators

Mission area Soil Health and
Food Maintenance of SOM level SOC, pH

Green Deal

Soil-related information for
Farm-to-Fork and the EU

Biodiversity strategies; the
Zero Pollution Action plan

pH, soil texture, SOC

3.1.2. Towards an Economic Perspective for the Soil Ecosystem

Reliable and accurate information derived from EO data and services is essential
for boosting the economic growth towards a transition to net zero agricultural activities.
More specifically, EO data and services are restricted not only to supporting the informed
implementation of numerous soil-related policies but also to protecting soil by encouraging
farmers to take extra steps to improve soil management practices. Subsequently, EO data
and services can further contribute to proposing and designing management practices
for improving the status of agricultural soils and stopping land degradation through the
application of variable rate fertilization [14,15].

The CAP for the period 2021–2027 sets higher ambitions regarding environment and
climate through a new green architecture adopted by including eco-schemes for providing
funding and a farm advisory system in support of rural development. SOC will play an
important role as an effect-based indicator for designing, monitoring, and operating these
elements. Thus, the need for monitoring is also prioritized by commercial actors. In this
context, the framing of “carbon farming” has been recently introduced in agriculture as
a financial opportunity [16]. However, international carbon markets have not resulted in
financial returns sufficiently large to motivate the full potential of land sector changes,
offering an opportunity for progress. Last but not least, farm advisors should be able to
translate EO information into services, adapt those services to specific local circumstances,
and design plans offering a prescription for precision farming [17].

3.2. Overview of EO Approaches for Soil Mapping Products—Where Are We Now?

Here we present how and which soil properties can be estimated from various space-
borne and aerial EO means by analyzing their data resolution, modelling approaches, and
available datasets and highlighting the limitations that have emerged up to now.

3.2.1. Estimated Soil Variables

The majority of recent mapping approaches provide rasterized soil indicators that
are essential for accurate modelling of ecosystem processes, such as carbon exchange [18],
specialization towards informed arable farming [19], and for long-term ecological monitor-
ing [20]. Figure 3 illustrates the most important soil properties considered in this study.
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In that regard, the estimation of topsoil SOC (or soil organic matter (SOM)) is promi-
nent in 33 (including studies dealing with SOM) of the 46 total studies (72%).
Despite the fact that SOC stock is at the core of policy’s requirements, its estimation
is not often reported in the EO data-driven literature [21] due to the need for inclusion of
ancillary data such as bulk density, coarse fragment content, and vertical SOC gradient.
Moreover, soil texture is also generally studied (17% of the total of 46 studies) for mapping
purposes and because of its importance in soil fertility and nitrogen distribution. In gen-
eral, silt resulted in very low predictive performance, even with the use of hyperspectral
data [22]. Recently, because of the emerging use of hyperspectral imagery data, new stud-
ies are dealing with detection and quantification of heavy metals, such as lead [23,24],
arsenic [25], copper [26], and chromium [27]. It is important to notice that soil mineralogy
properties did not appear among the listed studies, despite soil mineralogy’s great impact
on all soil functions, and on carbon as well. Here it should be highlighted, that the existing
soil analytical data vary in terms of analytical protocol and units, which does not facilitate
comparisons between countries and individual studies.

To gain valuable insights related to the scale and spectral resolution that are closely
connected in EO data-driven soil mapping, a statistical analysis was performed (Figure 4).
Only the soil properties across any spectral resolution or spatial scale that were explicitly
reported in three papers are presented for the drawing of proper conclusions. Regarding
the connection between performance and scale of pilot cases (Figure 4a), we observed a
consistent higher prediction performance for almost all soil properties in studies at the field
and regional scale, compared with those at the continent or country level. Particularly, only
a few examples developed widely applicable models ranging from country [28] to continen-
tal scale [29,30]. Thus, their reported errors may be considered significant compared with
cases that were implemented at smaller scales and hence worked with lower variances.
In one of the more extensive comparisons, in terms of models, Tziolas et al. [30] showed
that more advanced modelling techniques, such as convolutional neural networks (CNN),
yielded better outcomes compared with simpler approaches for larger scale applications.
This could explain why the R2 of clay prediction at continental scale was higher than
those at smaller scales (Figure 4a), in addition to the impact of the availability of local data
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that boosts R2 for local/regional scale studies. Our review shows that hyperspectral data
ranked first when predicting organic carbon and promoting the development of modelling
approaches for unexplored soil properties, such as chromium (Figure 4b). On the other
hand, although soil texture studies (e.g., clay content) have been fully developed based on
hyperspectral imagery in the past 10 years, this review shows that in the period 2019–2021,
most clay mapping published studies focused on exploring the new potential of multi-
spectral time series data. This can be explained because published studies, within the last
three years, are associated with the newer availability of Landsat/Sentinel-2 data, and we
should consider that there are not yet published studies from new Precursore Iperspettrale
della Missione Applicativa (PRISMA) spaceborne hyperspectral imagery (data available
since May 2020).
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The findings above indicate that the current works focused on a well-studied set of
bio-chemical parameters; however, the regression algorithms can be implemented in a way
that allows their future extension to soil indices, such as soil salinity. Recent studies have
provided promising results using Landsat data in Iran [31], as well as Sentinel-2 data in
China [32], albeit they are based on digital soil mapping techniques with the modelling of
environmental covariates, and hence, they were not included in the above analysis.

3.2.2. Employment of AI Algorithms

Extensive research in recent years has been conducted regarding the approaches
implemented to estimate soil properties from remotely sensed reflectance spectra using
AI techniques. In this context, the soil spatial explicit indicators are generally produced
through a non-linear combination of the features generated by the EO data and large
ground-based soil information, having always a lower performance compared with lab-
oratory spectroscopic analyses, owing to the finer spectral resolution and usually wider
spectral range of the latter.

Excluding the partial least-squares (PLS) multivariate regression algorithm commonly
used as a baseline status, random forest (RF) currently is certainly the most popular AI
algorithm that is used for soil properties estimation and mapping [33]. However, RF is not
the only AI technique available for cropland topsoil mapping. Our findings agree with the
recent review by Padarian et al. [34], which found that in many studies, neural networks



Remote Sens. 2021, 13, 4439 10 of 29

and gradient boosting are recognized as being efficient regression approaches [35], while a
decreasing trend in the utilization of support vector machines (SVM) was observed.

During recent years, DL has been at the forefront of many important advances, and it
is also recognized as a valuable tool for EO-driven soil analysis. A change was made from
2015 onward, where Veres et al. [36] applied for the first time structured and unstructured
DL architectures to soil property prediction. Subsequently, Liu et al. [37] evaluated a
pre-trained CNN from Land Use and Coverage Area Survey (LUCAS) dataset for soil clay
content mapping using hyperspectral imagery data. Recently, Tziolas et al. [30] investigated
soil clay content mapping by CNNs and highlighted emerging multi-input methods that
could improve regression for large scale mapping by leveraging information from the
temporal variation in topsoil and the combined use of multiple pre-processing techniques.
The evolution of the regression and processing algorithms in the period from 2019 to 2021
is presented in Figure 5, including several new AI approaches.
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gradient boosting, and C4.5 algorithms; while special linear regressions refer to stepwise multiple regression, RIDGE, and
LASSO algorithms.

Considering that advanced DL models could be very complex, researchers should
attempt to explain the output of these models. Therefore, a model’s interpretability is a
crucial factor that should be considered by developers. Interpretability is important for
debugging AI models and making informed decisions. In this review, only 20% of the
studies presented interpretability in their models or mentioned the importance of consid-
ering it. The need for interpreting and explaining data-driven models in soil monitoring
has also been highlighted by [38]. Safanelli et al. [39] indicated the variable importance
for the successful implementation of RF models. Similarly, Tziolas et al. [30], inspired by
the principles of explainable AI [40], examined the generated feature maps of the final
convolutional layer to visualize the top activated patterns that considered both optical
and radar data. In addition to model validation and cross validation, the models should
be tested on an independent dataset; however, only two studies reported performing an
external validation.
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3.2.3. The Temporal Dimension

The estimation of soil variables from EO sources is hindered by the need for bare soil
conditions for soil property prediction [41]. In that regard, the generation of multi-temporal
composites was one of the most common themes among the inventoried research since
it enabled us to significantly increase the total bare soil area across the different dates,
compared with one acquisition.

Therefore, we classified the selected studies into two main categories: (i) “single-
image” method, where a directly calibrated relationship between the measured spectral
signature and the variable of interest was developed; and (ii) “multi-temporal” methods
that took advantage of temporal information within the satellite time series to build a
composite reflectance or to leverage the multiple observations provided across a selected
spectral change detection. In this review, 46% of the 46 studies (n = 21) presented multi-
temporal approaches (Figure 6a), while the studies the remaining studies dealt with single
multispectral images or with hyperspectral data for which the airborne platforms did not
facilitate acquisition of time series.
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The need for construction of a single synthetic image from multiple observations was
addressed by many scientific groups that developed multi-temporal analysis methods.
In this context, the first approach was a processing paradigm—namely, the Geospatial Soil
Sensing System (GEOS3), which built a soil image on the multi-petabyte catalog of satellite
imagery with planetary-scale cloud processing architecture of the Google Earth Engine [39].
The second example is the Soil Composite Mapping Processor (ScMAP) that delivered
exposed soil masks that were run on high-performance local computing clusters [42].

Leveraging the application of current multispectral EO data for mapping cropland
soils several applications have been recorded on the regional [43–45], national [46], and con-
tinental scale [30]. A significant number of these studies were implemented in Brazil [47],
India [48], Indonesia [49], and China [50] since detailed information about soils is abundant
in those countries. This data were acquired to address the challenges generated by the
cropland expansion there during recent decades.

A significant number of these studies (n = 11) used the Landsat archive, highlight-
ing that the continual operation and update of this multispectral information have al-
lowed analyses of the updated data during recent decades, such as the recent paper by
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Sorenson et al. [28], where they used a decadal time series of Landsat 5 in Canada.
Even though recent sensors such as Sentinel-2 lack the period-of-record necessary for
generating a bare soil composite at continental scale, a significant number of studies (65%)
leverage its high temporal resolution compared with the Landsat-8 satellite (Figure 6b).
Sentinel-2 and Landsat time series images are also combined for mapping soil properties
in agricultural croplands [51].

3.2.4. The Spectral Dimension

In terms of EO sensors, passive sensors in the visible-near and short-wave infrared
(VNIR–SWIR, 400–2500 nm) spectra are the most relevant, ranging from simple RGB
cameras to hyperspectral sensors. The two most common satellite sensors used in soil
mapping applications are National Aeronautics and Space Administration (NASA) Landsat
archive and Sentinel-2 from the European Copernicus Space component (23% of the studies
for Landsat and 33% for Sentinel). It is noteworthy, that recent high spatial resolution
sensors (<3 m), such as Planet Imagery [52], are very important contributors to SOC
estimation, while their contribution is low for clay estimation [53]. Žížala et al. [54]
also indicated that very high-resolution spatial sensors mounted on UAS (<1 m) present
moderate accuracy of prediction for organic carbon estimation. Other recent studies show
that a good prediction performance for organic carbon estimation can be obtained under
outdoor conditions with UAS using the VNIR range and machine learning models [55].
Thus, UAS technologies have been recognized as highly valuable tools for enhancing the
spatial coverage and addressing the challenges of data acquisition of EO for croplands
soil monitoring [56], especially if they are simultaneously characterized by high spectral
resolution. A short description with appropriate references to the existing studies in the
VNIR domain for organic carbon estimation may be also found in Nayak et al. [57].

As a part of the worldwide space component, hyperspectral sensors are the latest
addition to the global network [58]. In the increasingly relevant field of high spectral reso-
lution optical data, Chabrillat et al. [6] provided a summary of how particle size influences
the scattering effect. The authors also reiterated recent findings showing that narrowband
spectral data provided a more accurate estimation of soil properties. Reviewing the re-
cent studies, we only found that small size areas for pilot cases were opportunistically
monitored due to the availability of detailed hyperspectral imagery data and soil records.
For example, Tziolas et al. [59] and Ward et al. [60] developed bottom-up approaches by
leveraging existing soil spectral datasets and hyperspectral imagery data to predict organic
carbon in small-scale studies. Similarly, Hong et al. [61,62] used feature selection techniques
to successfully quantify the SOC content within a pixel based on hyperspectral imagery in
Southeast Iowa, United States. In the same direction, Meng et al. [63] selected Gaofen-5
satellite hyperspectral image to explore an applicable and accurate denoising method that
can effectively improve the prediction accuracy of SOM content. These findings are impor-
tant in the context of current and upcoming spaceborne imaging spectroscopy missions,
such as the ESA’s planned Copernicus Hyperspectral Imaging Mission (CHIME), NASA’s
planned Surface Biology and Geology mission (SBG), the upcoming German Environmental
Mapping and Analysis Program (EnMAP) satellite to be launched in 2022, and the present
hyperspectral sensors in orbit, such as the Italian PRISMA satellite [64] or the German
DESIS satellite on the International Space Station [65], which could significantly improve
estimations of soil variables [66].

Microwave (1 mm to 1 m) RS has also been used to effectively monitor soil moisture
and roughness. Many multi-temporal approaches have recently been applied [50,67,68]
using synthetic aperture radar-derived products to infer disturbance to soil reflectance due
to the presence of moisture. However, given the local nature of disturbances, many of these
studies provide site-specific information. On the other hand, Light Detection and Ranging
(LiDAR) has only been utilized to generate more detailed topographic covariates limited to
field scale, despite its tremendous advantage when measuring soil surface roughness [69].
Therefore, it is essential to further investigate the upcoming spaceborne LiDAR sensors.
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In terms of ancillary data, several studies (14 out of the total 46 studies) pointed out that
other datasets are required for an accurate retrieval of soil properties. The use of low
resolution sensors (>100 m), such as Sentinel-3A, is also reported in the literature, attaining
low predictive performance [70]. An overview of the various EO means in the selected
research studies is illustrated in Figure 7.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 28 
 

 

 

Figure 7. Number of EO means mentioned in the articles studied in this review. Others include RGB and multispectral 

sensors mounted on the UAS. 

3.2.5. The Impact of Main Initiatives and Projects 

Nowadays, a series of conventional digital soil mapping approaches are used to pro-

duce coarse spatial resolution products and reflect the spatial variation of soil variables. 

For instance, SoilGrids 2.0 provides soil information (250 m) for the globe with quantified 

spatial uncertainty [71], while Hengl et al. [72] recently provided African soil properties 

and nutrients mapped at 30 m resolution. Similarly, Fathololoumi et al. [73] improved the 

digital soil maps in Iran by making use of multitemporal Landsat-8. Notable also is the 

initiative of the European Soil Observatory (EUSO), which aspires to offer a dynamic and 

inclusive platform aiming to support policymaking. Till now, soil maps at 500 m have 

been provided by EUSO, calculated by applying digital soil mapping techniques to the 

LUCAS-harmonized topsoil database for various properties [74]. Moreover, the Food and 

Agriculture Organization (FAO) of the United Nations launched a global map as a prac-

tical tool for illustrating how much and where carbon dioxide can be sequestered by soils. 

The last example, along with Australia’s soil classification [75], demonstrated the im-

portance of coordination between government agencies (provision of national soil site 

data) and research institutes and the role of data mining tools in promoting the operation-

alization of EO data in support of an effective implementation of soil-related require-

ments. Another global effort related to the soil ecosystem and its spectral domain is the 

Global Soil Laboratory Network (GLOSOLAN), established by the FAO. This last effort 

lays the baseline for a range of standards for soil measurement and data exchange among 

a collaborative network of multiple independent organizations. Their overarching objec-

tive is to provide reliable and comparable information that allow the generation of new 

harmonized soil data sets (including spectroscopy) among the countries by fostering a 

standardization process. 

Despite the shift from traditional geostatistical approaches to producing soil maps in 

the current projects and initiatives, the uptake of EO in support of activities to meet the 

requirements of a range of users has been slow and unevenly adopted by stakeholders. In 

light of the above, and recognizing the fundamental role of satellite EO in the monitoring 

and reporting of SOC, the European Space Agency launched the WORLDSOILS project 

(world-soils.com) aiming to develop, in close cooperation with authoritative end users, a 

pre-operational monitoring system for providing yearly estimations of organic carbon on 

a global scale. The WORLDSOILS action plan focuses on exploitation of space-based EO 

Figure 7. Number of EO means mentioned in the articles studied in this review. Others include RGB and multispectral
sensors mounted on the UAS.

3.2.5. The Impact of Main Initiatives and Projects

Nowadays, a series of conventional digital soil mapping approaches are used to
produce coarse spatial resolution products and reflect the spatial variation of soil variables.
For instance, SoilGrids 2.0 provides soil information (250 m) for the globe with quantified
spatial uncertainty [71], while Hengl et al. [72] recently provided African soil properties
and nutrients mapped at 30 m resolution. Similarly, Fathololoumi et al. [73] improved
the digital soil maps in Iran by making use of multitemporal Landsat-8. Notable also is
the initiative of the European Soil Observatory (EUSO), which aspires to offer a dynamic
and inclusive platform aiming to support policymaking. Till now, soil maps at 500 m
have been provided by EUSO, calculated by applying digital soil mapping techniques to
the LUCAS-harmonized topsoil database for various properties [74]. Moreover, the Food
and Agriculture Organization (FAO) of the United Nations launched a global map as a
practical tool for illustrating how much and where carbon dioxide can be sequestered
by soils. The last example, along with Australia’s soil classification [75], demonstrated
the importance of coordination between government agencies (provision of national soil
site data) and research institutes and the role of data mining tools in promoting the
operationalization of EO data in support of an effective implementation of soil-related
requirements. Another global effort related to the soil ecosystem and its spectral domain
is the Global Soil Laboratory Network (GLOSOLAN), established by the FAO. This last
effort lays the baseline for a range of standards for soil measurement and data exchange
among a collaborative network of multiple independent organizations. Their overarching
objective is to provide reliable and comparable information that allow the generation of
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new harmonized soil data sets (including spectroscopy) among the countries by fostering a
standardization process.

Despite the shift from traditional geostatistical approaches to producing soil maps in
the current projects and initiatives, the uptake of EO in support of activities to meet the
requirements of a range of users has been slow and unevenly adopted by stakeholders.
In light of the above, and recognizing the fundamental role of satellite EO in the monitoring
and reporting of SOC, the European Space Agency launched the WORLDSOILS project
(world-soils.com) aiming to develop, in close cooperation with authoritative end users,
a pre-operational monitoring system for providing yearly estimations of organic carbon
on a global scale. The WORLDSOILS action plan focuses on exploitation of space-based
EO data, large soil data archives, and novel modelling techniques that are mature from an
integration perspective, but for which there are still methodological and data availability
issues that require attention. The system is conceptualized to be modular to allow covering
additional soil properties in the future. Compared with previous efforts, WORLDSOILS has
deployed a tailored design (with and for users) to ensure that the global EO soil monitoring
system will effectively meet their requirements.

Definitely, the wealth of information and approaches developed during recent years
have brought us to a position from which we can develop more robust approaches for
reaching the desired level of data reliability (see Sections 3.2.1–3.2.4). However, only a few
approaches have been leveraged from the current initiatives, such as the bare soil selection
approach introduced by Rogge et al. [42] and further developed by Dvorakova et al. [76],
which have been explored within the framework of the WORLDSOILS project.

There is certainly accumulated knowledge in EO data-driven soil modelling in differ-
ent institutes, as well as in the soil data archives, both of which can be further integrated.
Thus, in this sub-section we try to figure out the geographical distribution of all con-
tributing organizations. The authors’ affiliations were taken into account. In the case
of a manuscript that included more than one author from the same organization, each
institution contributed only once to the final map (Figure 8).

A first glance, the map indicates that out of the 20 contributing countries, the major
contributions came from Asian countries (39.5%), while only a single study originated
from North Africa [77], whereas no contributions originated from countries in Oceania.
The aforementioned result is attributed mainly to the considerable contribution of Chinese
(22.4%) as well as Indonesian institutions (3.9%). Brazil seems to be a valuable player since
it contributed around 9.2% of the relevant studies. In addition, a worthy sign is that new
EO coordinators (India, Russia, and Greece with 2.6%) are working in this broad topic
compared with countries such as Israel (1.3%) and United States of America (6.6%) that have
a relatively advanced level spanning more than 20 years in this domain. Finally, another
remarkable observation is that a large number of articles were the result of international
collaboration. Furthermore, in Western Europe, the contributions of France (7.9%), Belgium
(6.6%), and Germany (9.2%) stood out.

Based on this solid knowledge of current strengths and weaknesses at a global level,
we can conclude that greater awareness and intensified collaboration should be prioritized
towards enhancing the EO maturity of each country.
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3.2.6. Current Limitations

After reviewing the 46 selected studies, we concluded that there are four main limita-
tions: (i) the area covered and data to be shared, (ii) the use of thresholding to detect bare
soil, (ii) the effect of soil surface conditions (i.e., moisture, seals, and roughness), and (iv)
the under exploitation of infrastructure capacities.

(i) Limitation of the area covered and data to be shared: It is well-stated that the true
value of EO means a reliance on the combination of EO-driven data sources with ground
truth data archives for generating the desired spatial products. However, we noticed a
lack of coherent data collection and analysis practices, including different data standards,
different data accessibility, and lack of interoperability. This issue makes it difficult to
find and source relevant local data and expand EO soil solutions to new geographical
areas. The issue can have its roots at the policy level of organizations and even at the
country level, but it is also manifested in practice in conditions of conducive policy (e.g.,
the slow availability of data, such as LUCAS 2015 campaign data that were released in
2020). Moreover, the pilot applications included in the studies of this review were mainly
restricted to relatively small areas (<200 km2), with only a few samples (n < 200, ~60%
of the studies) being utilized in the calibration procedure. Additionally, at such a small
scale, the topsoil condition (moisture, residue cover, and roughness) was considered to be
almost optimal. These prediction models are all empirical, so extrapolation to other areas
for which they were not calibrated is always a problem.

(ii) Limitation of thresholds for bare soil detection: Recently, Dvorakova et al. [76]
demonstrated a set of proper thresholds, taking into account the phenological stages
of crops and enabling an automatic generation of Sentinel-2 multi-temporal composites
by minimizing the influence of distracting factors such as crop residues, surface rough-
ness, and soil moisture. These findings were in concordance with the recent study of
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Zepp et al. [78], where the influence of vegetation index thresholding on Landsat assess-
ments of exposed soil masks was also studied. Conversely, Castaldi [79] highlighted that
Sentinel-2 and Landsat-8 were not able to properly predict clay and CaCO3 because of
the low spectral resolution in the SWIR. In a previous research study, Castaldi et al. [80]
attained more promising results for SOC. Similarly, in a multi-temporal analysis, Wang [81]
retrieved SOC using Sentinel-2 spectral images from bare croplands in autumn. Based
on these findings, a new selection strategy was proposed and should be put forward to
evaluate the impact of the acquisition dates on the prediction performance of maps [68]—
moving forward the definition of comparable agro-climatic zones for deriving local bare
soil thresholds and estimating the uncertainty in these approaches.

(iii) Limitation of soil surface conditions: A recent study by Prudnikova et al. [82]
demonstrated that rainfall negatively affected the accuracy of SOM predictions based on
Sentinel-2 data. Accordingly, we conclude that there is a need for minimization of the effect
of soil surface variations in large-scale satellite data. Considering the current multispectral
spaceborne sensors, we should mention that the width of the spectral bands does not allow
for a straightforward detection of disruptive effects other than partial vegetation cover
using the normalized difference vegetation index (NDVI). In this context, the upcoming
hyperspectral narrowband data, in particular in the SWIR, will enable the application of
new soil moisture indices and proper correction factors [83]. Optimal sampling techniques
also require investigation within the framework of AI development. Readers are referred
to Castaldi et al. [84], who evaluated different sampling strategies based on the feature
spaces to collect a calibration dataset that covered the soil property variability of a study
site. Their work reinforces the evidence that regression analysis benefits from a spread
of the data set in a feature rather than in the geographic space. However, the spread in
the feature space is complex and not simply uniform across the whole spectrum; thus,
we should further explore the characteristics of an optimized spectral design for assisting
mapping using AI techniques.

(iv) Limitation of infrastructure capabilities: Because of the progress in optical tech-
nologies and AI techniques, the exploitation of EO data does not only rely on the advanced
spectral resolution of satellites. At the very minimum, it requires the availability of a steady
internet connection with a large enough bandwidth to download and process EO datasets.
At the advent of the big data era, it also requires cloud storage and computing capabilities
that several universities and/or organizations, especially in developing countries, cannot
easily afford, or even worse capabilities to which they do not even have access. The ability
to collect, store, and process multimodal EO data was widely recognized by a significant
percentage (17.4%) of the studies that we reviewed. These works made use of advanced
data processing infrastructure working in cloud environments. Therefore, moving from
field-level applications to larger scale pilot cases and realizing a future where better ex-
ploitation of EO data is possible requires not only the development but also the operation
of “basic” infrastructure.

3.3. Future Directions—How Can We Get There?

The overview of the “Where are we now?” chapter illustrates that most of the soil
properties, for which EO can play a significant role, require additional sources of infor-
mation. Despite this, a further leverage of recent AI techniques for overcoming many of
the current limitations that have, until now, hindered the desired representativeness and
reliability of research is considered to be a necessity. Based on the previous statement,
we provide recommendations of potential areas in which to prioritize the use of technolo-
gies, algorithms, and applications from the novel industry 4.0, trying to provide valuable
insights in order to overcome the current caveats (Figure 9).
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Figure 9. Interlinkages of the recognized current limitations with the proposed future direction in
order to reach the final goals.

3.3.1. AI-Enabled Learning Techniques for Generating Soil Spatial Products

Overall, we conclude that a diversity of AI approaches has been applied across all
the available EO sources to predict topsoil parameters at various scales. However, these
approaches focus on spatial prediction of properties that are relatively static over the
observational period. Till now, the studies that have so far addressed the spatio-temporal
dynamics of soil properties using AI methods have still been limited. Overall, current active
and passive satellites exhibit a diversity of spectral characteristics that can be synergistically
utilized to enhance the predictive performance of topsoil mapping. Here, we raise the
discussion of employing DL algorithms, envisioning the development of models capable
of better exploiting the spatio-temporal interdependencies in EO data, the features that
would normally be difficult for traditional ML methods to extract. In this context, while
most of the current state-of-the-art approaches utilize single sensors, future studies should
focus on the integration of data and products from additional satellites through more
complex non-linear approaches, such as those generated by DL algorithms. In that regard,
the architecture of multi-input CNNs provides additional useful capabilities, such as the
suitability of fusing features with data from heterogeneous sensors [85] and the potential
of being able to address the temporal effects by combining convolutional with recurrent
neural networks [86]. In the future, these methods could be applied on EO data by also
using static auxiliary data (e.g., location and elevation).

Very High Spatial Resolution (VHR) data could also support the estimation of topsoil
properties of agronomic interest at the field scale. Super-spectral and/or hyperspectral data
from medium spatial resolution space-borne sensors (e.g., Sentinel-2 and PRISMA satellite)
and VHR such as Planet imagery data could be combined to define operational schemes
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and identify synergies, based on each sensor’s strengths (higher temporal revisit–lower
number of spectral bands, higher number of bands, e.g., hyperspectral–lower temporal
revisit). This approach should allow observational methods to be further evolved and for
tailored algorithms that deliver a higher resolution representation of explicit soil spatial
indicators. A super-resolution modelling approach could be applied by teaching a deep
neural network to upscale the aforementioned imagery data [87]. Accordingly, the model
can learn how to represent medium resolution at a higher resolution, as captured by
relevant commercial VHR sensors. This increases the resolution of the images from tens
of meters to spatial resolution that is below three meters, while retaining the temporal
data. Furthermore, synergies with drone imagery data can also be prioritized to assess the
limitations whereby standalone satellite imagery data are not sufficient for reaching the
desired spatio-temporal representativeness and reliability.

We strongly believe that opportunities for using AI go beyond the normally imple-
mented supervised ML algorithms. Rather, through generative adversarial neural net-
works [88], AI can also support modelling activities that are able to overcome the effects of
environmental factors in spectral reflectance values. In future steps, we propose exploring
the potential of using generative adversarial neural networks to automatically eliminate the
effect of soil moisture in the spectral intensity. We assume that such novel architectures can
quickly and efficiently improve the quality of the EO-derived spectral signatures using a
“denoising” generator and a discriminator. The denoising generator learns how to map the
noise from the environmental factors to the pure spectra. Simultaneously, the discriminator
learns as a loss function to compare the differences between the noisy spectral signatures.
In a final step, the pure spectra are reconstructed by the generator. Recent studies indicate
that the proposed approach is better than those of denoising CNNs [89].

Notwithstanding the achievements of DL algorithms, significant limitations have
hampered their wider adoption. A few drawbacks, such as the need for huge calibration
and unbiased datasets or for extremely time-consuming training [34], should be consid-
ered prior the expert intervention. AI algorithms need huge amount of data to deliver
accurate results, but they also need to be able to ensure that data are not biased. Consider-
ing that a significant number of studies utilized small datasets, as summarized in Table
of the Supplementary Materials, AI-enabled data enrichment methods could allow the
generation of simulated data from small datasets. Similar examples have been recorded
in other fields of research, such as medicine [90]. Other potential applications could be
the compression of data space through autoencoders that extract useful features from the
initial data, detect and remove input redundancies, and significantly boost the predictions
of the neural network [91] or the use of bio-inspired hybridization of artificial neural
networks for boosting predictive performance [92]. Similarly, research can examine the
use of semi-supervised learning approaches for deriving local spectroscopic calibrations
of soil properties in an unknown region by using an existing soil spectral dataset from
another region.

In this context, there are inherent limitations in the current ML approaches. It is in
this realm that the techniques of DL promise breakthroughs. Table 2 summarizes the most
promising types of algorithms for regression analyses that explore correlation across spatial
context and multiple timescales and that detect connections between variables, spectra,
and ambient factors.
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Table 2. Emergent and potential DL approaches in EO-based soil regression modelling.

Scientific Task Conventional
Approaches

Limitations of
Conventional
Approaches

Emergent or
Potential

Approaches

Multi-temporal soil
regression analysis

ML and DL
algorithms using bare

soil composites

Temporal effects not
considered

Combination of CNN
with recurrent
networks [86]

Removing the effect
of ambient factors

External parameter
orthogonalization,
piecewise direct
standardization

Ambient factors effect
not addressed

properly

Generative
adversarial networks

[88], denoising
autoencoders [89]

Downscaling and
super resolution

modelling
Pansharpening Shallow spatial

context used or none

Recursive fusion for
multi-frame

super-resolution of
EO data [87,93]

Fusing features from
heterogeneous data

sources

Random forests,
multi-kernel methods,
feedforward neural

networks

Not revealing the
spatio-spectral

interdependencies

Multi-source DL
architecture [85]

Compressing the
latent space of

features

Principal component
analysis

Not extracting useful
features from spectral

data

Deep connected
autoencoder

architectures [91]

Data enrichment for
unbalanced

classification
problems

Synthetic minority
oversampling
technique [94]

Overcoming
the paucity and

representativeness of
annotated soil
spectral data

Generative
adversarial networks

[90]

It should be mentioned that the tuning process of hyper-parameters should also be
considered for enhancing the models’ reliability. For advanced hyper-parameter tuning
and its effect on the context of DL algorithms, we refer to Shen and Viscarra Rossel [95].
The synergy between the two approaches can offer great opportunities for modelling carbon
stocks, among others, where global scale data are not available to support a purely empirical
DL regression approach. Another technique that can be examined is the potential of object-
based image analysis fusing multispectral sensors, as presented by Najafi et al. [96].

3.3.2. Data Sharing and Harmonized Protocols

Another key aspect that should receive special attention by the soil science and EO
communities is that of data sharing. Despite the success of having agreed upon the
compilation of a globally representative calibrated soil spectral library, subsequent com-
mitments to implement this initiative have in practice fallen short. Thus, the lack of a
data sharing culture continues to hamper the uptake and implementation of principles for
generating an inter-institutional soil spectral dataset. Building upon countries’ past and
ongoing large-scale scientific efforts, research communities should implement a strategy
that clearly articulates the specific benefits of, incentives for, and barriers to data sharing
amongst those who are expected to share spectral recording data, along with matching
conventional soil property data. Recently a new initiative was established under the
IEEE Standard Association’s P4005 working group. The aim of this group is to formulate
agreed protocols for measuring soil spectroscopy in the laboratory and field for RS applica-
tions. Other groups such as GLOSOLAN already work and collaborate in this direction.
However, a centralized database management system may be further hindered by mul-
tifaceted regulatory requirements of data governance, intellectual property issues, and
lack of trust. In this context, the distributed ledger technology, particularly in the form of
blockchain, has recently drawn attention from soil scientists [97], as the technology has
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the potential to enhance efficiency, transparency, and trust in data access and treatment
of national and regional in situ datasets [98]. In that regard, the resulting data sharing
advocacy products could be leveraged in conjunction with a decentralized database for
addressing the missing links in data sharing between what makes sense from a top-down
perspective and what the relevant stakeholders perceive as gains. Along these lines, a
multidisciplinary team of researchers has been working on the development of a standard
protocol and scheme for measuring soil spectroscopy. The agreed standards and protocols
from this working group will thus also be aligned with the upcoming hyperspectral tech-
nology for mapping and monitoring soils. Moreover, building a future in soil mapping that
is characterized by extensive EO data exploitation relies very heavily on the timely release
of harmonized and accurate soil data archives from the various coordinating organizations.

Last, the collaboration between National Reporting Centers on soils and research
institutes on the development of a spatial information system for soils, such as in the case
of Greece, Belgium, and Czech Republic in the WORLDSOILS project, represents a good
practice example for creating an enabling environment that conceptualizes and reports
on SOC within a geospatial framework and promotes synergies across regularly siloed
national bodies.

3.3.3. Integration of In Situ Sensing Systems and Citizen Science Data

Citizen science has gained a significant attendance in the last decade, offering an
opportunity for the integration of observations from citizens with those from professionals.
Among others, citizen observatories can also impact numerous goals and targets in the agro-
environmental sector, highlighting their potential for quantitative in situ data contributions
for soil indicators monitoring. For instance, GROW’s citizen scientists [99] have placed
low-cost sensors in their soil to feed moisture data back to the observatory. This network
of soil sensors is unprecedented, increasing the number of in situ data sources across the
European territory from a few hundred to many thousands, enabling potential integration
with spaceborne data to address the limitations generated by the moisture content in soils.

Along with this increased number of extensive networks of soil sensors, we are facing
a massive data influx from heterogeneous sources. A host of novel and potentially low-cost
in situ sensing systems are rapidly maturing and becoming viable alternatives to costlier
traditional data collection solutions. For instance, the benefits from mobile device cameras
and appropriate applications for analyzing soil properties have been extensively studied
as an alternative to commercial color sensors [100] or as a component for identifying bare
soil areas via mobile cameras. Consequently, a set of applications have been developed
that range from smartphone-captured digital images that use advanced data handling
models to applications that can predict soil texture [101] and SOM content [102] with
satisfactory accuracy. Furthermore, compact size and portable sensors based on micro-
electromechanical systems (MEMS) are undergoing a significant shift [103], enabling among
other applications the development of new innovative VNIR–SWIR sensing applications
for soil properties or real time variable rate soil sensors [104]. In this context, a set of novel
and low-cost spectral acquisition systems has been explored in conjunction with non-linear
regression algorithms for predicting soil properties [105–107], mainly under controlled
illumination conditions in the laboratory. Among other advances, augmented reality now
also appears in soil mapping applications, where the locations for sampling are generated
automatically, and the user is guided by special glasses to collect the samples representing
management zones [108].

However, these novel data acquisition systems need to be further tested under real
field conditions, along with the full chain of interconnected systems that can generate com-
plementary data and support the integration of space-based and in situ sensing towards the
extraction of harmonized information related to topsoil properties. It is noteworthy that the
remarkable success of collecting data in these ways may reflect widespread public interest
(e.g., farmers, agri-consultants, and inspectors) and may further promote communication
with the science community [109].
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3.3.4. Infrastructure and Data Exploitation

The landmark decision of USGS and Copernicus to make Landsat and Sentinel images
freely available has fostered quick advancements in the analysis of EO big data for long-
term and large-scale digital soil mapping applications. The Landsat data archive offers the
longest record, with almost 40 years of observations, while the recently launched Landsat-9
mission will continue this important data record [110], and NASA’s planned Surface Biol-
ogy and Geology (SBG) mission will continue with the global coverage mission but with a
leveraging of the spectral resolution to hyperspectral VNIR–SWIR and the multispectral
thermal domain. The Landsat satellite system will broaden the horizon of soil mapping ap-
plications by offering advancements with respect to refined spectral band widths (two new
shortwave and thermal spectral bands). Similarly, the Sentinel-2 constellation has provided
a 5-day global revisit periodicity, as well as significant improvements to data capture in the
VNIR region. Moreover, the planned Copernicus Sentinel Expansion Missions with CHIME
and the Land Surface Temperature Monitoring (LSTM) mission (operational VNIR–SWIR
hyperspectral and thermal infrared multispectral missions, respectively) will foster taking
the RS of soils into a new dimension. Their role as space-borne multispectral monitoring
tools continues to grow in importance, and it is fully related to the free data availability
which is of such great importance to the community. Evolution in the hyper-spectral space
component was foreseen by many leading space agencies, in the mid-2020s as a way to
improve estimates of soil properties and to overcome limitations not addressed by the
existing infrastructure. In particular, planned operational missions from ESA [111] and
NASA [112] for launch in the late 2020s carry a strong promise to act as a significant level
for EO-based soil mapping that will provide full Earth regular coverage and will be built on
experience acquired with the current and upcoming sensors from the German Aerospace
Center (Deutsches Zentrum für Luft- und Raumfahrt) hyperspectral missions to orbit as
DESIS (present) and EnMAP (>2022), as well as with others such as PRISMA (present), to
increase the revisit time with high spectral information. The attention that space agencies
such as NASA and ESA have given these days and for the first time in the soil domain is
one of the best signs that soil and RS could together become the cornerstone that assists
future sustainable development.

More fundamentally, there are processing limitations that are associated with this
wealth of EO data. It is in this realm that data cube solutions [113] or operational geospatial
processing platforms [114] with a soil mapping orientation should be assessed and piloted.
Similarly, the European Commission together with the ESA have procured the Copernicus
Data and Information Access Services (DIAS), which provide easy, robust, and continuous
access to Copernicus, as well as cloud storage and computing resources to relevant stake-
holders for building EO services. It is noteworthy here to mention that the Multi-Mission
Algorithm and Analysis Platform (MAAP) is a joint effort between the ESA and NASA.
MAAP is the first platform with computing capabilities that is co-located with data as well
as with a set of tools and algorithms developed to support research. Moreover, MAAP will
address issues related to increased data rates and to the reinforcement of open data policies.
A similar effort in EO data-driven analysis is the EnMAP-box [115], which is offered as free
and open software for the processing of hyperspectral imagery with potential applications
in the soil mapping domain (e.g., EnSoMAP algorithm).

3.3.5. Policy, Financial, and Administrative Framework

Fundamental to the progress of open science is national governments’ continued
investment in proper infrastructure and services for data collection, along with equitable
and continuous access to these data across the wide community. In this context, diverse
national and regional research and/or operational activities should be linked to the greater
strategic view of international organizations such as the Group on Earth Observation or
the FAO (e.g., GLOSOLAN and Global Soil Partnership).
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4. Final Considerations

This paper summarizes efforts that are underway among the research community, in-
ternational organizations, space agencies, and the private sector, to fill gaps in the provision
of insights on how EO coupled with AI could, and is already being utilized to, deliver infor-
mation related to monitoring and reporting soil-related policies and international treaties,
as well as planning and implementing relevant economic activities. The increasing number
of peer-reviewed papers within the last three years (addressed here) indicates that EO for
topsoil monitoring has now reached a mature level of knowledge, which has been driven
by the advent of the EO big data era, spearheaded by free, full, and open data policy (e.g.,
Sentinel and Landsat) and also by the emergence of appropriate tools (e.g., DL algorithms)
and resources (e.g., cloud computing). Many of the methods and applications applied
at present show examples of how optical EO can serve as a direct contributor of specific
soil parameters, mainly SOC, in support of map creation by leveraging multi-temporal
series data to generate composite image that increase the level of detail in the investigated
area. A limited number of studies have dealt with the application of hyperspectral data
for other parameters, such as heavy metals estimation. Nonetheless, as this technology is
promising, a bright future is anticipated with regard to obtaining data for both pure science
and practical applications. However, progress is still needed in providing soil products
that can support informed decision making at various scales. Despite identification and
discussion of the best practices in the field of EO-driven soil monitoring research, accu-
rate and efficient approaches that consider the effects of ambient factors (e.g., moisture,
partial cover by vegetation, surface sealing, and plowing of the soil surface) are, and will
continue to be, challenging, given the complex interactions inherent in the soil ecosystem.
Moreover, the upscaling of these applications has proven to be difficult because of current
technological, administrative, and scientific challenges, including among other challenges
the lack of standardization and harmonization of soil data archives, the lack of a data
sharing culture that can be used as ground truth, and EO data resolution restrictions, as
well as an insufficient number of use cases and good practice examples at continental scale.

The prospect of operational use of EO for soil mapping and monitoring by relevant
stakeholders will become more attainable if we continue to build on the progress that we
have made in the last decade and expand our focus beyond the EO data domain. In light
of the above, EO data-driven soil mapping not only requires interdisciplinary research
that includes RS, soil, and computer science that work together towards technological and
scientific excellence but also requires coordinated support towards “building the workforce
of the future”. Thus, through the maximization of synergies amongst key stakeholders and
the creation of an ecosystem, we will be able to effectively address the world’s soil health
needs, supporting the implementation of an operational global topsoil monitoring system.
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Appendix A

The article selection process is illustrated in the preferred reporting items for system-
atic reviews and meta-analyses methodology flow chart in Figure A1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 28 
 

 

MEMS Micro Electromechanical Systems 

ML Machine Learning 

NASA National Aeronautics and Space Administration 

NDVI Normalized Difference Vegetation Index 

PRISMA Precursore Iperspettrale della Missione Applicativa 

R2 Coefficient of Determination 

RF Random Forest 

RS Remote Sensing 

SBG Surface Biology and Geology 

ScMAP Soil Composite Mapping Processor 

SDGs Sustainable Development Goals 

SMLR Stepwise Multiple Linear Regression  

SOC Soil Organic Carbon 

SOM Soil Organic Matter 

SVM Support Vector Machine 

SWIR Short Wave Infrared  

UAS Unmanned Aerial Systems 

VHR Very High Spatial Resolution 

UNFCC United Nations Framework Convention on Climate Change 

VNIR Visible Near Infrared 

Appendix A 

The article selection process is illustrated in the preferred reporting items for system-

atic reviews and meta-analyses methodology flow chart in Figure A1. 

 

Figure A1. The preferred reporting items for systematic reviews and meta-analyses methodology flow diagram of the 

current review. 

  

Figure A1. The preferred reporting items for systematic reviews and meta-analyses methodology flow diagram of the
current review.

References
1. Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.;

Yagi, K.; et al. World’s soils are under threat. SOIL 2016, 2, 79–82. [CrossRef]
2. Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the

capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147,
267–282. [CrossRef]

3. Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate
and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [CrossRef]

4. Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the big earth observation data via cloud
computing and DGGS: Opportunities and challenges. Remote Sens. 2020, 12, 62. [CrossRef]

5. Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der
Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development
Goals. SOIL 2016, 2, 111–128. [CrossRef]

6. Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and
Monitoring. Surv. Geophys. 2019, 40, 361–399. [CrossRef]

7. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon
Estimation: A Review. Remote Sens. 2019, 11, 676. [CrossRef]

8. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA
statement. BMJ 2009, 339, 332–336. [CrossRef]
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