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Abstract: Although most of deep-learning-based hyperspectral image (HSI) classification methods
achieve great performance, there still remains a challenge to utilize small-size training samples
to remarkably enhance the classification accuracy. To tackle this challenge, a novel two-branch
spectral–spatial-feature attention network (TSSFAN) for HSI classification is proposed in this paper.
Firstly, two inputs with different spectral dimensions and spatial sizes are constructed, which can
not only reduce the redundancy of the original dataset but also accurately explore the spectral and
spatial features. Then, we design two parallel 3DCNN branches with attention modules, in which
one focuses on extracting spectral features and adaptively learning the more discriminative spectral
channels, and the other focuses on exploring spatial features and adaptively learning the more
discriminative spatial structures. Next, the feature attention module is constructed to automatically
adjust the weights of different features based on their contributions for classification to remarkably
improve the classification performance. Finally, we design the hybrid architecture of 3D–2DCNN
to acquire the final classification result, which can significantly decrease the sophistication of the
network. Experimental results on three HSI datasets indicate that our presented TSSFAN method
outperforms several of the most advanced classification methods.

Keywords: hyperspectral image classification; spectral–spatial-feature extraction; attention mechanism;
2DCNN; 3DCNN

1. Introduction

Hyperspectral imagery is captured with the spectrometer and supplies rich spectral
information containing tens to hundreds of narrow bands for all the image elements [1–3].
Hyperspectral image (HSI) contains rich features of ground [4–6], in which spatial features
and spectral features are both included for each pixel. As a result, it is utilized widely in
multiple fields of agriculture [7], target detection [8], environmental monitoring [9], urban
planning [10], and military reconnaissance [11]. In these applications, the classification of
HSI [12–15] is a basic problem, which aims to find the specific class of each pixel.

Over the past few decades, diverse classification methods have been proposed to
tackle this challenge, such as support vector machines (SVM) [16], k-nearest neighbor
(KNN) [17], random forests [18], and multinomial logistic regression (MLR) [19], etc.
However, these methods mentioned above have a common disadvantage that they classify
the pixel by only applying the spectral information. While the spectral information of the
pixel belonging to one category is very likely mixed with the spectral information of pixels
from other categories. Therefore, these classification methods mentioned above, which
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have obvious shortcomings, are not robust to noise, and their classification results do not
always perform well.

To solve such problems, various novel classification methods have been introduced in
the past several years, which try to improve the classification performance by incorporating
spatial information. One category in these methods attempts to design diverse feature
extraction approaches, including the local binary pattern (LBP) histogram feature extrac-
tion [20] and extended morphological profiles (EMP) extraction [21], etc. The disadvantage
of this type of method is that they extract only a single feature, so the improvement of
classification performance is limited. The other tries to fuse spectral information with
spatial contexts by adopting the joint sparse representation classification (JSRC) model [22].
The representative methods include: space-spectrum combined kernel filter [23], mul-
tiple kernel sparse representation classifier with superpixel features [24], kernel sparse
representation-based classification (KSRC) method [25], and so on. Although these meth-
ods perform better on the specific datasets, they show the disadvantage that the designed
classification models are more complex and less adaptable. Compared with the methods
that only use spectral information, these methods can effectively enhance the classification
performance. However, all these classification methods mentioned above design and
extract features based on specific data with different structures. They have no universality
for diverse hyperspectral datasets and cannot simultaneously achieve good results for data
with different structures.

Therefore, researchers gradually introduce deep-learning mechanisms [26–30] to re-
place the methods of manually extracting features, which can automatically design feature
extraction and solve various problems caused by the diversification of hyperspectral data
structures. Chen [31] first applies the deep-learning network SAE to the HSI classification
and proposes a deep-learning model that fuses spectral features and spatial features to
obtain high classification accuracy. Then, more and more deep-learning models [32–35]
are explored by researchers. Zhao [36] introduces the deep belief network (DBN) model
into the HSI classification, and the data are preprocessed to decrease the redundancy by
the principal component analysis (PCA) method. The hierarchical learning of features and
the use of logistic regression methods to extract the spatial spectrum feature can achieve
good experimental results. Wei [37] first applies the convolutional neural network (CNN)
to the HSI classification, but the established CNN model can only extract spectral features.
Chen [38] proposes a CNN-based depth feature extraction method, which establishes a
three-dimensional convolutional neural network, so that the spatial and spectral features
can be extracted, meanwhile. Zhong [39] proposes the spectral–spatial residual network
(SSRN), which facilitates the back propagation of the gradient, while extracting deeper
spectral features and alleviating that the accuracy of other deep-learning models is re-
duced. Sellami [40] introduces the semi-supervised three-dimensional CNN into the HSI
classification through adaptive dimensionality reduction to solve the dimensionality curse
problem. Mei [41] proposes the spectral–spatial attention network and achieves a good
training result with the incorporation of attention mechanism into their model. Despite the
competitive classification performance being achieved by the above deep-learning-based
approaches, they still remain two major disadvantages. One is that the training samples
are massively required for the purpose of learning the parameters in the deep network.
However, expensive economic costs and a lot of time must be spent in order to collect
such labelled data, which directly results in a very limited quantity of labelled data in
practical applications. The other is that the neural network needs to adjust numerous
variables during the backpropagation, which results in considerable calculation costs and
time costs. Therefore, it remains a challenge to utilize small-size training samples to
concurrently extract discriminative spectral–spatial features and remarkably enhance the
classification performance.

In this paper, a novel two-branch spectral–spatial-feature attention network (TSSFAN)
for HSI classification is proposed. Firstly, two inputs with different spectral dimensions and
spatial sizes are constructed for the network, which can not only reduce the redundancy
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of the original dataset but also accurately and separately explore the spectral and spatial
features. Then, two parallel 3DCNN branches with attention modules are designed for the
network, in which one focuses on extracting spectral features and adaptively learning the
more discriminative spectral channels, and the other focuses on exploring spatial features
and adaptively learning the more discriminative spatial structures. Next, the feature
attention module is constructed in the fusion stage of the two branches to automatically
adjust the weights of different features based on their contributions for the classification.
Finally, the 2DCNN network is designed to obtain the final classification result, which
can decrease the sophistication of the network and reduce the parameters in the network.
Compared with several typical and recent HSI classification methods, the results indicate
that our presented TSSFAN is superior to the most advanced methods.

The remaining chapters of the article are organized as follows. The CNN network,
attention mechanism, and the proposed TSSFAN method are introduced in Section 2. The
classification results of three different public datasets are presented in Section 3. The article
is concluded in Section 4, finally.

2. Materials and Methods

In this section, the traditional methods including 2DCNN, 3DCNN, and attention
mechanism are the first to be introduced. Then, the process of the proposed TSSFAN
method is explained in detail.

2.1. 2DCNN and 3DCNN

Convolutional neural network (CNN) [42–45] is commonly employed in the computer
vision (CV) task. Inspired by the thinking mode of the human brain, CNN can automati-
cally learn the spatial features of images by the convolution and pooling operations [46–50],
which contains multiple layers of repetitive stacked structures to extract deep information.
CNN is originally designed for the recognition of two-dimensional images, so the tradi-
tional network structure is a two-dimensional convolutional neural network [51–53]. A
typical 2DCNN structure is presented in Figure 1.
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Figure 1. Illustration of typical 2DCNN structure.

In the convolution layer, the convolution kernel is first used to perform convolutional
operations on the input image. Then, the convolutional result is fed into a nonlinear
function, and its output is sent to the next layer for further computation. Different from
the fully connected neural network (FC), the training parameters in CNN are remarkably
reduced due to the application of the shared convolution kernel. The convolution formula
is as follows:

Fl = f (Fl−1 ∗W l + bl) (1)

where f (·) indicates the nonlinear activation function, and it can strengthen the network’s
ability to process nonlinear data. Fl−1 is the input feature map in layer l − 1, and Fl is the
output feature map in layer l. W l indicates the convolutional filter, and bl indicates the bias
of each output feature map.
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In the pooling layers, the previous feature maps are sub-sampled to reduce the spatial
size. After the multilayer architectures are stacked, the fully connected layer and the
SoftMax classifier are typically utilized to present the final results.

Although 2DCNN can recognize two-dimensional shapes very well, it does not per-
form satisfactorily when directly processing three-dimensional data. Therefore, 2DCNN
is promoted to 3DCNN to extract high-level 3D features [54] for three-dimensional data.
Figure 2 presents a typical 3DCNN structure. It has a highly similar structure with 2DCNN,
but their difference is that 2DCNN uses the 2D convolution kernel, while 3DCNN uses the
3D convolution kernel. Three-dimensional CNN [55–58] can simultaneously extract spatial
and depth features for three-dimensional data via the 3D convolution kernel.
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2.2. Attention Mechanism

As the applications of deep learning in many CV tasks become more and more
extensive, attention mechanism [59–61] as an auxiliary means is increasingly used in deep
networks to optimize the network structure. Attention mechanism [62] is similar to the way
that the human eyes observe things, which can always ignore the irrelevant information but
pay attention to the significant information. It makes the network focus on learning [63],
which can remarkably enhance the performance of the network. Figure 3 presents a typical
attention module.

As can be seen from Figure 3, the attention module aims to construct an adaptive
function, which maps the original images to the matrix that represents the weights of
different spatial locations. With the help of such a function, different regions are given
independent weights to highlight more relevant and noteworthy information. The process
can be expressed by:

Y = Fattention
sa (sigmod((Fmax, Favg) ∗W + b), X) (2)

where X is the original image, while Y indicates the output.Fmax indicates maximum
pooling along the channel dimension, while Favg represents average pooling along the
channel dimension.W, b indicate the convolutional filter and the bias in the convolutional
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operation, respectively. Xs is the generated weight matrix, and Fattention
sa (·) indicates spatial-

wise multiply between the original input X and weight Xs.
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2.3. Proposed TSSFAN Method

Figure 4 depicts the flowchart of the proposed method TSSFAN. From this flowchart,
the TSSFAN method has four main steps: data preprocessing, two-branch 3DCNN with
attention modules, feature attention module in the co-training model, and 2DCNN for
classification. Next, each main step of the TSSFAN method is introduced in detail.
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2.3.1. Data Preprocessing

Let the HSI dataset be denoted by I ∈ RH×W×C, where I represents the original input;
H, W, C indicate the height, the width, and channel numbers of I. The steps of data
preprocessing are described as follows, and Figure 5 shows the process.
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(1) PCA is employed to reduce the spectral dimension of the original image and ob-
tain two datasets with different spectral dimensions, where P ∈ RH×W×D1 and
Q ∈ RH×W×D2 .

(2) Based on the two different spectral dimensions, the image with the larger spectral
dimension selects a smaller spatial window to create an input 3D cube for each center
pixel, while the image with the smaller spectral dimension selects a larger spatial
window to create another input 3D cube for each center pixel, where Input_1 is
denoted by U ∈ RM×M×D1 and Input_2 is denoted by V ∈ RN×N×D2 , respectively.

Through such data preprocessing, we create two inputs with different spectral dimen-
sions and spatial sizes, which can not only reduce the redundancy of the original dataset
but also accurately and separately explore the spectral and spatial features.

2.3.2. Two-Branch 3DCNN with Attention Modules

After data preprocessing, two inputs with different spectral dimensions and spatial
sizes are obtained. Then, we design two parallel 3DCNN branches, where each branch
contains an attention module. One branch focuses on spatial feature extraction, and the
other focuses on spectral feature extraction. Moreover, the attention module in each branch
can automatically adjust the weights of the spatial features and spectral features for different
input data, concentrating on more discriminative spatial structures and spectral channels.

A. 3DCNN with Spectral–Spatial Attention

For Input_1 U ∈ RM×M×D1 with the larger spectral dimension, we design a branch of
3DCNN with spectral–spatial attention, which focuses on extracting spectral features and
adaptively learning the more discriminative spectral channels. Figure 6 shows the process.
Below, the two main steps of this branch are presented in detail.

Step 1: Let Input_1 U ∈ RM×M×D1 pass through the spectral–spatial attention module,
which can automatically adjust the weights of the spectral features and the spatial features
for different input data, concentrating on more discriminative spectral channels and spatial
structures. Specifically, Figure 7 presents the spectral–spatial attention module.
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As can be seen from Figure 7, let the input be denoted by Y ∈ RH×W×C, where H, W,
C indicate the height, the width, and channel numbers of Y. Let the spectral attention map
be denoted by Ase ∈ R1×1×C, the spatial attention map be denoted by Asa ∈ RH×W×1, and
the output be denoted by Yea ∈ RH×W×C. The computation process can be denoted as:

Yea = Fattention
sa (Fattention

se (Y, Ase), Asa) (3)

where Yea is the output. Fattention
se (·), Fattention

sa (·) represent the spectral-wise multiply and
spatial-wise multiply, respectively.

In the spectral–spatial attention module, the acquisition of the spectral attention map
and the spatial attention map are two necessary parts. Additionally, the process of obtaining
the spectral attention map and the spatial attention map is as follows.

(a) Spectral attention map:

The spectral attention exploits the inter-channel relationships of feature maps and
aims to construct an adaptive function, which maps the original images to the vector
that represents the weights of different spectral bands. As can be seen from Figure 8a,
the global average pooling and the global max pooling are first operated to squeeze the
spatial dimension to obtain the Avg-Pool Yavg

c ∈ R1×1×C and Max-Pool Ymax
c ∈ R1×1×C,

respectively. Then, the Avg-Pool and Max-Pool are passed through two fully connected
layers with shared parameters. Finally, the two outputs are added and passed through the
sigmoid function to obtain the spectral attention map. The process is calculated as follows:

Ase = σ( f ( f (Yavg
c ∗W1 + b1) ∗W2 + b2) + f ( f (Ymax

c ∗W1 + b1) ∗W2 + b2)) (4)

where Yavg
c , Ymax

c indicate the feature map obtained by the global average pooling and the
global max pooling, respectively.W1, b1 are the parameter of the first fully connected layer,
and W2, b2 indicate the parameter of the second fully connected layer. f (·) denotes the
ReLU function, and σ is the sigmoid function.
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(b) Spatial attention map:

The spatial attention aims to construct an adaptive function, which maps the original
images to the matrix that represents the weights of different spatial locations. From
Figure 8b, the global average pooling and the global max pooling are first operated
along the channel direction, squeezing the spectral dimension to obtain the Avg-Pool
Yavg ∈ RH×W×1 and Max-Pool Ymax ∈ RH×W×1, respectively. Next, we concatenate the
Avg-Pool and Max-Pool, then, pass them through a 2D convolutional layer. At last, the
spatial attention map Asa is generated with the application of a sigmoid function. The
process is calculated as follows:

Asa = σ((Yavg, Ymax) ∗W3 + b3) (5)

where Yavg, Ymax indicate the feature map obtained by the global average pooling and the
global max pooling, respectively. W3, b3 are the parameter of the 2D convolutional layer.
Additionally, σ is the sigmoid function.

Step 2: As can be seen from Figure 6, two 3D convolutional layers are employed to
extract spectral and spatial features simultaneously after passing through the spectral–
spatial attention module. Finally, output 1 with size {S× S× C,P} is obtained. In the 3D
convolution, the convolution formula is calculated by:

Fl = Relu(Fl−1 ∗W l + bl) (6)

where Fl−1 is the input feature map in layer l − 1, and Fl is the output feature map in layer
l. W l indicates the 3D convolutional filter, and bl indicates the bias of each output feature
map. Relu(·) is the nonlinear activation function.

B. 3DCNN with Spatial–Spectral Attention
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For Input_2 V ∈ RN×N×D2 with the larger spatial size, we design a branch of 3DCNN
with spatial–spectral attention, which focuses on exploring spatial features and adaptively
learning the more discriminative spatial structures. Figure 9 shows the process. The
two branches are very similar, and the main difference is that they use different attention
modules, which are the spectral–spatial attention module presented in Figure 7 and the
spatial–spectral attention module presented in Figure 10, respectively. By comparing
Figures 7 and 10, we can see that the spectral–spatial attention module prioritizes spectral
attention before spatial attention, while the spatial–spectral attention module is just the
opposite. The reason for this design is that the Input_1 U ∈ RM×M×D1 contains more
spectral information so spectral attention is given priority, while Input_2 V ∈ RN×N×D2

contains more spatial information so spatial attention is given priority.
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Finally, through the similar structure, output 2 with size {S× S×C, P} is also obtained.
The size of the output in both branches is the same, because we acquire the output with the
same size by controlling the convolution operation, so that the output of the two branches
can be merged later.

2.3.3. Feature Attention Module in the Co-Training Model

As shown in Figure 11, the next step is to concatenate the two branches for co-training.
The outputs of the two 3DCNN branches are merged together, and we obtain the output
with size {S× S×C, 2P}. We consider that different features from different branches do not
contribute equally to the classification task. If we can fully explore the prior information,
then, the learning ability of the entire network will be improved to a considerable extent.
Therefore, we construct the feature attention module to automatically adjust the weights
of different features based on their contributions for classification, which can remarkably
enhance the classification performance. Figure 12 presents the feature attention module.
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In the feature attention module, for the input Xi ∈ RS×S×C×2P, the global average
pooling and the global max pooling are operated in the direction of the channel to obtain
the global feature description maps, i.e., Favg ∈ R1×1×1×2P and Fmax ∈ R1×1×1×2P. The
weight Xw ∈ R1×1×1×2P of different features is obtained through a structure similar to the
spectral attention map. Finally, the output Xj ∈ RS×S×C×2P is calculated as

Xj = Xi ⊗ Xw (7)

where ⊗ indicates the channel-wise multiplication.
By the constructed feature attention module, different features are given different

weights based on their contributions for the classification task. We acquire the output with
size {S× S× C, 2P}.

2.3.4. 2DCNN for Classification

As shown in Figure 13, the result of the feature attention module enters the 2DCNN
network to further extract the feature and obtains the final classification result. The purpose



Remote Sens. 2021, 13, 4262 11 of 23

of introducing the 2DCNN network instead of continuing to use the 3DCNN network is to
decrease the sophistication of the network and reduce the parameters in the network. The
main steps are the following.
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(1) For the result with size {S× S× C, 2P}, the convolution kernel with size {1× 1× C}
is adopted to convert the 3D feature maps with size {S× S× C, 2P} to the 2D feature maps
with size {S× S, k}.

(2) Then, the 2D feature maps with size {S× S, k} is sent to the 2D convolutional layers to
promote the fusion of features and further extract features with stronger representation ability.

(3) The 2D convolutional layer is concatenated with the fully connected layers. Finally,
the SoftMax classifier is employed to predict the category of each pixel.

3. Experimental Result and Analysis

In this chapter, the three HSI datasets utilized in our experiments are described first,
and the experimental configurations are, then, presented. Next, the influences of the
main parameters for the classification performance of our proposed method TSSFAN are
analyzed. Additionally, the proposed TSSFAN is compared to several of the most advanced
classification methods to verify the superiorities.

3.1. Data Description

In our experiment, we consider three openly accessible HSI datasets, including Indian
Pines (IP), University of Pavia (UP), and Salinas Scene (SA).

(1) Indian Pines (IP): IP was acquired by a sensor on June 1992, in which the spatial
size is 145 × 145 and the number of the spectral band is 224. Specifically, its spectral
resolution is 10 nm. Moreover, the range of wavelength in IP is 0.4–2.5 µm. Addition-
ally, sixteen categories are contained in IP, and only 200 effective bands in IP can be
utilized because the 24 bands that could carry noise information are excluded.

(2) University of Pavia (UP): UP is acquired by a sensor known as the ROSIS sensor,
in which the spatial size is 610 × 340 and the number of the spectral band is 115.
Moreover, the range of wavelength in UP is 0.43–0.86 µm. Specifically, nine categories
are contained in UP with 42,776 labeled pixels. In the experiment, only 103 effective
bands in UP can be utilized because the 12 bands that could carry noise information
are excluded.

(3) Salinas Scene (SA): SA is acquired by a hyperspectral sensor, in which the spatial
size is 512 × 217 and the number of the spectral band is 224. Additionally, sixteen
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categories are contained in SA, and only 204 effective bands in SA can be utilized
because the 20 bands that could carry noise information are excluded.

Figures 14–16 present the false-color maps and the ground-truth images of IP, UP, and
SA, respectively. In our experiment, 10%, 10%, and 80% of the total samples are randomly
chosen as training, validation, and testing for IP while 1%, 1%, and 98% for UP and SA.
Tables 1–3 present the details.
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Table 1. Number of training, validation, and testing samples for the IP dataset.

Class Name Training Validation Test Total Samples

1 Alfalfa 5 5 36 46
2 Corn-notill 143 143 1142 1428
3 Corn-mintill 83 83 664 830
4 Corn 24 24 189 237
5 Grass-pasture 48 48 387 483
6 Grass-trees 73 73 584 730
7 Grass-pasture-mowed 3 3 22 28
8 Hay-windrowed 48 48 382 478
9 Oats 2 2 16 20

10 Soybean-notill 97 97 778 972
11 Soybean-mintill 246 246 1963 2455
12 Soybean-clean 59 59 475 593
13 Wheat 21 21 163 205
14 Woods 127 127 1011 1265
15 Buildings-Grass-Trees-Drives 39 39 308 386
16 Stone-Steel-Towers 9 9 75 93

Total 1027 1027 8195 10,249

Table 2. Number of training, validation, and testing samples for the UP dataset.

Class Name Training Validation Test Total Samples

1 Asphalt 66 66 6499 6631
2 Meadows 186 186 18,277 18,649
3 Gravel 21 21 2057 2099
4 Trees 31 31 3002 3064
5 Painted metal sheets 13 13 1319 1345
6 Bare Soil 50 50 4929 5029
7 Bitumen 13 13 1304 1330
8 Self-Blocking Bricks 37 37 3608 3682
9 Shadows 9 9 929 947

Total 426 426 41,924 42,776

Table 3. Number of training, validation, and testing samples for the SA dataset.

Class Name Training Validation Test Total Samples

1 Brocoli_green_weeds_1 20 20 1969 2009
2 Brocoli_green_weeds_2 37 37 3652 3726
3 Fallow 20 20 1936 1976
4 Fallow_rough_plow 14 14 1366 1394
5 Fallow_smooth 27 27 2624 2678
6 Stubble 40 40 3879 3959
7 Celery 36 36 3507 3579
8 Grapes_untrained 113 113 11,045 11,271
9 Soil_vinyard_develop 62 62 6079 6203
10 Corn_senesced_green_weeds 33 33 3212 3278
11 Lettuce_romaine_4wk 11 11 1046 1068
12 Lettuce_romaine_5wk 19 19 1889 1927
13 Lettuce_romaine_6wk 9 9 898 916
14 Lettuce_romaine_7wk 11 11 1048 1070
15 Vinyard_untrained 73 73 7122 7268
16 Vinyard_vertical_trellis 18 18 1771 1807

Total 543 543 53,043 54,129

3.2. Experimental Configuration

All experiments were implemented on the computer including an AMD Ryzen 7 4800H
CPU and an Nvidia GeForce RTX2060 GPU. We employed Windows 10 as the operating
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system, using the PyTorch1.2.0 deep-learning framework and a Python 3.6 compiler. In
our experiments, overall accuracy (OA), average accuracy (AA), and Kappa coefficient
(Kappa) were adopted as the evaluation metric, which aimed to quantitatively assess the
classification performance.

3.3. Analysis of Parameters

In this section, we analyze the influences of the three main parameters for the classifi-
cation performance of our proposed TSSFAN, including learning rate, spectral dimension,
and spatial size.

(1) Learning rate: During the gradient descent process of a deep-learning model, the
weights are constantly updated. A few hyperparameters play an instrumental role
in controlling this process properly, and one of them is the learning rate. The con-
vergence capability and the convergence speed of the network can be productively
regulated by a suitable learning rate. In our trials, the effect of the learning rate
on the classification performance is tested, where the value of the learning rate
is set to {0.00005,0.0001,0.0003,0.0005,0.001,0.003,0.005,0.008}. Figure 17 shows the
experimental results.
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three HSI datasets.

From Figure 17, we can observe that there is a gradual rise in accuracy as the learning
rate increases from 0.00005 to 0.001, while there is a considerable drop in learning rate
further growing from 0.001 to 0.008 for all three datasets. The convergence speed of the
network would be reduced when the learning rate is lower, which extends the learning
time of the model and weakens the classification performance. However, the network
would fail to converge or converge to the local optimum if the learning rate is too high,
which can also negatively affect the classification performance. Based on the experimental
result, 0.001 is chosen as the optimal learning rate for the three datasets to acquire the best
classification performance.

(2) Spectral dimension: Input-1 contains more spectral information and less spatial
information. The spectral dimension in Input-1 determines how much spectral in-
formation is available to classify the pixels. We tested the impact of the spectral
dimension in Input-1. In our experiments, the spectral dimension in Input-1 is set to
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{21,23,25,27,29,31,33} to capture sufficient spectral information. Figure 18 presents the
experimental results.
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Figure 18 shows that there is a trend of rising first and, then, falling with the spectral
dimension increasing from 21 to 33 for the three datasets. At the beginning, the classifi-
cation accuracy increases because more spectral information could be provided with the
spectral dimension increasing. Nevertheless, with the spectral dimension further increas-
ing, although more spectral information could be supplied, some noise information is
also introduced to reduce the classification accuracy. Figure 18 reveals that we achieve
the highest classification accuracy when we fix the spectral dimension to 27 for IN and
SA datasets and 23 for UP datasets. The spectral dimension in this situation can provide
sufficient spectral information. Although some noise information is also introduced, it can
be effectively suppressed by the spectral attention in the network. To be mentioned, since
Input-2 contains less spectral information, we preset the spectral dimension as 9 for the
three datasets, which minimizes the computing sophistication while guaranteeing the basic
spectral information.

(3) Spatial size: Input-2 contains more spatial information and less spectral information.
The spatial size in Input-2 determines how much spatial information is available to
classify the pixels. We test the impact of the spatial size in Input-2. In our experiment,
the spatial size is set as {25 × 25, 27 × 27, 29 × 29, 31 × 31, 33 × 33, 35 × 35, 37 × 37}.
Figure 19 presents the experimental results.

Figure 19 illustrates that there is a gradual improvement and, then, a gradual fall
with the spatial size increasing from 25 to 37 for the three datasets. In the initial stage, the
classification accuracy grows because more spatial context and spatial structures could be
available with the spatial size increasing. However, with the spatial size further increasing,
pixels and spatial structures belonging to different classes will be introduced, which
reduces the classification performance. Figure 19 indicates that the highest classification
accuracy is obtained when we fix the spatial size as 33 × 33 for the three datasets. To be
mentioned, since Input-1 contains less spatial information, we preset the spatial size to
9 × 9 for the three datasets, which ensures the basic spatial information while minimizing
the computational complexity.
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According to the above parameter analysis, Table 4 lists all final parameters.

Table 4. All parameters for the three HSI datasets.

Data Learning
Rate

Spectral
Dimension
(Input_1)

Spatial Size
(Input_1)

Spectral
Dimension
(Input_2)

Spatial Size
(Input_2)

IP 0.001 27 9 9 33
UP 0.001 23 9 9 33
SA 0.001 27 9 9 33

3.4. Comparisons to the State-of-the-Art Methods

In our experiment, we compare the presented TSSFAN method with SVM [16],
two-dimensional convolutional neural network (2DCNN) [43], three-dimensional con-
volutional neural network (3DCNN) [54], spectral–spatial residual network (SSRN) [39],
hybrid spectral CNN (HybridSN) [64], and spectral–spatial attention network (SSAN) [41].

Tables 5–7 show the classification performance of each method for IP, UP, and SA.
Compared with other competitor models, our proposed TSSFAN acquires the highest OA,
AA, and Kappa for the three datasets. In particular, our proposed TSSFAN can still achieve
a pretty good classification accuracy of 98.26% under the condition that there are only
1% training samples for Pavia University. The main reason is that our proposed method
creates two inputs with different spectral dimensions and spatial sizes for the network,
which can accurately and separately explore the spectral and spatial features even if we
only use a very small training set. Although 2DCNN, 3DCNN, SSRN, and HybridSN
design different network structures to acquire stronger classification performance, our
presented TSSFAN method obtains a higher OA than for all three datasets. In addition,
our presented TSSFAN acquires better per-class accuracy than the competitor methods
in most cases. Especially, our proposed method achieves 100% accuracy in the Alfalfa
and Grass-pasture-mowed categories for Indian Pines and achieves 100% accuracy in
the Brocoli_green_weeds_2 and Lettuce_romaine_5wk categories for Salinas. The main
reason is that our method designs two-branch 3DCNN with attention modules to focus
on more discriminative spectral channels and spatial structures, which can effectively
enhance the classification performance. Moreover, although SSAN utilizes the attention
mechanism to concentrate on more significant information in the classification task, our
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proposed TSSFAN method acquires better OA for all three datasets. This is largely because
our method constructs the feature attention module, which can automatically adjust the
weights of different features based on their contributions for the classification. By the
constructed feature attention module, different features are given different weights based
on their contributions for the classification task, so the classification accuracy will be
improved. As a result, the superiorities of the presented TSSFAN by creating two inputs
with different size to, respectively, emphasize accurately extracting spectral information
and spatial information, designing two-branch 3DCNN with attention modules to focus on
more discriminative spectral channels and spatial structures, and constructing the feature
attention module to concentrate on the feature contributing more to the classification tasks
are completely verifiable.

Table 5. Classification results of each method in Indian Pines (The bold format represents the
best result).

Class SVM 2DCNN 3DCNN SSRN HybridSN SSAN TSSFAN

1 0.00 81.71 99.92 98.70 95.12 92.68 100.00
2 27.62 93.69 95.10 95.83 95.95 95.18 96.45
3 9.77 97.86 99.06 99.87 97.99 99.33 99.67
4 7.04 94.13 98.12 96.94 97.18 98.76 97.03
5 63.79 98.50 97.70 97.81 100.00 99.95 99.00
6 94.06 98.32 98.17 98.70 98.93 98.48 99.29
7 0.00 94.07 96.00 99.96 96.01 98.00 100.00
8 99.30 99.53 99.53 100.00 99.30 99.10 99.85
9 0.00 61.11 83.33 88.88 77.78 94.44 89.81

10 25.80 97.43 98.06 98.97 98.17 98.51 98.80
11 91.35 98.26 99.50 99.25 98.96 99.01 99.24
12 50.46 94.94 94.76 95.60 98.13 97.38 95.47
13 69.56 96.49 98.38 99.73 97.84 99.46 99.55
14 95.21 98.90 99.12 99.90 99.74 99.91 99.81
15 47.55 97.69 97.12 97.55 99.14 99.42 99.61
16 88.09 91.67 95.24 96.43 78.57 95.24 97.22

OA 62.16
(0.58)

97.1
(0.41)

97.99
(0.22)

98.44
(0.28)

98.19
(0.15)

98.49
(0.13)

98.64
(0.13)

AA 48.03
(0.67)

93.38
(0.21)

96.82
(0.30)

97.76
(0.37)

95.55
(0.24)

97.81
(0.25)

98.18
(0.31)

Kappa 55.37
(0.39)

96.69
(0.35)

97.71
(0.11)

98.22
(0.30)

95.55
(0.18)

98.28
(0.19)

98.47
(0.17)

Table 6. Classification results of each method in University of Pavia (The bold format represents the
best result).

Class SVM 2DCNN 3DCNN SSRN HybridSN SSAN TSSFAN

1 89.47 84.50 94.76 96.89 95.03 95.52 97.40
2 94.13 98.95 99.46 99.94 99.77 99.98 99.91
3 22.90 59.31 95.33 94.08 90.42 92.60 95.82
4 82.36 70.94 81.40 90.66 87.83 95.15 92.41
5 99.24 95.27 99.25 99.67 97.30 99.27 99.94
6 34.27 92.49 95.82 97.00 99.92 99.95 99.75
7 0.08 75.06 89.37 82.71 99.32 97.87 98.47
8 77.94 69.46 82.52 94.63 96.84 89.78 95.25
9 40.19 41.08 69.80 95.97 74.07 99.47 97.55

OA 76.68
(0.47)

87.32
(0.17)

94.37
(0.22)

97.07
(0.23)

96.83
(0.12)

97.56
(0.19)

98.26
(0.14)

AA 60.07
(0.40)

76.34
(0.21)

89.74
(0.19)

94.61
(0.20)

93.39
(0.26)

96.62
(0.27)

97.38
(0.28)

Kappa 67.89
(0.28)

83.01
(0.15)

92.52
(0.14)

94.61
(0.30)

95.78
(0.16)

96.76
(0.21)

97.70
(0.23)
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Table 7. Classification results of each method in Salinas Scene (The bold format represents the
best result).

Class SVM 2DCNN 3DCNN SSRN HybridSN SSAN TSSFAN

1 97.33 95.85 98.99 92.88 99.39 99.45 99.41
2 97.70 96.88 99.81 99.27 99.90 100.00 100.00
3 77.24 91.00 97.03 99.84 99.59 99.95 99.97
4 57.97 83.98 94.64 96.93 95.38 99.99 99.96
5 98.90 89.68 99.55 97.68 98.32 99.70 98.37
6 99.20 97.23 99.77 99.49 99.66 99.95 99.97
7 99.54 98.68 98.90 99.46 99.81 99.94 99.87
8 70.09 97.89 95.86 98.50 99.45 96.98 97.24
9 99.67 98.62 100.00 99.95 99.89 99.99 99.99

10 89.30 96.33 97.32 97.65 98.91 98.64 99.56
11 89.68 87.22 94.32 97.69 98.04 99.62 99.30
12 93.71 90.85 79.19 91.68 95.07 99.58 100.00
13 63.83 79.65 93.38 97.61 87.10 96.69 98.66
14 96.78 91.88 97.17 96.98 98.17 99.15 98.41
15 75.20 90.41 99.78 98.62 97.44 97.23 98.65
16 97.65 97.37 96.25 99.12 99.72 95.92 98.82

OA 86.27
(0.64)

94.81
(0.21)

97.39
(0.11)

98.29
(0.29)

98.70
(0.16)

98.64
(0.23)

99.02
(0.12)

AA 87.74
(0.42)

92.71
(0.37)

96.37
(0.41)

97.70
(0.23)

97.86
(0.33)

98.92
(0.28)

99.25
(0.05)

Kappa 84.73
(0.51)

94.21
(0.18)

97.09
(0.23)

98.1
(0.26)

98.55
(0.20)

98.48
(0.31)

98.87
(0.16)

Figures 20–22 depict the corresponding classification results of each classification
method for the three HSI datasets, respectively. As presented in Figures 20–22, we find
that the classification figures acquired by SSRN, HybridSN, and SSAN have smoother
boundaries and edges, while those acquired by SVM, 2DCNN, and 3DCNN present
more misclassifications. However, our proposed TSSFAN achieves the more accurate
classification map, which presents fewer classification errors and smoother boundaries and
edges. The main reason is that TSSFAN introduces the attention mechanism to focus on
more discriminative information for classification, which can provide more a detailed and
accurate classification map.
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Figure 21. Classification maps acquired by each method for the University of Pavia dataset:
(a) ground-truth map, (b) SVM, (c) 2DCNN, (d) 3DNN, (e) SSRN, (f) HybridSN, (g) SSAN, (h) pro-
posed TSSFAN.
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Finally, we test the computational efficiency of 2DCNN, 3DCNN, and TSSFAN meth-
ods on the three datasets to verify the superiority of the hybrid architecture. From Table 8,
we find that the calculation time of the presented TSSFAN, including training and test-
ing time, is much less than that of 3DCNN but larger than that of 2DCNN for all three
datasets. This is mainly because our proposed TSSFAN designs the hybrid architecture
of 3D–2DCNN, which can not only make the network lightweight but also reduces the
complexity of the model remarkably.

Table 8. Computational efficiency of 2DCNN, 3DCNN, and TSSFAN on the three HSI datasets.

Data
2DCNN 3DCNN TSSFAN

Training(s) Testing(s) Training(s) Testing(s) Training(s) Testing(s)

IP 72.1 1.4 306.0 3.8 204.3 2.5
UP 45.4 2.2 177.6 11.4 110.3 4.3
SA 48.5 2.7 192.1 14.5 125.4 5.0

4. Conclusions

In this paper, a novel two-branch spectral–spatial-feature attention network (TSSFAN)
is proposed for HSI classification. TSSFAN designs two parallel 3DCNN branches with
attention modules for two inputs with different spectral dimensions and spatial sizes
to, respectively, focus on extracting the more discriminative spectral features and spatial
features. Moreover, TSSFAN constructs the feature attention module to automatically
adjust the weights of different features based on their contributions for classification to
remarkably enhance the classification performance and utilize 2DCNN to obtain the final
classification result. To verify the effectiveness and superiorities of the proposed method,
TSSFAN is compared with several advanced classification methods on three real HSI
datasets. The experimental results confirm that our proposed TSSFAN can fully extract
more discriminative spectral and spatial features to further improve the classification
accuracy. In addition, TSSFAN achieves the highest classification accuracy and clearly
performs better than the other compared methods. Nevertheless, there still exist some
points that could be further improved. In our further work, the research will focus on
how to optimize a deep-learning framework with an attention mechanism to extract more
discriminative spectral–spatial features under the small training samples situation and
further improve the classification performance.
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