
remote sensing  

Article

Improved Calibration of Wind Estimates from Advanced
Scatterometer MetOp-B in Korean Seas Using Deep
Neural Network

Sung-Hwan Park 1 , Jeseon Yoo 1,* , Donghwi Son 1, Jinah Kim 1 and Hyung-Sup Jung 2

����������
�������

Citation: Park, S.-H.; Yoo, J.; Son, D.;

Kim, J.; Jung, H.-S. Improved

Calibration of Wind Estimates from

Advanced Scatterometer MetOp-B in

Korean Seas Using Deep Neural

Network. Remote Sens. 2021, 13, 4164.

https://doi.org/10.3390/rs13204164

Academic Editor: Xiaofeng Yang

Received: 10 September 2021

Accepted: 15 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Marine Disaster Research Center, Korea Institute of Ocean Science & Technology (KIOST), 385, Haeyang-ro,
Yeongdo-gu, Busan 49111, Korea; spark@kiost.ac.kr (S.-H.P.); dhson@kiost.ac.kr (D.S.); jakim@kiost.ac.kr (J.K.)

2 Department of Geoinformatics, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504,
Korea; hsjung@uos.ac.kr

* Correspondence: jyoo@kiost.ac.kr; Tel.: +51-664-3691

Abstract: Satellite-based observations of sea wind are useful for forecasting marine weather and
performing marine disaster management. Meteorological Operational Satellite-B (MetOp-B) is
one of the satellites that provide wind products through a scatterometer named the Advanced
Scatterometer (ASCAT). Since the linear regression method has been conventionally employed for
calibrating remotely-sensed wind data, deviations and biases remain un-resolved to some degree.
For coastal applications, these remotely-sensed wind data need to be calibrated again using local
in-situ measurements in order to provide more accurate and realistic information. Thus, this study
proposed a new method to calibrate ASCAT-based wind speed estimates using artificial neural
networks. Herein, a deep neural network (DNN) model was applied. Wind databases collected
during a period from 2012 to 2019 by the MetOp-B ASCAT and ten buoy stations in Korean seas were
considered for deep learning-based calibration. ASCAT-based wind data and in-situ measurements
were collocated in space and time. They were then separated into training and validation sets.
A DNN model was designed and trained using multiple input variables such as observation location,
sensing date and time, wind speed, and wind direction of the training set. The DNN-based best fit
calibration model was evaluated using the validation set. The mean of biases between ASCAT-based
and in-situ wind speeds was found to be decreased from 0.41 to 0.05 m/s on average for all buoy
locations. The root mean squared error (RMSE) of wind speed was reduced from 1.38 m/s to 0.93 m/s.
Moreover, the DNN-based calibration considerably improved the quality of wind speeds of less than
4 m/s, and of high wind speeds of 11–25 m/s. These results suggest that ASCAT-based observations
can accurately represent real wind fields if a DNN-based calibration approach is applied.
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1. Introduction

Sea wind is a key parameter for studying ocean physical phenomena and processes
such as ocean surface waves, ocean currents, ocean circulation, storm surges, sea-fog for-
mation, marine meteorology, and so on [1–7]. For instance, measurements of sea winds
with a wide coverage and high accuracy are now keenly used as inputs for marine weather
forecasting, wave modeling, and predicting natural disasters in the ocean [8–13]. Conven-
tionally, sea winds have been measured using offshore buoys or automatic weather stations
(AWS) located on the coast or islands [14,15]. However, point-measurement systems are
inefficient in covering wide oceans due to the expense of installation, the difficulty of main-
tenance, unexpected loss, defects, and failures. In-situ measurements cannot efficiently
cover large oceanic expanses, either.

In order to overcome these limitations of in-situ measurements, satellite-borne in-
struments capable of observing sea surface winds over global oceans continuously for
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a long time at a low cost have been developed [8,16–22]. Typically, a scatterometer sen-
sor is adopted on satellites to measure both sea wind speed and direction. Examples of
space-based scatterometers are Seasat-A [23], Quick Scatterometer (QuikSCAT) [8,16,18–21],
OceanSat-2 [24], and Meteorological Operational satellite-A/B/C (MetOp-A/B/C) [2,25–27].
Altimeters can also be used to measure wind speed at the ocean surface, such as Geodetic
Satellite (GEOSAT) [28], European Remote-Sensing Satellite-1/2 (ERS-1/2) [29], Topogra-
phy Experiment/Poseidon (TOPEX/Poseidon) [17,22], Jason-1/2/3 [2,30–32], and Environ-
mental Satellite (EnviSat) [25,33]. Among satellite-mounted scatterometers, The Advanced
Scatterometers (ASCAT) carried on the MetOp satellite are used for marine research in three
marginal seas around the Korean peninsula (i.e., the East Sea, the Korean Strait, and the
Yellow Sea) because these scatterometers collect both wind speed and direction over these
seas with a long time-span from 2006 to present, in which in-situ measurement systems
have been also operated. These two wind observation databases collected concurrently
from space and the sea surface are now available to accurately evaluate the remote-sensing
performance for local sea areas around Korea [2,34].

ASCAT beams measure the ratio of transmitted and received radar energy over
the radar cross-section along a nadir track below the satellite. Measured backscatter
coefficients are related to wind speeds at the surface [35]. To date, retrieved wind speeds
from ASCAT have been calibrated and validated in many global and regional oceans by
comparison with in-situ wind measurements from buoys [2,35–38]. The Ocean and Sea Ice
Satellite Application Facility (OSI SAF) of the European Organization for the Exploitation
of Meteorological Satellites (EMSAT) requires that ASCAT performance for wind products
should be consistent over the globe. In addition, the standard deviation and the bias of
the ASCAT-based wind speeds should be less than 2 m/s and 0.5 m/s, respectively [35].
For instance, comparisons with winds measured on offshore buoys located in a tropical
zone between Europe and North America and coastal buoys near North America have
found that the standard deviation of wind speed is about 1.5 m/s and the bias is about
-0.25 m/s [35]. Similarly, for three seas around Korea, ASCAT-based wind speeds have
been found to display a root mean squared error (RMSE) of about 1.6 m/s compared to
buoy-based wind data [2]. Nevertheless, it has been reported globally that ASCAT-based
wind observations tend to show larger deviations for wind speeds below 5 m/s and above
15 m/s in general [36,37].

Calibration and validation of ASCAT data have been performed mostly based on linear
regression equations using in-situ measurements to improve their performance [2,35–37].
The linear regression approach itself typically causes deviations and biases of ASCAT-
based wind estimates to remain unsolved to some extent. When ASCAT-based wind
observations are used for coastal applications such as coastal weather prediction and
disaster assessments, they need to be calibrated again using local in-situ measurements
which better represent local climatology. In particular, near land or islands where various
human activities occur, wind estimation performance by remote-sensing needs to be
improved to the level of in-situ measurements. However, ASCAT-based wind results might
be different from the reality, and there were features that are difficult to calibrate using
linear regression equations [2,35–37]. In previous studies that evaluated the accuracy of
ASCAT-based wind speeds in the Korean peninsula, it was reported that the tendency of
RMSE was related to wind speed and direction. In the case of wind speed, it was also
reported that the RMSE was increased when the wind speed was larger than 10 m/s [34].
A study using QSCAT analyzed that, when the wind speed was larger than 15 m/s, the
error was increased [19,39]. Since the wind strength in winter is about 40% stronger than
that in summer in Korea, this may show a seasonal pattern in which the error in winter
increases [40]. In addition, these ASCAT wind errors were different for each in-situ point
used in the evaluation [2]. That is, the complicatedly intertwined errors suggest that there
is a limit to re-calibration using the linear regression equations.

For the reasons described above, it is necessary to improve the accuracy of ASCAT-
based wind estimates by considering localized characteristics of the target area such as
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observation location, wind speed and direction, sensing time, and so on. Recently, a
deep neural network (DNN) model has been applied as a method for regression analysis
considering multiple input variables [41–44]. This deep learning model can retrieve the
relationship between training (or input) and reference (or output target) datasets. A DNN
model consists of multiple layers and nodes to iteratively calculate coefficients of the two
datasets and produce the best fit function for them.

In this study, the deep learning approach was applied to improve the ASCAT per-
formance for local marginal seas around Korea considering various localized factors that
might affect sea wind fields. The ASCAT-based database, including ground coordinates (or
observation location), sensing time (or date and time), wind speed, and wind direction,
was used as the training data and the buoy-based database was used as the reference data
to produce a deep-learning based best-fit model.

2. Study Area and Dataset

Research areas for this study were three marginal seas: the East Sea, the Korean
Strait, and the Yellow Sea around the Korean peninsula (Figure 1). Since the study area
is located between 33 and 39 degrees North, it is mainly influenced by westerlies. It also
shows characteristics of a monsoonal climate, which includes seasonal change of wind
patterns induced by effects of the Siberian air mass, the Okhotsk Sea air mass, the Yangtze
River air mass, the Equatorial air mass, and the Northwest Pacific air mass encountered
in the vicinity of these research areas [45]. In summer, the Northwest Pacific high air
pressure is strongly developed to suppress sea winds around Korea. Tropical typhoons
pass occasionally, with high wind speeds from the south. In winter, storm events caused
by northwesters from the Siberian continent occur frequently.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 21

used in the evaluation [2]. That is, the complicatedly intertwined errors suggest that there 
is a limit to re-calibration using the linear regression equations. 

For the reasons described above, it is necessary to improve the accuracy of ASCAT-
based wind estimates by considering localized characteristics of the target area such as 
observation location, wind speed and direction, sensing time, and so on. Recently, a deep 
neural network (DNN) model has been applied as a method for regression analysis con-
sidering multiple input variables [41–44]. This deep learning model can retrieve the rela-
tionship between training (or input) and reference (or output target) datasets. A DNN 
model consists of multiple layers and nodes to iteratively calculate coefficients of the two 
datasets and produce the best fit function for them. 

In this study, the deep learning approach was applied to improve the ASCAT per-
formance for local marginal seas around Korea considering various localized factors that 
might affect sea wind fields. The ASCAT-based database, including ground coordinates 
(or observation location), sensing time (or date and time), wind speed, and wind direction, 
was used as the training data and the buoy-based database was used as the reference data 
to produce a deep-learning based best-fit model. 

2. Study Area and Dataset 
Research areas for this study were three marginal seas: the East Sea, the Korean Strait, 

and the Yellow Sea around the Korean peninsula (Figure 1). Since the study area is located 
between 33 and 39 degrees North, it is mainly influenced by westerlies. It also shows char-
acteristics of a monsoonal climate, which includes seasonal change of wind patterns in-
duced by effects of the Siberian air mass, the Okhotsk Sea air mass, the Yangtze River air 
mass, the Equatorial air mass, and the Northwest Pacific air mass encountered in the vi-
cinity of these research areas [45]. In summer, the Northwest Pacific high air pressure is 
strongly developed to suppress sea winds around Korea. Tropical typhoons pass occa-
sionally, with high wind speeds from the south. In winter, storm events caused by north-
westers from the Siberian continent occur frequently. 

Figure 1. Study areas with (a) ten buoy locations and (b) an example of the ASCAT observation path on 2 January 2013. 

The ASCAT-based wind database considered in this study was collected by the
MetOp-B satellite operated by the European Space Agency (ESA) and the European Or-
ganization for the Exploitation of Meteorological Satellite (EUMETSAT). The MetOp-B 
satellite was launched in September 2012. The satellite orbits the earth at an altitude of
about 817 km. It has a repeat cycle of 29 days [24,40]. The ASCAT sensor relies on real-
aperture radars using vertically polarized antennas. A long pulse of 5.255 GHz (C band)
with Linear Frequency Modulation (chirp) is emitted from these antennas. Backscattered 
signals from the sea surface are acquired after a de-chirping process. Two sets of antennas 
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The ASCAT-based wind database considered in this study was collected by the MetOp-
B satellite operated by the European Space Agency (ESA) and the European Organization
for the Exploitation of Meteorological Satellite (EUMETSAT). The MetOp-B satellite was
launched in September 2012. The satellite orbits the earth at an altitude of about 817 km.
It has a repeat cycle of 29 days [24,40]. The ASCAT sensor relies on real-aperture radars
using vertically polarized antennas. A long pulse of 5.255 GHz (C band) with Linear
Frequency Modulation (chirp) is emitted from these antennas. Backscattered signals from
the sea surface are acquired after a de-chirping process. Two sets of antennas are used to
generate side-looking radar beams at 45◦ and 135◦ relative to nadir, each under the flight
direction of the MetOp-B satellite. The swath of each beam is about 550 km wide. As the
received backscatter signals are dependent on the sea surface roughness as a function of
wind speed and direction, sea surface wind speed and direction are retrieved from these
backscatter signals by specifying a geophysical model function (GMF) [25–27,35–37,46].
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Wind speed and direction of the ASCAT-based data are provided as 10 m-Equivalent
Neutral Winds (U10) with two spatial resolutions (25 and 12.5 km) over the global ocean.

In this study, the ASCAT 25 km-wind data remotely sensed during a period from
October 2012 to December 2019 were used for a DNN-based investigation of data quality
and data calibration. This period is defined by the coincident set of observations of the
MetOp-B satellite and the in-situ buoys. Figure 1b shows an example of the coverage of
ASCAT on MetOp-B off the coast of South Korea on 2 January 2013. Level 2b ASCAT wind
products are used here. These products provide the latitude, longitude, sensing date and
time of each cell, in addition to wind speed and direction. These data were provided at
each wind vector cell of 25 km by 25 km. Given that the swath width is about 550 km, there
were 42 wind vector cells collected across the two swaths. Thus, a total of about 3,518,000
data-points were collected in the study area.

The in-situ database used as the output target data during the period of interest for
training and testing of the DNN model was collected from ten moored buoy stations main-
tained around Korea by the Korea Meteorological Administration (KMA). The accuracy of
the winds obtained from these buoys is <0.5 m/s for wind speeds <10 m/s and <5 m/s for
wind speeds >10 m/s according to the Guidelines for Ocean Meteorological Observation.
Figure 1a shows locations of the ten buoys, including three located in the Yellow Sea, three
in the Korean Strait, and four in the East Sea. This combination of buoy locations reflects
environmental characteristics of these three seas of South Korea properly. Table 1 presents
location, observation period, observation height, and the number of observed data-points
for these buoy stations. Data collected during a period from 2012 to 2019 were selected.
The total number of these collected in-situ data-points was about 494,000.

Table 1. List of in-situ measurements from ten buoy stations around Korea.

No. Station Name Abbr. Name Lat.
(Deg)

Lon.
(Deg) Observation Period Height *

(m)
Number of

Observations

1 Oeyendo OY 36.25 125.75 Oct 2012–Dec 2019 3.60 66,234

2 Marado MA 33.08 126.03 Oct 2012–Dec 2019 4.60 65,371

3 Chujado CJ 33.79 126.14 Jan 2014–Dec 2019 4.10 46,514

4 Geomundo GM 34.00 127.50 Jan 2012–Dec 2019 4.70 65,812

5 Pohang PH 36.35 129.78 Oct 2012–Dec 2019 4.60 65,389

6 Donghae DH 37.48 129.95 Oct 2012–Dec 2019 4.10 64,964

7 Buan BU 35.66 125.81 Dec 2015–Jul 2019 4.70 30,059

8 Ulsan US 35.35 129.84 Dec 2015–Jul 2019 4.10 29,668

9 Uljin UJ 36.91 129.87 Dec 2015–Jul 2019 4.10 30,975

10 Incheon IC 37.09 125.43 Dec 2015–Jul 2019 4.00 28,972

total 493,958

* Height refers to the distance of the wind-sensor from the waterline of the buoy.

3. Methodology

A flow chart of data processing for calibration of the ASCAT wind data is presented
in Figure 2. The data processing procedure was divided into two parts. The first part was
the pre-processing of the input and target databases used for the deep learning approach.
It included the conversion of wind speed at the buoy-measurement level to that at the
elevation level of 10 m above the mean sea level (i.e., U10), the quality control (QC)
process of the ASCAT and buoy data, and the collocation of the two databases as a data
table comprising match-up pairs with regard to observation location and sensing time.
The second part was the training and validation of the deep learning model. This part
consisted of the following procedures: (1) collocated (or matched-up) data were separated
into training and validation sets; (2) a DNN-based calibration model with model structures
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and hyper-parameters was designed and trained using the training set, and (3) the DNN-
based calibration model (or best fit function) was evaluated using the validation set.
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3.1. Pre-Processing

The data pre-processing procedure was performed to prepare collected data to be
used as training and validation sets for the deep learning model. In this step, as in other
studies, in-situ winds were converted to U10, which was provided in the same format as
the ASCAT wind data [2,35–37]. The Liu–Katsaros–Businger (LKB) formula was applied to
convert the buoy-level wind speed to U10 as follows [2,47,48]:

U10 =
u∗
κ

ln
(

z10

z0

)
(1)

where U10 was the equivalent neutral wind speed at the height of 10 m above the mean
sea level, u∗ was the friction velocity (m/s), κ(= 0.4) was the von Karman constant, z0
was the roughness length in neutral stratification (m), and z10 was the reference height of
10 m [2,47–49].

In the QC process of the ASCAT and the buoy data, a standard deviation-based
threshold was used to remove outliers. Unrealistic negative values were also removed.
In addition, ASCAT wind speeds larger than 25 m/s were removed because that speed
range of the ASCAT wind data could considerably decrease accuracy [35].

Prior to investigation and calibration of the ASCAT wind data using the deep learning
approach, the ASCAT wind data were collocated with the buoy data in space and time.
When ASCAT data-points were within 10 km of a buoy location and the time difference
between the two observations was less than 15 min, the ASCAT and buoy data pairs were
collocated. At this time, the biases were minimized by performing bilinear interpolation on
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the distance of the buoys position and the wind vector grid of the selected ASCAT. The buoy
and the ASCAT data pairs were arranged in chronological order in a table of observation
location (latitude and longitude), sensing time (date and time), and the buoy-based and
ASCAT-based wind properties (wind speed and direction).

3.2. Calibration of ASCAT wind Speed Using DNN

The deep learning model used in this study is the Deep Neural Network (DNN)
that performs training and predicts the results in the same way as multi-layer perceptron
artificial neural networks (MLP-ANN). DNN composes one architecture by adding multiple
hidden layers between the input layer and the output layer. The network becomes more
complex and requires much more computation as the number of layers increases, but it
is known to better explain the relationship between the input layer and the output layer.
This approach has been successfully used to estimate and predict wind speed [41–44].

In addition to wind speed and direction, the location (latitude and longitude) and
time (i.e., date and time in a day) were also used as inputs to the neural network. This is
different from conventional linear regression methods, which have been applied for global
open seas. They used only the satellite-based and the buoy-based wind speeds to obtain a
linear fit between the two data sources.

In this study, it is assumed that the wind estimation error may vary depending on the
observation location. In this context, errors are also possibly influenced by wind direction.
The sensing date and time are assumed to represent seasonal or daily patterns of wind
fields, which may contribute to the tendency of the error. Thus, observation location, wind
direction, and sensing date and time are also used as input variables to find the best fit
function between wind speeds of input and output targets.

All input and target data were normalized to a range of 0 to 1. The latitudinal range,
30~45 degrees North, and the longitudinal range, 115~140 degrees East, were linearly
converted to a range of 0 to 1. Dates of observation were converted into days counted
from 1 January the yearly first day (i.e., Day of Year) and divided by the maximum number
of days per year (365 or 366). Time of observation was rounded to the nearest hour and
divided by 24. Wind speeds were divided by 25 m/s, the upper bound of the ASCAT wind
speed [35]. Wind directions were also transformed to a range from 0 to 1 by applying both
cosine and sine functions.

The neural network was designed to encompass five hidden layers, in which 256,
128, 64, 32, and 16 nodes were selected from the first to the last hidden layer, respectively.
The input layer comprised one to seven nodes (normalized ASCAT wind speed, two nor-
malized wind directions using cosine and sine function, normalized date of observation,
normalized time of observation, normalized latitude, and normalized longitude) according
to test models. The output layer comprised one node, the calibrated wind speed. Recti-
fied Linear Unit (ReLU) was selected as the activation function to improve the nonlinear
properties of the network in input and hidden layers. Mean Squared Error (MSE) was
used as the loss function. Through backpropagation, the gradient of the loss function was
calculated by means of Stochastic Gradient Descent (SGD). Weights connecting nodes were
updated in an iterative manner. As for hyper-parameters used in the model, the maximum
epoch was set to be 300 with a batch size of 50 and a learning rate of 0.001.

The match-up database was divided into two sets: a training set and a validation set.
The training set (80% of total data) was randomly sampled from the total data. It was used
to generate the best fit function between wind speeds of inputs and those of output targets
given in the training set. The trained model was tested and evaluated with the remaining
validation set.

In order to evaluate the performance of the DNN, the two linear regression models
and the Support Vector Regression (SVR) model suggested by Mohandes et al. [50] were
adopted to compute their best fit functions between wind inputs and output targets.
The best fit functions derived using the all test models were applied to the validation set.
Performances of these approaches were compared with regard to wind speed and direction.
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4. Results
4.1. Pre-Processing Results

Results of collocation of ASCAT and buoy data pairs in space and time are summarized
in Table 2, showing numbers of selected data-points and the ratio of the matched to the
initial buoy data at each buoy station. About 14,000 of the total 494,000 buoy observations
were matched with ASCAT ones. These matched observations could explain the full data
statistically, showing a margin of error of about 1.1% with a confidence level of 99% [51].
At locations of Buan, Ulsan, Uljin, and Incheon buoys, less than a thousand match-ups
were identified because observation periods were slightly shorter than those of the other
buoys as shown in Table 1. The overall matched ratio was 2.86%, ranging from 2.57% to
3.13% over all buoy locations. It shows that the data for any one particular buoy is not
overly contained.

Table 2. Collocation results of the buoy data.

No. OY MA CJ GM PH DH BU US UJ IC Total

Number of Matched Data 1924 1677 1369 1989 1821 1795 930 852 875 907 14,139

Matching Ratio 2.90 2.57 2.94 3.02 2.78 2.76 3.09 2.87 2.82 3.13 2.86

4.2. Comparison of Results by the DNN-Based Model and Other Calibration Methods

The two linear regressions, SVM, and four DNN models were trained using the
training set to obtain the best fit function, which was evaluated using the validation set.
Buoy wind speeds (xi) minus calibrated wind speeds (x̂i) were used to prepare a histogram
as shown in Figure 3d and summarized in Table 3. For comparison, results of the linear
regression and the SVR method are also shown in Figure 3 and Table 3. Mean (X) and
median (X̃) values of differences were closer to zero, meaning that ASCAT wind speed
estimates were better calibrated. In addition, as the shape of the histogram distribution
was more zero-centered with thinner width, the RMSE was smaller because the RMSE was
computed as:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (2)

Figure 3a is a histogram of uncalibrated wind speed differences. The mean and the
median values were positive at 0.41 and 0.31 m/s, respectively, and the RMSE was 1.40 m/s
(Table 3). This meant that the uncalibrated level 2B ASCAT wind speeds were lower than
the in-situ measurements. ASCAT wind speeds calibrated with DNN model-4 resulted in
an approximately 10-fold reduction in the bias, a 40% reduction in the RMSE and an 80%
increase in kurtosis (Figure 3 and Table 3).

The two linear regression methods improved the mean and median values. This con-
siderably reduced the bias. However, the RMSEs were only marginally reduced compared
with uncalibrated wind speeds (Figure 3a,b). The SVR approach showed virtually no
improvement when compared with uncalibrated winds.
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Table 3. Statistical analysis results of the outputs by the calibration method adopted in this study.

Method Input Variable for Finding the Best Fit Function Results

Mean Median RMSE Kurtosis

Before calibrated - 0.41 0.31 1.40 7.04

Linear Regression-1 Wind speed 0.02 −0.08 1.34 6.85

Linear Regression-2 Wind speed + Wind direction + Location + Date + Time −0.03 −0.11 1.27 2.97

SVR Wind speed + Wind direction + Location + Date + Time −0.29 −0.37 1.38 6.24

DNN-1 Wind speed + Wind direction −0.04 −0.13 1.26 9.37

DNN-2 Wind speed + Location −0.13 −0.21 1.22 4.39

DNN-3 Wind speed + Date + Time 0.12 0.04 1.25 9.24

DNN-4 Wind speed + Wind direction + Location + Date + Time 0.05 0.02 1.00 12.54

Table 3 shows the results of the four DNN methods tested to investigate the effects
of input variable conditions on results. In all DNN models, the biases of the mean and
median were reduced. Among them, the model in which both statistical values were close
to 0 was the DNN-4 model. Their RMSEs were also closer to zero than those of the linear
models and the SVR method.

Overall, the results of these comparisons revealed that the condition with all input
variables combined in the DNN training produced the best outputs. The DNN-4 model,
which considered all input factors, showed the best performance among all approaches.
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4.3. Consistency of DNN-Based Calibration Results

A scatter plot of data pairs of calibrated ASCAT wind speeds and buoy wind speeds
is shown in Figure 4a. Post-calibration ASCAT wind speeds via linear regression-2 and
DNN-4 models were also compared (Figure 4b,c). The results of comparison between these
two datasets for evaluating the quality of ASCAT wind speed estimates before and after
calibration revealed a linear function as shown below:

UASCAT = a×UBuoy + b (3)

where UASCAT and UBuoy were ASCAT and buoy wind speeds, respectively, and a and b
were underdetermined coefficients of the linear function used to represent the relationship
between them. Coefficients of determination of the linear function and statistical indicators
from these comparisons are also given in Figure 4.
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Before calibration, the linear function showed a = 0.94, b = 0.84, RMSE = 1.38 m/s
and Normalized Mean Square Error (NMSE) = 0.15, which contributed to a bias of prior-
calibration ASCAT wind speeds as shown in Figure 4a. The linear regression-2 model
slightly improved R-square, RMSE and NMSE, but the effect was not significant (Figure 4b).
After calibration using the DNN-4 model, the slope (i.e., a) of the linear function was im-
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proved from 0.94 to 0.97 along with the y-intercept, b changed from 0.84 to 0.33 and the
R-square increased from 0.87 to 0.93. In particular the RMSE and NMSE were signifi-
cantly improved from 1.38 to 0.93 m/s and from 0.15 to 0.07, respectively. Much of the
improvement was made when the wind speed was low (<5 m/s). These results indicated
that ASCAT wind speeds were calibrated to agree more closely with buoy wind speeds
(Figure 4c).

To investigate the consistency of DNN-4 model-based calibration results over study
areas, outputs from the training set and the validation set were statistically analyzed all
together with regard to observation location, wind direction, and wind speed, with results
presented in Figures 5–7, respectively.

Deviations of absolute wind speed differences (i.e., absolute biases) at observation
locations were evaluated. Results are presented in Figure 5 using a type of box plot with
indications of the median, the first and third quartiles, and the minimum and maximum
bounds excluding outliers. Before calibration, deviations of the speed difference were
not consistent. They largely varied depending on the observation location (Figure 5a).
Qualitatively, the median and the upper quartile values of the speed difference ranged from
about 0.5 to 1.0 m/s and from about 1.1 to 1.7 m/s, respectively. In cases of Geomundo
(GM), Pohang (PH), and Ulsan (US), located in the southeast part of South Korea, it
was notable that statistical indicators were more deviated compared to those of other
locations. After calibration, deviations of speed differences were reduced to be consistent
over all observation locations (Figure 5b). The median and the upper quartile values of
the speed difference were improved to encompass ranges of about 0.4~0.6 m/s and about
0.7~1.1 m/s, respectively. The results of such comparative analysis between observation
locations revealed that the DNN method could calibrate ASCAT wind speeds more evenly
and more accurately by reflecting local characteristics well.
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Next, to look into distribution of absolute wind speed differences over the wind
speed range of interest, speed differences were calculated in bins of wind speeds of 1 m/s.
Results are presented in Figure 6 and Table 4. Red dots and error bars in the graph denote
mean and standard deviation of speed differences in each bin. At this time, wind speeds
higher than 16 m/s were excluded from the analysis because the number of samples was
less than 50. Before calibration, the mean of speed differences was evenly distributed
at around 1 m/s, tending to increase at low wind speeds (less than 4 m/s) (Figure 6a).
After calibration, these speed differences were largely reduced over the full speed range of
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interest (less than about 0.7 m/s). In particular, bins of low wind speed (less than 4 m/s)
and high wind speed (11 m/s) were greatly improved with much lower mean and standard
deviation values, as shown in Figure 6b. It is known that ASCAT wind speeds tend to have
larger errors in lower and higher wind speeds [36,37]. However, this problem was solved
using the DNN method in this study. Nevertheless, the calibration was insufficient for the
wind speed of 4–11 m/s, which is thought to be due to some overestimated results during
the calibration process (Figure 6c).
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Table 4. The mean and standard deviation of wind speed differences (4WS) at each 1 m/s bin.

Wind Speed
(m/s)

Before Calibration After Calibration

Mean of4WS (m/s) Std. of4WS (m/s) Mean of4WS (m/s) Std. of4WS (m/s)

0–1 1.35 1.46 0.46 0.60

1–2 1.21 1.23 0.52 0.74

2–3 1.16 1.05 0.63 0.71

3–4 1.05 0.92 0.65 0.62

4–5 0.99 0.93 0.69 0.68

5–6 0.94 0.86 0.72 0.71

6–7 0.89 0.84 0.71 0.70

7–8 0.89 0.89 0.67 0.60

8–9 0.92 0.81 0.68 0.61

9–10 0.94 0.83 0.71 0.64

10–11 0.96 0.87 0.69 0.65

11–12 0.93 0.88 0.57 0.48

12–13 0.93 0.88 0.53 0.47

13–14 0.86 0.73 0.44 0.37

14–15 0.85 0.68 0.35 0.32

15–16 0.88 0.71 0.30 0.25

To analyze absolute wind speed differences from the aspect of wind direction, speed
differences were calculated in bins of wind directions of 45 degrees (Figure 7 and Table 5).
The results were analyzed by dividing each of the ten buoys into three marginal seas.
The three buoys located in the Yellow Sea (Incheon, Oeyeondo, and Buan) displayed
a small difference and standard deviation compared to other sea areas even before the
calibration, except for the W direction. In the buoys in the Korean Strait (Chujado, Marado,
and Geomundo), both difference and standard deviation were found to be larger than
those in the other two seas. As a result of the buoy located in the East Sea (Donghae, Uljin,
Pohang, and Ulsan), the E direction wind from the sea showed the smallest difference.
All three marginal seas showed a large difference when the wind was westerly. The large
difference in the other directions in the Korean Strait Sea and East Sea is probably due to
the influence of typhoons or strong northeasterly winds in winter. After calibration, the
mean and standard deviation of speed differences were remarkably reduced to between
0.6 and 0.8 m/s in all wind directions.
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Table 5. The mean and standard deviation of wind speed differences (4WS) at each wind direction bin.

Before Calibration After Calibration

Yellow Sea Korean Strait East Sea Yellow Sea Korean Strait East Sea

Wind
Direction

Mean
4WS
(m/s)

Std.
4WS
(m/s)

Mean
4WS
(m/s)

Std.
4WS
(m/s)

Mean
4WS
(m/s)

Std.
4WS
(m/s)

Mean
4WS
(m/s)

Std.
4WS
(m/s)

Mean
4WS
(m/s)

Std.
4WS
(m/s)

Mean
4WS
(m/s)

Std.
4WS
(m/s)

North 0.78 0.69 1.04 0.95 1.11 0.99 0.59 0.55 0.68 0.65 0.74 0.70

North-east 0.80 0.70 1.16 1.01 1.00 0.90 0.58 0.52 0.71 0.71 0.73 0.66

East 0.81 0.78 0.98 1.03 0.91 0.90 0.58 0.66 0.68 0.67 0.59 0.61

South-east 0.79 0.74 1.17 1.21 0.87 0.98 0.58 0.53 0.68 0.86 0.61 0.66

South 0.82 0.92 0.98 1.00 0.93 0.75 0.51 0.45 0.55 0.58 0.63 0.56

South-west 0.85 0.81 1.02 1.03 1.04 0.86 0.55 0.56 0.51 0.55 0.68 0.66

West 1.02 1.28 1.08 1.13 1.12 0.98 0.56 0.75 0.58 0.83 0.73 0.73

North-west 0.87 0.84 1.20 1.12 1.23 0.97 0.62 0.69 0.68 0.74 0.79 0.74

To analyze the performance of the DNN model on seasonal variability, the time series
bias was expressed over all observation periods. Figure 8 shows the data analyzed in
Figure 4 as a time series, and Figure 9 is a monthly boxplot to quantitatively analyze
seasonal variability. As can be seen from Figures 8a and 9a, the difference carries seasonal
characteristics. The ASCAT-based wind speed tends to overestimate the buoy wind speed
in winter, repeating every year. This seasonal variability still remains, even when the
linear regression model with date factor as input variables was applied (Figures 8b and 9b).
However, the seasonal dependence was eliminated using the DNN method in this study,
because the DNN network succeeded in inferring the complex relationship between the
input variables and the buoy wind speeds (Figures 8c and 9c). The median value of wind
speed differences in all months converges to zero.
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5. Discussion

In this study, ASCAT-based wind data of the provider level were compared to in-
situ measurements around Korea. It was found that the average RMSE was 1.38 m/s
(Figure 4). It was also found that the quality of the ASCAT wind speed estimates showed
large fluctuations in three marginal seas around the Korean peninsula depending on the
observation location (Figure 5), wind speed (Figure 6), and wind direction (Figure 7).
To better calibrate ASCAT wind speeds (so that the accuracy of ASCAT wind speeds could
be improved) known to be influenced by local geographic and climatologic factors, this
study proposed a DNN-based calibration method using multiple input factors, unlike
traditional linear regression methods [2,35–40]. The ASCAT wind data were calibrated
using the DNN method by considering wind direction, observation location, and sensing
date and time as input variables to agree well with in-situ measurements (Figures 4–9).

This was more effective than the previously performed method using linear regres-
sion [2,35–40]. As a result of analyzing the bias trend before calibration through Figures 5–8,
it is expected that it will be difficult to design a multiple regression analysis that reflects
this trend well. In particular, ASCAT-based wind speed was confirmed to show seasonal
variability, and multicollinearity between variables was also expected. In this situation, the
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DNN model that constructs complex networks of each variable-hidden layer-true value
and learns weights repeatedly was effective.

The most significant improvement after applying the proposed method was observed
for ranges of low wind speed (<5 m/s) and high wind speed (>11 m/s). Accurate monitor-
ing is required for both wind ranges in terms of coastal disaster management. The low wind
speed is related to the occurrence of sea fog in South Korea [52]. In addition, high wind
speeds can cause high waves that can cause severe damage to coastal areas [53,54]. Accu-
rate observation can promote prediction of threats by sea fog and high waves. Thus, the
results of this study are meaningful from this perspective, as mentioned in the introduction.

The DNN-based best fit calibration model proposed in this study can be applied to
the whole swath of ASCAT observations. Figure 10 shows an example of application of
the proposed approach for calibrating ASCAT wind speeds over two side swaths of a
path. Wind data were captured at 12:00 PM (local Korean time) on 19 January 2016 when a
large wave event occurred in winter. The maximum wave height was 6.5 m. As shown in
Figure 10a,b, wind speeds larger than 15 m/s were developed across South Korea in the
NW–SE direction.
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After the calibration model was applied, winds around Oeyendo (OY) and Buan (BU)
in the Yellow Sea became stronger. The negative value meant that the wind speed after
calibration was larger (area A denoted in Figure 10d). There was not much difference
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found between the locations of Chujado (CJ) and Geomundo (GM), located in the Korean
Strait of Korea. In contrast, winds around Ulsan (US) located in the East Sea of Korea
were adjusted to be weaker (area B denoted in Figure 10d). These results indicate that
the proposed method can incorporate these regional characteristics in the best fit model
and consequently adjust this wind to be weaker. The positive value means that the wind
speed after calibration is smaller. The RMSE calculated by comparison of the ASCAT wind
data and the in-situ measurements was improved from 2.66 m/s to 1.74 m/s on average
after calibration. As for the area around Oyeondo and Buan, the wind speed difference
was improved from 1.60 to 1.00 m/s. As for Ulsan, the speed difference was remarkably
reduced from 2.08 to 0.44 m/s. These results confirmed that the DNN-based calibration
model could improve the quality of ASCAT wind estimates evenly over the study area by
compensating for regionally signified atmospheric characteristics.

The study results effectively proved that a DNN model using the observation position
of ASCAT, sensing time, wind speed and direction as input variables is useful for improv-
ing its wind speed estimation performance. The scatterometer measures the backscatter
coefficient, and the surface wind vector can be determined using a geophysical model
function (GMF) and measured backscatter coefficient. In this process, if any external factors
other than wind affect the surface roughness of the sea surface, the wind may be incorrectly
estimated from the disturbed backscattering coefficient. The surfactants in the water due
to near shore biological processes, the relationship between sea state and surface friction,
neutral stability of the atmosphere, air temperature, and depth of shallow water may
affect surface roughness. In future, it is necessary to study comparative analysis with
numerical wind model results, such as the European Centre for Medium-Range Weather
Forecasts re-analysis v5 (ERA5), and a fundamental consideration of the causes of wind
estimation errors.

6. Conclusions

Sea wind is one of key forces that cause coastal disasters by inducing large waves,
storm surges, coastal currents, heavy sea-fog events, and so on. Observation of sea winds
with a wide coverage and high accuracy by using wind data for numerical predictions
or statistical analysis of a long-term database is becoming essential to prevent coastal
disasters. Satellite-based observation has been developed to observe global sea surface
winds continuously for a long time at a low cost. Typically, satellite-mounted scatterometer
is used to measure both sea wind speed and direction.

The results of this study suggested that ASCAT-based wind estimates could be used
for coastal disaster management purposes, such as predictions of coastal waves and sea-fog
events. These ASCAT-based wind data were calibrated using in-situ measurements in
global open seas. The linear regression method conventionally adopted for calibrating the
remotely-sensed wind data caused deviations and biases to remain unresolved to some
extent. Besides, earlier studies have reported that ASCAT-based wind observations tend to
display larger deviations for lower (i.e., <5 m/s) and higher (i.e., >11 m/s) wind speeds.
In order to use ASCAT-based wind observation more usefully, it is necessary to improve
the observation reliability to the level of in-situ measurements.

For these reasons, a deep neural network (DNN) model was applied in this study to
better calibrate ASCAT-based wind speeds in marginal seas around Korea by considering
multiple coastal factors that might affect sea wind fields. The wind database collected
during a period from 2012 to 2019 by the MetOp-B ASCAT and in-situ sensors at 10 buoy
stations in Korean seas were collocated and separated into a training set (80%) and a
validation set (20%) for the deep learning-based approach. ASCAT wind data were used
as inputs for training the DNN model while in-situ measured data were used as output
targets. As for input variables, observation locations, sensing time, wind speed, and wind
direction were used to reflect local climate characteristics.

As a result, the bias between ASCAT-based and in-situ wind speeds was decreased
from 0.41 to 0.05 m/s on average for all buoy locations. In addition, the RMSE of wind
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speed was reduced from 1.38 m/s (before calibration) to 0.93 m/s. Moreover, the speed
difference between the two datasets was considerably improved for low wind speeds
(below 4 m/s) and high wind speeds (above 11 m/s). It was also found that the DNN-
based calibration model improved the quality of ASCAT wind estimates evenly over study
areas by properly compensating for those coastal atmospheric characteristics causing the
errors to be larger.

In conclusion, the proposed method was effective in calibrating ASCAT-based wind
speeds in marginal seas by considering local impact factors. It improved the accuracy
for low and high wind speeds. In addition, the proposed approach can be more reliable
through training with more evenly-spaced and long-term in-situ measurements. This study
also indicates that improved ASCAT wind speeds can be used for more accurate prediction
and assessment of coastal disasters such as wind impact on waves, coastal storm surge,
sea-fog hazard, and maritime management of marginal seas around Korea.

Author Contributions: Conceptualization, S.-H.P. and J.Y.; Methodology, S.-H.P. and J.Y.; Validation,
D.S. and J.K.; Formal analysis, S.-H.P. and J.Y.; Investigation, S.-H.P.; Writing—original draft prepara-
tion; S.-H.P. and H.-S.J.; Writing—review and editing, J.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: The work was supported by KIOST(PE99942) and the project “Establishment of the ocean
research station in the jurisdiction zone and convergence research” funded by the Ministry of Oceans
and Fisheries, Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://podaac-opendap.jpl.nasa.gov/opendap/allData/ascat/preview/L2/metop_
b/25km/.

Acknowledgments: We would like to thank Won-Kyung Baek.

Conflicts of Interest: The authors have no conflict of interest relevant to this study to disclose.

References
1. Jang, J.C.; Park, K.A.; Yang, D. Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data.

Korean J. Remote Sens. 2018, 34, 1383–1398.
2. Son, D.; Jun, K.; Shim, J.S.; Kown, J.I.; Yoo, J. Validation of MetOp-B and Jason-2 Sea Surface Wind Data around the Korean

Peninsula. Korea Soc. Coast. Disaster Prev. 2020, 7, 233–241. [CrossRef]
3. Janssen, P.A.E.M. Quasi-Linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 1991, 21,

1631–1642. [CrossRef]
4. Kara, A.B.; Metzger, E.J.; Bourassa, M.A. Ocean current and wave effects on wind stress drag coefficient over the global ocean.

Geophys. Res. Lett. 2007, 34, 1–4. [CrossRef]
5. Brostrom, G. On the influence of large wind farms on the upper ocean circulation. J. Mar. Syst. 2008, 74, 585–591. [CrossRef]
6. Debernard, J.B.; Roed, L.P. Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus A Dyn. Meteorol.

Oceanogr. 2008, 60, 427–438. [CrossRef]
7. Lee, C.M.; Orlic, M.; Poulain, P.M.; Cushman-Roisin, B. Introduction to special section: Recent advances in oceanography and

marine meteorology of the Adriatic Sea. J. Geophys. Res. Ocean 2007, 112, 1–3. [CrossRef]
8. Chelton, D.B.; Freilich, M.H.; Sienkiewicz, J.M.; Von Ahn, J.M. On the use of QuikSCAT scatterometer measurements of surface

winds for marine weather prediction. Mon. Weather Rev. 2006, 134, 2055–2071. [CrossRef]
9. Atlas, R.; Hoffman, R.N.; Leidner, S.M.; Sienkiewicz, J.; Yu, T.W.; Bloom, S.C.; Brin, E.; Ardizzone, J.; Terry, J.; Bungato, D.; et al.

The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Am. Meteorol. Soc. 2001, 82,
1965–1990. [CrossRef]

10. Cavaleri, L.; Barbariol, F.; Benetazzo, A. Wind-Wave Modeling: Where We Are, Where to Go. J. Mar. Sci. Eng. 2020, 8, 260.
[CrossRef]

11. Ruiz-Salcines, P.; Salles, P.; Robles-Diaz, L.; Diaz-Hernandez, G.; Torres-Freyermuth, A.; Appendini, C.M. On the Use of Parametric
Wind Models for Wind Wave Modeling under Tropical Cyclones. Water 2019, 11, 2044. [CrossRef]

12. Choo, T.H.; Kim, Y.S.; Sim, S.B.; Son, J.K. Development of the Wind Wave Damage Predicting Functions in southern sea based on
Annual Disaster Reports. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 668–675.

https://podaac-opendap.jpl.nasa.gov/opendap/allData/ascat/preview/L2/metop_b/25km/
https://podaac-opendap.jpl.nasa.gov/opendap/allData/ascat/preview/L2/metop_b/25km/
http://doi.org/10.20481/kscdp.2020.7.4.233
http://doi.org/10.1175/1520-0485(1991)021&lt;1631:QLTOWW&gt;2.0.CO;2
http://doi.org/10.1029/2006GL027849
http://doi.org/10.1016/j.jmarsys.2008.05.001
http://doi.org/10.1111/j.1600-0870.2007.00312.x
http://doi.org/10.1029/2007JC004115
http://doi.org/10.1175/MWR3179.1
http://doi.org/10.1175/1520-0477(2001)082&lt;1965:TEOMWF&gt;2.3.CO;2
http://doi.org/10.3390/jmse8040260
http://doi.org/10.3390/w11102044


Remote Sens. 2021, 13, 4164 20 of 21

13. Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain.
Energy Rev. 2016, 53, 1240–1251. [CrossRef]

14. Li, J.; Wang, D.X.; Chen, J.; Yang, L. Comparison of remote sensing data with in-situ wind observation during the development of
the South China Sea monsoon. Chin. J. Oceanol. Limnol. 2012, 30, 933–943. [CrossRef]

15. Rashmi, R.; Aboobacker, V.M.; Vethamony, P.; John, M.P. Co-existence of wind seas and swells along the west coast of India
during non-monsoon season. Ocean Sci. 2013, 9, 281–292. [CrossRef]

16. Pickett, M.H.; Tang, W.Q.; Rosenfeld, L.K.; Wash, C.H. QuikSCAT satellite comparisons with nearshore buoy wind data off the
US West Coast. J. Atmos. Ocean. Technol. 2003, 20, 1869–1879. [CrossRef]

17. Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, D.W. A statistical comparison of wind speed, wave height, and wave period
derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res. Ocean 1998, 103, 10451–10468.
[CrossRef]

18. Kumar, S.V.V.A.; Nagababu, G.; Kumar, R. Comparative study of offshore winds and wind energy production derived from
multiple scatterometers and met buoys. Energy 2019, 185, 599–611. [CrossRef]

19. Ebuchi, N.; Graber, H.C.; Caruso, M.J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J.
Atmos. Ocean. Technol. 2002, 19, 2049–2062. [CrossRef]

20. Satheesan, K.; Sarkar, A.; Parekh, A.; Kumar, M.R.R.; Kuroda, Y. Comparison of wind data from QuikSCAT and buoys in the
Indian Ocean. Int. J. Remote Sens. 2007, 28, 2375–2382. [CrossRef]

21. Carvalho, D.; Rocha, A.; Gomez-Gesteira, M.; Santos, C.S. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP
modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ. 2014, 152, 480–492. [CrossRef]

22. Gower, J.F.R. Intercalibration of wave and wind data from TOPEX POSEIDON and moored buoys off the west coast of Canada. J.
Geophys. Res. Ocean 1996, 101, 3817–3829. [CrossRef]

23. Jones, W.L.; Schroeder, L.C.; Boggs, D.H.; Bracalente, E.M.; Brown, R.A.; Dome, G.J.; Pierson, W.J.; Wentz, F.J. The SEASAT-A
satellite scatterometer: The geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res. 1982, 87,
3297–3317. [CrossRef]

24. Yang, J.G.; Zhang, J. Comparison of Oceansat-2 Scatterometer Wind Data with Global Moored Buoys and ASCAT Observation.
Adv. Meteorol. 2019, 2019, 1651267. [CrossRef]

25. Yang, X.F.; Li, X.F.; Pichel, W.G.; Li, Z.W. Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterome-
ter, Buoy Measurements, and NOGAPS Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [CrossRef]

26. Sharoni, S.M.H.; Reba, M.N.M.; Hossain, M.S. Tropical Cyclone Wind Speed Estimation From Satellite Altimeter-Derived Ocean
Parameters. J. Geophys. Res. Ocean 2021, 126, e2020JC016988. [CrossRef]

27. Wang, Z.X.; Stoffelen, A.; Zou, J.H.; Lin, W.M.; Verhoef, A.; Zhang, Y.; He, Y.J.; Lin, M.S. Validation of New Sea Surface Wind
Products From Scatterometers Onboard the HY-2B and MetOp-C Satellites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4387–4394.
[CrossRef]

28. Witter, D.L.; Chelton, D.B. A Geosat Altimeter Wind-Speed Algorithm and a Method for Altimeter Wind-Speed Algorithm
Development. J. Geophys. Res. Ocean 1991, 96, 8853–8860. [CrossRef]

29. Horstmann, J.; Schiller, H.; Schulz-Stellenfleth, J.; Lehner, S. Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote
Sens. 2003, 41, 2277–2286. [CrossRef]

30. Ménard, Y.; Fu, L.-L.; Escudier, P.; Parisot, F.; Perbos, J.; Vincent, P.; Desai, S.; Haines, B.; Kunstmann, G. The Jason-1 Mission
Special Issue: Jason-1 Calibration/Validation. Mar. Geod. 2003, 26, 131–146. [CrossRef]

31. Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.R. Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation.
Mar. Geod. 2010, 33, 239–255. [CrossRef]

32. Yang, J.G.; Zhang, J.; Jia, Y.J.; Fan, C.Q.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant
Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [CrossRef]

33. Horstmann, J.; Koch, W.; Lehner, S. Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT.
Ocean. Dyn. 2004, 54, 570–576. [CrossRef]

34. Park, J.; Kim, D.W.; Jo, Y.H.; Kim, D. Accuracy Evaluation of Daily-gridded ASCAT Satellite Data Around the Korean Peninsula.
Korean J. Remote Sens. 2018, 34, 213–225.

35. Verhoef, A.; Portabella, M.; Stoffelen, A. High-Resolution ASCAT Scatterometer Winds Near the Coast. IEEE Trans. Geosci. Remote
Sens. 2012, 50, 2481–2487. [CrossRef]

36. Bentamy, A.; Croize-Fillon, D.; Perigaud, C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind
vector observations. Ocean Sci. 2008, 4, 265–274. [CrossRef]

37. Ribal, A.; Young, I.R. Calibration and Cross Validation of Global Ocean Wind Speed Based on Scatterometer Observations. J.
Atmos. Ocean. Technol. 2020, 37, 279–297. [CrossRef]

38. Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2012, 33, 1729–1754.
[CrossRef]

39. Jeong, J.Y.; Shim, J.S.; Lee, D.K.; Min, I.K.; Kwon, J.I. Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of
Korean Peninsula. Ocean Polar Res. 2008, 30, 47–58. [CrossRef]

40. Kim, D.W.; Byun, H.R. Spatial and temporal distribution of wind resources over Korea. Atmosphere 2008, 18, 171–182.

http://doi.org/10.1016/j.rser.2015.09.063
http://doi.org/10.1007/s00343-012-1285-6
http://doi.org/10.5194/os-9-281-2013
http://doi.org/10.1175/1520-0426(2003)020&lt;1869:QSCWNB&gt;2.0.CO;2
http://doi.org/10.1029/98JC00197
http://doi.org/10.1016/j.energy.2019.07.064
http://doi.org/10.1175/1520-0426(2002)019&lt;2049:EOWVOB&gt;2.0.CO;2
http://doi.org/10.1080/01431160701236803
http://doi.org/10.1016/j.rse.2014.07.017
http://doi.org/10.1029/95JC03281
http://doi.org/10.1029/JC087iC05p03297
http://doi.org/10.1155/2019/1651267
http://doi.org/10.1109/TGRS.2011.2159802
http://doi.org/10.1029/2020JC016988
http://doi.org/10.1109/TGRS.2019.2963690
http://doi.org/10.1029/91JC00414
http://doi.org/10.1109/TGRS.2003.814658
http://doi.org/10.1080/714044514
http://doi.org/10.1080/01490419.2010.487798
http://doi.org/10.3390/rs12132079
http://doi.org/10.1007/s10236-004-0098-3
http://doi.org/10.1109/TGRS.2011.2175001
http://doi.org/10.5194/os-4-265-2008
http://doi.org/10.1175/JTECH-D-19-0119.1
http://doi.org/10.1080/01431161.2011.600348
http://doi.org/10.4217/OPR.2008.30.1.047


Remote Sens. 2021, 13, 4164 21 of 21

41. Kalra, R.; Deo, M.C. Derivation of coastal wind and wave parameters from offshore measurements of TOPEX satellite using
ANN. Coast. Eng. 2007, 54, 187–196. [CrossRef]

42. Huang, C.J.; Kuo, P.H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic
Optimization for Renewable Energy Systems. Energies 2018, 11, 2777. [CrossRef]

43. Liu, Y.X.; Collett, I.; Morton, Y.J. Application of Neural Network to GNSS-R Wind Speed Retrieval. IEEE Trans. Geosci. Remote
Sens. 2019, 57, 9756–9766. [CrossRef]

44. Duan, J.K.; Zuo, H.C.; Bai, Y.L.; Duan, J.Z.; Chang, M.H.; Chen, B.L. Short-term wind speed forecasting using recurrent neural
networks with error correction. Energy 2021, 217, 119397. [CrossRef]

45. Kim, M.K.; Kim, Y.H.; Lee, W.S. Seasonal prediction of Korean regional climate from preceding large-scale climate indices. Int. J.
Climatol. 2007, 27, 925–934. [CrossRef]

46. Figa-Saldana, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT)
on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28,
404–412. [CrossRef]

47. Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification
for the COARE algorithm. J. Clim. 2003, 16, 571–591. [CrossRef]

48. Smith, S.D. Coefficients for Sea-Surface Wind Stress, Heat-Flux, and Wind Profiles as a Function of Wind-Speed and Temperature.
J. Geophys. Res. Ocean 1988, 93, 15467–15472. [CrossRef]

49. Byun, D.S.; Kim, H.; Lee, J.; Lee, E.; Park, K.A.; Woo, H.J. Converting Ieodo ocean research station wind speed observations to
reference height data for real-time operational use. J. Koream Soc. Ocean. 2018, 23, 153–178.

50. Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Energy 2004, 29,
939–947. [CrossRef]

51. Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches
in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [CrossRef] [PubMed]

52. Choo, T.H.; Kwak, K.S.; Ahn, S.H.; Yamg, D.U.; Son, J.K. Development for the function of Wind wave Damage Estimation at the
Western Coastal Zone based on Disaster Statistics. J. Korea Acad. Ind. Coop. Soc. 2017, 18, 14–22.

53. Choo, Y.M.; Chun, K.H.; Jeon, H.S.; Sim, S.B. A Predictive Model for Estimating Damage from Wind Waves during Coastal Storms.
Water 2021, 13, 1322. [CrossRef]

54. Kim, C.K.; Yum, S.S. Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the
west coast of Korea. Adv. Atmos. Sci. 2010, 27, 761–776. [CrossRef]

http://doi.org/10.1016/j.coastaleng.2006.07.001
http://doi.org/10.3390/en11102777
http://doi.org/10.1109/TGRS.2019.2929002
http://doi.org/10.1016/j.energy.2020.119397
http://doi.org/10.1002/joc.1448
http://doi.org/10.5589/m02-035
http://doi.org/10.1175/1520-0442(2003)016&lt;0571:BPOASF&gt;2.0.CO;2
http://doi.org/10.1029/JC093iC12p15467
http://doi.org/10.1016/j.renene.2003.11.009
http://doi.org/10.11613/BM.2021.010502
http://www.ncbi.nlm.nih.gov/pubmed/33380887
http://doi.org/10.3390/w13091322
http://doi.org/10.1007/s00376-009-9090-7

	Introduction 
	Study Area and Dataset 
	Methodology 
	Pre-Processing 
	Calibration of ASCAT wind Speed Using DNN 

	Results 
	Pre-Processing Results 
	Comparison of Results by the DNN-Based Model and Other Calibration Methods 
	Consistency of DNN-Based Calibration Results 

	Discussion 
	Conclusions 
	References

