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Abstract: Convolutional neural networks (CNNs) have successfully achieved high accuracy in
synthetic aperture radar (SAR) target recognition; however, the intransparency of CNNs is still
a limiting or even disqualifying factor. Therefore, visually interpreting CNNs with SAR images
has recently drawn increasing attention. Various class activation mapping (CAM) methods are
adopted to discern the relationship between CNN’s decision and image regions. Unfortunately, most
existing CAM methods are based on optical images; thus, they usually lead to a limiting visualization
effect for SAR images. Although a recently proposed Self-Matching CAM can obtain a satisfactory
effect for SAR images, it is quite time-consuming, due to there being hundreds of self-matching
operations per image. G-SM-CAM reduces the time of such operation dramatically, but at the cost of
visualization effect. Based on the limitations of the above methods, we propose an efficient method,
Spectral-Clustering Self-Matching CAM (SC-SM CAM). Spectral clustering is first adopted to divide
feature maps into groups for efficient computation. In each group, similar feature maps are merged
into an enhanced feature map with more concentrated energy in a specific region; thus, the saliency
heatmaps may more accurately tally with the target. Experimental results demonstrate that SC-SM
CAM outperforms other SOTA CAM methods in both effect and efficiency.

Keywords: interpreting CNNs; SAR image target recognition; class activation mapping; spectral
clustering

1. Introduction

Synthetic aperture radar (SAR) imaging has been widely applied in remote sensing,
geoscience, electronic reconnaissance, etc., due to its all-weather, day-and-night working
conditions and high-resolution imaging ability [1–4]. Target recognition is usually deemed
one of the most challenging tasks in SAR image processing, due to the blurred edge and
heavy speckle noise in SAR images [5,6]. Therefore, a series of pre-processing proce-
dures are required, including de-speckling [7], edge detection [8], region of interest (ROI)
extraction [9], and feature fusion before a classifier-like support vector machine (SVM),
perceptron, decision tree, etc., are used to categorize a SAR image to its most probabilistic
classes. These multiple individual pre-processing steps are quite time-consuming and
unfriendly for real-time applications. To resolve this, numerous deep-learning-based algo-
rithms, especially convolutional neural network (CNN), are adopted to realize automatic
target recognition (ATR). Ref. [6] adopted CNN as a classifier in ATR tasks and obtained
higher accuracy than SVM. Ref. [10] proposed a gradually distilled CNN with a small
structure and low time complexity for ATR. Ref. [11] designed a large margin, softmax
batch-normalization CNN (LM-NB-CNN), particularly for the ATR of ground vehicles.
Ref. [12] proposed a lightweight, fully convolutional neural network based on a channel-
attention mechanism, and obtained higher accuracy than other existing ATR methods.

The above CNN-based algorithms can replace the aforementioned pre-processing
with an end-to-end structure; thus, the computing efficiency can be improved dramatically.
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However, there is a dearth of analytical or mathematical interpretations of CNN’s inner
recognition mechanism; thus, CNN is still used as a “black-box” [13,14]. The intransparency
of CNN techniques may be a limiting or even disqualifying factor [15] in some special
scenarios, especially if single wrong decisions can result in danger to the life and health of
humans (e.g., autonomous driving [16], medical domain [17]) or significant monetary losses
(e.g., electronic reconnaissance and countermeasures in remote sensing), relying on a data-
driven system whose reasoning is incomprehensible may not be an option. To interpret
the “black box”, some visualization methods are proposed to provide a saliency heatmap
whose highlighted regions are most related to CNN’s decision, such as RISE [18], LRP [19],
XRAI [20], Deep Taylor [21], and class activation mapping (CAM) [22]. Recently, increasing
attention has been drawn to CAM methods due to its amazing and intuitive effects; thus,
numerous modified CAM methods have been proposed, such as Grad-CAM [23], Grad-
CAM++ [24], XGrad-CAM [25], Ablation-CAM [26], Score-CAM [27], etc. Unfortunately,
these CAM methods are all based on optical images; thus, they show a very restricted
visualization effect on SAR images. This is probably due to the difference in imaging
mechanism and properties between SAR images and optical images, as discussed in the
first paragraph.

To alleviate this limitation, we proposed a Self-Matching CAM, particularly for SAR
images, obtaining a SOTA performance [28]. In the Self-Matching CAM, an artful operator,
termed “self-matching”, is introduced to suppress energy that is irrelevant to the target in
CNN’s feature maps. Therefore, the Self-Matching CAM can highlight a region matching
the target precisely for most SAR images. However, the Self-Matching CAM is still not
a panacea: (1) it is quite time-consuming since hundreds of “self-matching” operations
are required per image; (2) there is sometimes a deviation between the highlighted region
and target for a few SAR images. To boost the computational efficiency, Ref. [29] proposed
Group-CAM, which divides the feature maps into several groups. Accordingly, the number
of any feature map operations can be reduced dramatically. However, this time-boosting
comes at the cost of visualization effect for SAR images because this straightforward
strategy divides the feature maps with neighboring indices into a group. Nonetheless,
there is no obvious relationship among feature maps with neighbouring channel indices in
a convolutional layer.

In this paper, an efficient CAM method, Spectral-Clustering Self-Matching CAM (SC-
SM CAM), is proposed to visualize CNN’s innate mechanism in ATR. The contribution
of this paper can be summarized as follows: (1) SC-SM CAM provides a reasonable and
interpretable grouping strategy instead of channel indices; thus, more highlighted pixels
can be located in the target region; (2) SC-SM CAM is an efficient method. Differing
from Group-CAM with the loss of effect, SC-SM CAM runs nearly twice as fast as the
Self-Matching CAM, with a conspicuous improvement in visualization results.

The remainder of this paper is organized as follows. Section 2 introduces the basic
theory of CAM and reviews several SOTA CAM methods, especially our previous work,
the Self-Matching CAM. Section 3 elaborates the methodology of SC-SM CAM. Section 4
provides numerous experimental results from various perspectives to demonstrate the
superiority of SC-SM CAM compared to other existing CAM methods. Section 5 discusses
the experimental results and clarifies the confusion. Finally, Section 6 concludes this paper
and discusses future work.

2. Related Work

In this section, we review several existing CAM methods from two categories: optical-
based CAM and SAR-based CAM. The former contains numerous modified versions,
while the latter denotes a Self-Matching CAM, particularly in this paper. Besides, since
Group-CAM is based on optical images, we propose a modified version combined with
Self-Matching CAM: Group-Self-Matching CAM (G-SM-CAM).
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2.1. Optical-Based CAM

CAM was first proposed by Bolei Zhou, et al. in Ref. [22] for the CNN with global
average pooling (GAP) after the last convolutional layer. The spatial element of the heatmap
HCAM generated by CAM for a given class c is defined by:

HCAM =
K

∑
k=1

αc
kAk, (1)

where Ak denotes the feature map in k-th channel in a convolutional layer. Note that GAP
compresses each feature map to a single pixel and then connects it to neurons in fully
connected layers; thus, the parameter αc

k can be replaced with the weights ωc
k between the

last convolutional layer and its next fully connected layer. However, most SOTA CNN
models have abandoned the GAP layer, so CAM cannot be directly performed on them. To
improve generality, many researchers focus on modifications or manipulations of αc

k.
Different definitions of αc

k lead to different CAM methods, i.e., Grad-CAM [23] and
Grad-CAM++ [24] utilize the first-order and second-order partial gradient of prediction
score Sc with respect to Ak to formulate αc

k, respectively. [25] proposed XGrad-CAM to
enhance the interpretability of αc

k. Recently, Refs. [26,27] proposed two gradient-free
methods, Ablation CAM and Score CAM, to avoid the negative influences of gradient
death and gradient explosion.

2.2. Self-Matching CAM

It is worth noting that the above optical-based CAM methods usually highlight a
region that excessively covers the target in saliency heatmaps for SAR images. To alleviate
this limitation, we proposed a Self-Matching CAM in Ref. [28] for SAR images. In the
Self-Matching CAM, we introduce a “self-matching” operator to process the feature map
Ak instead of manipulating αc

k. Specifically, the input SAR image and all feature maps are
first downsampled and upsampled to the same size. Then, the Hadamard product of each
feature map and SAR image is adopted as the new feature map Âk, formulated as follows:

Âk = D(I) ◦U(Ak), (2)

where ◦ denotes Hadmard product operation, I refers to the input SAR image, D(·) and
U(·) denote downsampling and upsampling, respectively. This processing is termed as
“self-matching”, since only the elements relevant to the target itself are preserved in feature
maps. More details about these CAM methods can be found in Ref. [28].

2.3. Group-Self-Matching CAM

It should be noted that αc
k in Self-Matching CAM can be obtained by any of the

aforementioned CAM methods. Hence, similar to these CAM methods, the Self-Matching
CAM method also requires hundreds of “self-matching” operations per image (most SOTA
CNN models usually own hundreds of convolutional filters in the last convolutional layer).
To improve computing efficiency, G-SM-CAM CAM utilizes a division strategy to divide
the feature maps into G groups as follows,

Ãl =
(l+1)×g−1

∑
k=l×g

Ak, g = K/G, l = 1, 2, · · · , G, (3)

where K/G is the number of feature maps in a group, the number of Ã is less than K. In
this case, the number of “self-matching” operation can be reduced from hundreds. The
following should be noted: (1) The original Group-CAM adopts a series of operations such
as smoothing mask, blurring image, and confidence calculation to estimate the weight
of a specific feature map [29], while G-SM-CAM only adopts the division strategy to
categorize feature maps into different groups; thus, no operation on weights is required.
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(2) This division strategy divides the feature maps with neighbouring indices into one
group. However, there is no specific relationship among several neighbouring indices. This
division strategy increases the speed at the cost of visualization effects, as discussed in
Section 4.

3. Methodology
3.1. Motivation

As discussed in Section 2, Self-Matching CAM is effective for SAR images but time-
consuming, while G-SM-CAM can improve computing efficiency greatly, with a loss of
effect. Therefore, it is natural to wonder whether there is a more reasonable division
strategy, which can be embedded in a Self-Matching CAM instead of the straightforward
strategy in Group-CAM. In fact, the problem of Group-CAM is that this strategy divides the
feature maps with less similarity into groups according to channel indices. These dissimilar
feature maps may introduce redundant information in the new feature map Ãk. Thus, it is
very important to divide the feature maps with high similarity in a group. In this paper,
we adopt spectral-clustering (SC) as a division strategy because (1) SC is a very efficient
clustering method; (2) SC uses a dimensional compression technology, and so is more
suitable for high-dimensional data, e.g., feature maps in our experiments; (3) Different
from other, traditional clustering algorithms, such as K-means, SC only requires a similarity
matrix among the data, so it is very effective for clustering sparse data, such as feature
maps (a number of feature maps are all-zero) [30–32].

3.2. SC-SM CAM

Assume the feature maps of the last convolutional layer in a CNN as Ak(k ∈ {0, 1, . . . ,
K − 1}), where K is the number of channels. We categorize Ak into different groups by
spectral clustering. Here, Ak is regarded as vertices; thus, the similarity matrix S ∈ RK×K

can be formulated by the Euclidian distance between two vertices:

S(i, j) = ‖Ai −Aj‖F, (4)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The similarity matrix S is a symmetric
matrix. Next, we can calculate the adjacency matrix W based on the K-nearest neighbor
(KNN) [33]:

W(i, j) = W(j, i) =

{
0, Ai /∈ KNN(Aj) and Aj /∈ KNN(Ai),

exp (− S2(i,j)
2σ2 ), Ai ∈ KNN(Aj) or Aj ∈ KNN(Ai).

(5)

where σ controls the width of the neighborhoods, and the degree matrix is defined as a
sum of the weights W(i, j):

Di =
K

∑
j=1

W(i, j). (6)

Note that the degree matrix D is a K× K diagonal matrix. Then, the Laplacian matrix
L can be obtained as

L = D−W (7)

and the normalized Laplacians matrix:

L̂ = D−1/2LD−1/2 = I−D−1/2WD−1/2, (8)

where L̂ is a symmetric matrix. We seek K̂ lowest eigen values of L̂ and their corresponding
eigenvectors y = [y0, y1, · · · , yK̂−1]

T (T denotes transpose of the matrix). Then, the eigen
matrix H can be formulated with y,

H(:, i) = yi, i = 1, 2, · · · , K̂. (9)
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Here, all the feature maps in the same group will be summarized as a clustered feature
map ACn = ∑i Ai(n ∈ 1, 2, . . . , m). In this case, hundreds of Ak can be clustered into
several representative feature maps ACn . Then, a set of new feature maps can be obtained
by “self-matching”:

ÂCn = D(I) ◦U(ACn). (10)

Finally, the saliency heatmap HSC−SM is formulated as:

HSC−SM =
m

∑
n=1

αc
nÂCn , (11)

where the weight αc
n is obtained by any of the aforementioned CAM methods. The flowchart

of SC-SM CAM is shown in Figure 1. The pseudo-code is presented in Algorithm 1.

Figure 1. Flowchart of SC-SM CAM. Here, the AlexNet model is taken as an example.

Algorithm 1: SC-SM CAM
Input: SAR image IN , model F (·), spectral clustering SC(·)
output:HSC−SM

c
initialization:

HSC−SM
c ← 0

Ak
M ← F (IN), k-th feature map

for n in [1,. . . ,m] do:
ACn = ∑n SC(Ak

M)n

ÂCn
Q = D(IN)Q ◦U(ACn)Q

# obtain the weights:
αc

n ← ACn , F (IN)
# generate final heatmap:
HSC−SM

c + = αc
nUp(ÂCn

Q )N

4. Experimental Results

In this section, the superiority of SC-SM CAM in both validity and efficiency will be
demonstrated by numerous experiments. We first perform all the aforementioned CAM
methods to compare their class discriminative visualization in Section 4.2. Then, we apply
an insertion task to investigate the concentration of highlighted pixels in saliency heatmaps
in Section 4.3. Next, two ablation study on two variable parameters will be analyzed



Remote Sens. 2021, 13, 4139 6 of 14

in Section 4.4. Finally, we compare the running time of SC-SM CAM with that of the
Self-Matching CAM and G-SM CAM to evaluate its computing efficiency in Section 4.5.

4.1. Experiment Setup

All experiments in this paper are conducted on the benchmark dataset MSTAR.
MSTAR contains 5172 SAR images corresponding to 10 classes of military vehicles, 2536 for
training, and 2636 for validation. All SAR images are size of 1× 100× 100, and normalized
to the range [0, 1]. AlexNet is adopted as a CNN classifier in our experiments (optimizer is
stochastic gradient descent (SGD) , learning rate = 5× 10−4, and momentum = 0.9).

4.2. Class Discriminative Visualization

In this section, we first present a qualitative comparison of saliency heatmaps gener-
ated by the aforementioned CAM methods, including Grad-CAM, Grad-CAM++, XGrad-
CAM, Ablation-CAM, Score-CAM, Self-Matching CAM, G-SM-CAM, and SC-SM CAM, as
shown in Figure 2.

Figure 2. Comparison of various CAM methods for MTSTAR SAR images. The ten rows denote vehicles of different
classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131, and ZSU_23_4. The ten columns denote
original SAR image, Grad-CAM, Grad-CAM++, XGrad-CAM, Ablation-CAM, Score-CAM, Group-CAM, Self-Matching
CAM, G-SM-CAM and SC-SM CAM.
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Intuitively, Self-Matching CAM, G-SM-CAM, and SC-SM CAM resemble the original
target much more than other optical-based CAM methods. To further demonstrate this, we
adopt intersection over union (IoU) to measure the similarity between the original SAR
images and their corresponding heatmaps. The definition of IoU in our experiment is:

IoU =
Area_overlap
Area_union

(12)

where Area_overlap denotes the overlapped area of the highlighted region in the heatmap
and its corresponding target area in SAR image, Area_union denotes the union of both
parts, as shown in Figure 3.

Figure 3. Explanation of Area_overlap and Area_union in IoU.

From Equation (12), a high value of IoU means a high similarity between the original
images and CAM heatmaps. Note that the ground truth of each image is manually labeled
at pixel-level. In Table 1, we compute the IoU of each image in Figure 2.

Table 1. IoU for the SAR images and heatmaps. Each row corresponds to an original SAR image
from the first to the tenth row in Figure 2.

Grad Grad++ XGrad Ablation Score Group SM G-SM SC-SM

0.187 0.204 0.177 0.235 0.279 0.210 0.504 0.588 0.659
0.076 0.065 0.049 0.024 0.045 0.193 0.311 0.520 0.564
0.208 0.181 0.198 0.204 0.210 0.033 0.459 0.551 0.556
0.229 0.090 0.137 0.130 0.110 0.362 0.590 0.663 0.729
0.169 0.188 0.171 0.205 0.054 0.173 0.517 0.600 0.619
0.171 0.175 0.099 0.094 0.095 0.093 0.313 0.384 0.577
0.162 0.117 0.135 0.133 0.152 0.126 0.408 0.634 0.638
0.093 0.099 0.147 0.132 0.193 0.090 0.507 0.477 0.645
0.003 0.004 0.003 0.003 0.037 0.272 0.545 0.650 0.659
0.254 0.131 0.178 0.205 0.010 0.243 0.533 0.658 0.670

To quantitatively measure the performances of various CAM, Ref. [29] utilizes the
“occlusion test” and “conservation test” to demonstrate the superiority of the Self-Matching
CAM. In the “occlusion test”, the pixels most relevant to the target are occluded by pixel-
multiplying the original SAR image and the binarized heatmap whose high-value elements
are set to 0 with a threshold, while the “conservation test” preserve the pixels most relevant
to the target. Then, the occluded or conserved images are sent to the CNN to detect the
confidence_drop:

con f idence_drop(I, Ǐ) =
Sc(I)− Sc( Ǐ)

Sc(I)
(13)

where I refers to the original image and Ǐ refers to the occluded or conserved image.
According to the definition of confidence_drop, a high value of confidence_drop in the occlusion
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test and a low value in the conservation test means that the most discriminative information
is contained in the occluded or conserved image. Ref. [29] denotes that only the Self-
Matching CAM can simultaneously achieve a high confidence drop in the occlusion and
conservation test. A more detailed analysis can be found in [29]. It is clear from the
qualitative and quantitative evaluation that only three SAR-based CAM methods can
precisely locate the target with a highlighted region in saliency heatmaps, while other,
optical-based CAM methods show excessive highlighted regions, which overcover the
target. Such overwhelming superiority is benefited from self-matching operations and
matches the conclusion in Ref. [29]. Therefore, we will only discuss Self-Matching CAM,
G-SM-CAM, and SC-SM CAM.

Figure 2 shows some representative SAR images and the saliency heatmaps generated
by the three methods. For the images with less noise (e.g., from the first to third rows in
Figure 2), although SC-SM CAM may produce more speckles in the background, the most
highlighted region matches the target more precisely than Self-Matching CAM and G-SM-
CAM. For the images with heavy noise (e.g., from the fourth to sixth rows in Figure 2),
all three CAM methods produce numerous speckles, whereas only SC-SM CAM can
concentrate the highlighted pixels in the target area. Self-Matching CAM and G-SM CAM
even highlight a “wrong” region, irrelevant to the target, for the sixth image in Figure 2.
To show this comparison more vividly, we preserve a set of elements in the original SAR
images according to the top 20% values in the corresponding saliency heatmaps, as shown
in Figure 4 (from the fifth to seventh columns).

Figure 4. Saliency heatmaps of Self-Matching CAM, G-SM CAM, and SC-SM CAM. The first column
shows original SAR images. The second to the fourth columns show saliency heatmaps generated
by Self-Matching CAM, G-SM CAM, and SC-SM CAM. The fifth to the seventh columns show
corresponding masked images.
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4.3. Insertion Check

We implement an insertion check in this section. Here, the insertion check starts
with an all-zero image and gradually recovers contents according to the corresponding
saliency heatmaps. Specifically, we replace 1% pixels of the all-zero image until the image
is recovered. Figure 5 shows the recovered images of SC-SM CAM with different insertion
percentages θ. From Figure 5, we can see that, with only a small θ (θ ≤ 20%), the shape of
the target can be recovered. This further demonstrates that pixels with the highest values
in saliency heatmaps are accurately concentrated on the target region.

Figure 5. Insertion results generated by SC-SM CAM with different θ. The first column is the
original SAR image. The second to the sixth columns are the inserted image when θ = 10%,
20%, 40%, 60%, 80%.

To quantitatively evaluate these methods, we calculate the Area Under Curve (AUC)
of the classification score after Softmax with different θ [34,35].

AUC denotes the area under receiver operating characteristic curve (ROC). For a
binary classification problem, ROC refers to the curve of each point, drawn by taking the
False Positive (FR) rate as an abscissa and True Positive (TR) rate as an ordinate. AUC
can reflect a model’s performance, i.e., AUC = 1, the model’s performance is the best;
AUC = 0.5, the model is a random classifier; AUC < 0.5, the model is usually worse than a
random classifier. This concept can be extended to multiclass classification problems by
regarding the real label as true and other labels as false.

Firstly, we calculate the AUC of the six representative images in Figure 5. The results
are shown in Figure 6. The AUC generally increases with θ, sharply drops with a smaller
θ, and surges with a larger θ. This is probably because when θ is small, the re-introduced
pixels are concentrated on the target region, which represents the most discriminative
feature of the target; whereas, when θ becomes larger, some sharp or “strange” edges are



Remote Sens. 2021, 13, 4139 10 of 14

introduced, resulting in a low AUC. Hence, the earlier arrival of maximal AUC means the
most highlighted pixels in the heatmaps are concentrated in the target.

Figure 6. AUC of six representative SAR images, which are calculated by SC-SM CAM with
different θ.

Without loss of generality, all 2636 validation images are sent to CNN and the average
AUC is calculated from θ = 5% to θ = 80%, as shown in Table 2. The highest AUC of SC-SM
CAM appears when θ = 15%, while this appears when θ = 30% for the Self-Matching
CAM and G-SM CAM. This result further quantitatively validates the perfect precision of
SC-SM CAM.

Table 2. Average AUC of each CAM method for all testing data with different θ.

Method Self-Matching G-SM CAM SC-SM CAM

θ = 5% 0.033 0.057 0.593
θ = 10% 0.127 0.125 0.667
θ = 15% 0.379 0.516 0.906
θ = 20% 0.415 0.579 0.815
θ = 30% 0.803 0.825 0.815
θ = 40% 0.516 0.629 0.593
θ = 50% 0.417 0.530 0.412
θ = 60% 0.379 0.406 0.267
θ = 70% 0.415 0.493 0.680
θ = 80% 0.595 0.639 0.886

4.4. Ablation Study

Both G-SM-CAM and SC-SM CAM adopt the “grouping” strategy; thus, we inves-
tigated the influence of group number G on the saliency heatmaps generated by G-SM
CAM and SC-SM CAM, respectively. The results are shown in Figure 7. Apparently,
the number of speckles in the saliency heatmaps of G-SM CAM decreases when G rises,
while the saliency heatmaps of SC-SM CAM are nearly unrelated to G. This is because the
groups in G-SM CAM are categorized according to channel indices. In this case, different
G may divide feature maps with huge divergence into one group. In comparison, spectral
clustering can ensure that similar feature maps are divided into a group in SC-SM CAM.
According to our experimental results, we find that similar feature maps can be categorized
into several groups, whereas the all-zero feature maps are distributed in the rest of the
groups when G changes. Here, we further investigate the optimal G for 10 classes of SAR
images. We record the running time and AUC when the top 15% highlighted pixels are
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conserved. (θ = 15% in insertion check) with G = 1, 2, 4, 8, 16, 32, respectively, as shown
in Figure 8. In general, the running time increases with G for each class. It is clear from
the left subfigure in Figure 8 that the running time of SC-SM CAM is shorter than the
median when G ≤ 4. Note that the running time of G = 1 is much shorter than other G.
This is because SC-SM CAM degrades into G-SM-CAM when G = 1 (spectral clustering
is not required). As for AUC, it is clear from the right subfigure in Figure 8 that the AUC
is very low when G = 1 and G = 2, whereas it improves dramatically when G = 4 and
then almost retains this high value when G > 4. This is because these similar feature maps
can be divided into a group when G is small. In contrast, when G > 4, the feature maps
with high similarity can be divided into a group; thus, the AUC is almost unchanged. This
result intuitively matches the heatmaps with different G in Figure 7.

Figure 7. Saliency heatmaps generated by G-SM-CAM and SC-SM CAM with different G. The first
columns are original SAR images. The second to the fifth columns are generated by G-SM-CAM
when G = 4, 8, 16, 32. The sixth to the ninth columns are generated by SC-SM CAM when G = 4, 8,
16, 32.

Figure 8. Running time and AUC for 10 classes of vehicles with different G. The left figure is running
time with G = 1, 2, 4, 8, 16, 32. The right figure is AUC when the top 15% highlighted pixels are
conserved. (θ = 15% in insertion check) with G = 1, 2, 4, 8, 16, 32.

Based on the above analysis, we think G = 4 is the optimal group number for MSTAR
dataset which is a balance between effect and efficiency. Therefore, our experiments are all
conducted with G = 4 unless otherwise specified. Besides, it should be pointed out that
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G = 4 is only optimal for MSTAR dataset, whereas, the optimal G probably changes for
other SAR image datasets. This ablation experiment further demonstrates that spectral
clustering works effectively in grouping feature maps.

4.5. Computing Efficiency

In this section, we will investigate the computational efficiency of our proposed
method. We record the average running time of 2636 validation SAR images of Self-
Matching CAM, G-SM CAM, and SC-SM CAM on 8th Gen Intel Core(TM) i7-8700, 3.20 GHz,
as shown in Table 3. It is clear from Table 3 that SC-SM CAM runs approximately twice as
fast as Self-Matching CAM. It should be noted that, although G-SM-CAM runs much faster
than the other methods, this high speed comes at the cost of visualization effects, whereas
SC-SM CAM improves both the effect and the efficiency.

Table 3. Average running time of each CAM method.

Method Running Time/s

Self-Matching CAM 0.863
G-SM-CAM (G = 4) 0.068
SC-SM CAM (G = 4) 0.449

In addition, we further study the effect of the number of the eigenvectors on running
time, as shown in Table 4. From Table 4, the number of the eigenvectors has no conspicuous
influence on running time.

Table 4. Average running time with different numbers of eigenvectors.

Number of Eigenvectors Running Time/s

4 0.424
10 0.440
50 0.439
100 0.440
256 0.449

5. Discussion

In our experiment, the effect and efficiency of SC-SM CAM are verified through
both qualitative (class discriminative visualization and ablation study) and quantitative
(insertion check and running time) analysis. Class discriminative visualization provides
a vivid comparison of various CAM methods, especially the divergence among the three
self-matching-based methods. An ablation study shows that an appropriate number of
eigenvectors in the Laplacian matrix have a significant impact on the visualization effect
of SC-SM CAM, whereas the number of clusters has a nominal influence. AN insertion
check further demonstrates the SC-SM CAM concentrates the more high-value pixels in
the target area in comparison to G-SM-CAM and Self-Matching CAM. The running time
demonstrates the superiority of SC-SM CAM in terms of computational efficiency.

It should be noted that it is possible to strike a balance between the number of
eigenvectors and the visualization effect. Seeking an optimal number of eigenvectors is
our further research direction.

6. Conclusions

In this paper, we propose SC-SM CAM, an efficient visual interpretation algorithm
of CNN, for target recognition of SAR images. In visualization effects, two SOTA SAR-
based CAM methods, Self-Matching CAM and G-SM-CAM, SC-SM CAM, can highlight
the target area in saliency heatmaps more precisely than G-SM-CAM and Self-Matching
CAM. In comparison to G-SM-CAM, the fastest of these three methods at the cost of
effect, SC-SM CAM increases speed without any loss of visualization effect. Numerous
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experimental results verify the validity of SC-SM CAM through quantitative and qualitative
analyses. These findings may shed light on the understanding of the inner mechanism of
CNN classification.
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