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Abstract: The distribution of land cover has an important impact on climate, environment, and public
policy planning. The Optech Titan multispectral LiDAR system provides new opportunities and
challenges for land cover classification, but the better application of spectral and spatial information of
multispectral LiDAR data is a problem to be solved. Therefore, we propose a land cover classification
method based on multi-scale spatial and spectral feature selection. The public data set of Tobermory
Port collected by the Optech Titan multispectral airborne laser scanner was used as research data,
and the data was manually divided into eight categories. The method flow is divided into four steps:
neighborhood point selection, spatial–spectral feature extraction, feature selection, and classification.
First, the K-nearest neighborhood is used to select the neighborhood points for the multispectral
LiDAR point cloud data. Additionally, the spatial and spectral features under the multi-scale
neighborhood (K = 20, 50, 100, 150) are extracted. The Equalizer Optimization algorithm is used to
perform feature selection on multi-scale neighborhood spatial–spectral features, and a feature subset
is obtained. Finally, the feature subset is input into the support vector machine (SVM) classifier
for training. Using only small training samples (about 0.5% of the total data) to train the SVM
classifier, 91.99% overall accuracy (OA), 93.41% average accuracy (AA) and 0.89 kappa coefficient
were obtained in study area. Compared with the original information’s classification result, the OA,
AA and kappa coefficient increased by 15.66%, 8.7% and 0.19, respectively. The results show that the
constructed spatial–spectral features and the application of the Equalizer Optimization algorithm for
feature selection are effective in land cover classification with Titan multispectral LiDAR point data.

Keywords: land cover classification; multispectral LiDAR; Titan laser scanner; multi-scale neighbor-
hood features; equalization optimizer; feature selection

1. Introduction

Land cover classification is an important reference basis for public policy planning,
Earth resources’ management and climate monitoring [1]. Because of the large-scale charac-
teristics of remote sensing technology, it has been widely used in land cover classification.
In the past, passive remote sensing images have obtained excellent land cover classification
results by virtue of their rich spectral information. The LiDAR sensor can obtain the 3-D
space information of the objects and can classify the objects by the height and position
information. However, with the increasing demand of land cover classification, the image
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classification technology of multi-sensor data fusion has become a hot research topic [2,3].
The spectral information of passive remote sensing images is complementary to the spatial
information of LiDAR point clouds, and the data fusion strategy has achieved better results
in land cover classification [4,5]. Moreover, the addition of highly informative information
is a huge boost to classification [6–8]. However, the prerequisite for the fusion of LiDAR
data and remote sensing data for land cover classification is that precise registration and
uniform resolution must be carried out. This work is difficult to achieve accurately.

As a new type of sensor, multispectral LiDAR can obtain the information of multi-
wavelength, as well as 3-D space, which solves the problem of precise registration of passive
remote sensing data and LiDAR data from the hardware level and provides powerful
data support for classification. Past researchers have designed different multispectral
LiDAR systems. Gong et al. [9,10] successfully developed a four-wavelength (556 nm,
670 nm, 700 nm and 780 nm) ground observation multispectral LiDAR system for remote
sensing classification and monitoring of vegetation. Similarly, Woodhouse et al. [11],
Wallace et al. [12] and Niu et al. [13] respectively developed a set of four-wavelength
multispectral LiDAR systems for vegetation information extraction. As an active remote
sensing technology, multispectral LiDAR can obtain the spatial and spectral information
of the objects without external interference, and finally get the multispectral point cloud.
The above studies are for laboratory scenarios, and the land cover classification work
needs to be supported by airborne data. Titan of Teledyne Optech is the first commercial
airborne multispectral LiDAR sensor with three separate active imaging channels (1550 nm,
1064 nm, 532 nm) capable of obtaining spatial and spectral information simultaneously.
Since each channel works independently, the Titan multispectral LiDAR sensor is not
strictly a multispectral LiDAR. However, in the past research, Titan multispectral LiDAR
data still shows great potential for land cover classification [14–17]. Compared to Titan’s
single-channel point clouds, multi-channel point clouds show a significant improvement
in land cover classification [18–20].

At present, the application method for Titan multispectral LiDAR data is still in the
exploratory stage. In the land cover classification work, its classification methods can
be divided into image-based and point-based. The image-based land cover classification
work is to rasterize the spectral information and height information of the point cloud
data of the Titan multispectral LiDAR separately and classify the land use types on the
image. This classification method converts 3-D data into 2-D data, reduces the complexity
of data processing, and is suitable for large-area land cover classification work. A lot of
work in the past was carried out in this scenario and can obtain classification accuracy of
more than 90% [18,21–24]. However, the rasterized image will cause the loss of spatial
information and spectral information. Some objects (such as the ground under vegetation
cover, fences, power lines, etc.) are degraded, making it difficult to classify them. In
addition, existing studies have pointed out that the point-based classification effect is better
than the image-based classification effect [16,19]. Therefore, this research will be based on
the Titan multispectral LiDAR point cloud to carry out land cover classification in a 3-D
point cloud scene.

To make full use of the integrated spatial–spectral information of multispectral LiDAR,
reasonable and effective feature extraction is necessary [18,22–24]. At present, there is
little research on point-based land cover classification for Titan multispectral LiDAR point
cloud data [14,19,25]. On the Titan multispectral LiDAR point cloud data, Wichmann et al.
pioneered land cover classification based on point clouds [14]. They focused on the spectral
feature of specific objects to explore the potential of multispectral LiDAR point clouds in
land cover classification. Ekhtari et al. [19] use point cloud data to carry out land cover
classification work, divide the point cloud into single-return points and multi-return points
for separate processing. Single-return points are classified by spectral intensity and height
information, and multi-return points are used for height information and neighborhood
statistical information classification, and finally achieved better results. Wang et al. [25]
proposed a three-dimensional land cover mapping point cloud classification model based
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on tensor representation, which uses multispectral points and their neighborhood points to
represent each point as a second-order tensor, and introduces the TMDE algorithm to obtain
low-dimensional spatial and spectral features which are used for subsequent classification
and indicate that the spatial neighborhood information has a key role in classification. Ex-
isting research has shifted from the primary spectral intensity features to the development
of deeper features, especially the introduction of neighborhood information for feature
extraction. However, the currently applied neighborhood information is only on a single
scale, and the classification performance of multi-scale neighborhood information has not
been explored. In this study, the method of neighborhood point selection is used to extract
the spatial–spectral neighborhood features of multiple scales, and the features are cascaded
to obtain the multi-scale neighborhood spatial–spectral features of the multispectral LiDAR.
However, the cascade of multi-scale neighborhood features will make the dimensionality
of the features too high, causing the “Hughes” phenomenon, resulting in the classification
accuracy not increasing, but decreasing [26].

Aiming at the problem of Titan multispectral LiDAR data in land cover classification,
a land cover classification method based on multi-scale neighborhood feature selection is
proposed. The multi-scale neighborhood is used to extract the spatial spectrum feature
information of the multispectral LiDAR point cloud data and give full play to the spatial
spectrum synergy. The Equalization Optimizer algorithm is used for feature selection to
reduce the feature dimensions and avoid the occurrence of the “Hughes” phenomenon.
Finally, feature subset with the best classification effect is obtained, and input into the
supervised classifier for classification. The contribution of the research is mainly divided
into three aspects:

• The use of multi-neighborhood scales for the selection of neighborhood points.
• Among the existing classification features, the spectral feature and spatial feature of

Titan multispectral LiDAR are extended.
• Aiming at the high dimensionality caused by multi-scale neighborhood feature cas-

cade, the Equalization Optimizer algorithm is used for feature selection.

2. Materials
2.1. Multispectral LiDAR Data Acquisition

The multispectral point cloud data used in this study was collected by the Optech
Titan multispectral LiDAR system. Titan multispectral LiDAR is the first commercial
airborne multispectral sensor, including 3 wavelength LiDAR channels, respectively 1550,
1064, and 532 nm (Table 1). Each spectral channel records the echo separately, and each
point cloud only contains the spectral intensity value of one channel.

Table 1. Optech Titan multispectral LiDAR data acquisition system sensor channel specifications and experimental
data characteristics.

Items Channel 1 Channel 2 Channel 3

Laser Wavelength 1550 nm 1064 nm 532 nm
Beam divergence ≈0.36 m Rad ≈0.3 m Rad ≈1 m Rad

Look angle 3.5 degrees forward 0 degrees 7.0 degrees forward
Pulse repletion frequency 50–300 kHz 50300 kHz 50–300 kHz

Intensity quantization level 12bit 12bit 12bit
Point density 19.8 pts/m2 20.8 pts/m2 21.2 pts/m2

Ground pulse footprint size ≈0.18 m ≈0.15 m ≈0.5 m
Mean flying height 500 m 500 m 500 m

Multispectral LiDAR point cloud data were collected from Tobermory Port, Canada,
and the size of 211× 109 m2 is intercepted as the research area, with a total of 1,691,297 point
cloud data. The area includes trees, buildings, roads, impervious ground, grassland,
unused land, cars, and power lines. Traditional single-wavelength LiDAR is difficult
to distinguish objects with similar elevation information such as roads, grasslands, and
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impervious ground, and 2-D images cannot distinguish power lines, under-forest objects,
etc. Therefore, according to the characteristics of 3-D point cloud data and the standard
of land use type, referring to the RGB image of Google Maps platform, the multispectral
point cloud is divided into Tree, Building, Road, Impervious ground, Grassland, Unused
land, Car and Power line (Figure 1). It should be noted that the land use type focuses on
social attributes, and land cover type focuses on natural attributes. In past research, the
boundaries between the two have become blurred [15,19,21,25]. For the convenience of
presentation, only “land cover” is used in this article.

Figure 1. Multispectral LiDAR point cloud rendered by ground truth value.

2.2. Data Preprocessing

Based on the characteristics of Titan multispectral LiDAR data, that is, 3 channels
generate independent point cloud files, each channel point cloud data only contains the
spectral intensity value of the channel. The land cover classification based on raster images
can use the spectral intensity of each channel for interpolation processing, and the land
cover classification based on point cloud requires special data preprocessing according
to the characteristics of the data. To obtain true multispectral LiDAR point cloud data,
Wichmann et al. [27] developed a tool to search for point clouds of other channels within a
1 m radius for each point cloud, and assign its spectral intensity value to the central point
cloud. The spectral intensity of a channel that does not exist in a radius of 1 m is assigned
to 0, so that all point clouds obtain the spectral intensity values of 3 channels, including a
true value and 2 values obtained by processing. Morsy et al. [23] also adopted a similar
method. Ekhtari et al. [19] used a neighborhood radius of 2 m and eliminated the point
cloud that does not have neighborhood points on a channel. However, Wang et al. [25]
only used the point cloud of the 1550 nm channel as a reference and supplemented the
spectral intensity information by searching for the nearest neighbors of other channels.

In order to maximize the use of the original spatial information and spectral infor-
mation, we introduced the interpolation method, which improved the method of Wich-
mann et al. [14]. Based on the assumption that there is a correlation between the spectral
intensities of neighboring points, this study retains the point clouds of all channels and
uses the intensity information of the neighboring points of other channels to assign the
intensity to each single-wavelength point cloud. Take the point cloud of channel 1 as an
example, search for the 5 channel 2 point clouds of each point cloud nearest neighbors, and
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remove the neighboring points with a distance greater than 1 m. Then, use the inverse
distance weighted interpolation method to assign the point cloud of channel 1 according to
the spectral intensity of the point cloud of channel 2, and eliminate the point cloud with no
neighbor points within 1 m. The intensity assignment of channel 2 and channel 3 is the
same. Finally, point cloud data with multi-wavelength spectral intensity is obtained.

Since the calculation of spectral features is based on spectral reflectance, it is neces-
sary to convert the intensity value of each channel into pseudo reflectance. Refer to the
processing method of Wichmann et al. [14]; take the 99th quantile of the spectral intensity
of each channel as the reflectance spectral intensity of the reference plate, and adjust the
reflectance to 1 if the reflectance exceeds 1. Finally, point cloud data with multispectral
pseudo-reflectivity is obtained (Figure 2). Among them, road indicator lines and objects
such as cars have spectral abnormalities due to specular reflection.

Figure 2. Multispectral LiDAR point cloud rendered by pseudo-color (R: channel 1, G: channel 2, B: channel 3).

2.3. Training and Testing Samples

It is time-consuming and laborious to manually classify the LiDAR point cloud. In
the actual land cover classification work, it is unrealistic to use a large number of training
samples for classifier training. Therefore, we expect to be able to obtain good classification
accuracy by using fewer training samples. After the multispectral LiDAR point cloud
is preprocessed, the area also contains 1,627,877 point clouds, which are divided into
8 categories. We randomly selected 1000 samples for each type of object according to the
category, and a total of 8000 samples were used as the training samples, and the remaining
1,619,877 point clouds were used as the testing samples (Table 2).

Table 2. Number of training and testing samples.

Land Cover Types Testing Samples Size (#) Training Samples Size (#)

Tree 639,951 1000
Building 123,757 1000

Road 276,651 1000
Impervious ground 117,829 1000

Grassland 385,786 1000
Unuse land 52,019 1000

Car 16,559 1000
Power line 7325 1000
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3. Methods

The proposed method for land cover classification using Titan multispectral LiDAR
data is presented in Figure 3. This method is based on pre-processed Titan Multispectral
LiDAR data. Firstly, about multiple scales, the selection of neighborhood points is per-
formed, and the spatial and spectral features of the multi-scale neighborhood are extracted.
Serializing them to obtain high-dimensional spatial–spectral features, but directly using
high-dimensional features has poor performance and high computational cost. There-
fore, the feature selection algorithm of the Equalization Optimizer is used to obtain a
low-dimensional multi-scale neighborhood spatial–spectral feature subset. Finally, feature
subset is input into the SVM classifier for classification, and the classification results are
evaluated according to the ground truth value. The details of method are presented in the
following subsections.

Figure 3. The overall classification method.

3.1. Neighborhood Point Selection

The classification framework of the research application is improved from the single-
wavelength LiDAR point cloud classification framework [28]. In the classification frame-
work, the selection of neighborhood points will affect the utilization of original information
and the effect of feature extraction, so the selection method of neighborhood points is
also the focus of research [27–30]. Commonly used neighborhood types include spherical
neighborhood, cylindrical neighborhood, and K-nearest neighborhood. For a given point
cloud P, the spherical neighborhood includes all point clouds whose distance from the P
is less than the radius R. The cylindrical neighborhood includes all point clouds with a
radius less than R from the P on the ground projection point. The K-nearest neighborhood
includes the K point clouds closest to the P [30]. According to traditional neighborhood
types, such as cylindrical neighborhoods, Wang et al. [29] improved them and achieved
better performance in the classification of power lines in urban areas. These three types
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of neighborhoods all rely on empirical or heuristically given radius or K values, which
are often different in different scenarios. To solve this problem, the idea of the adap-
tive neighborhood is proposed, including surface variation, dimensionality-based, and
eigenentropy-based neighborhood point selection [27,31,32].

Due to different scenarios, the optimal neighborhood scale is also different. Although
the adaptive neighborhood can select the optimal neighborhood-scale based on local
features, the computational cost and time cost of point-by-point search are very expensive.
In addition, the neighborhood selection method proposed above is only feature extraction
at a single-scale. As far as we know, there is no research on land cover classification using
multi-scale neighborhood features on Titan multispectral LiDAR data [25]. Therefore, the
study uses multi-scale to extract spatial features and spectral features of multispectral
LiDAR point cloud. Due to the uneven spatial density of the point cloud of Titan data,
the use of spherical neighborhoods or cylindrical neighborhoods cannot guarantee the
number of neighborhood points, and there are situations where spatial features cannot be
extracted, so K-nearest neighborhoods are used for feature extraction. Considering that
the larger the K value, the higher the computational cost of feature extraction, it is more
inclined to use a smaller K value when selecting the size of the multi-scale neighborhood.
Therefore, the study used four different K values of 20, 50, 100, and 150 to extract the
spatial–spectral features.

3.2. Multi-Scale Neighborhood Features Extraction
3.2.1. Multi-Scale Spatial Features

The multi-scale spatial feature extraction method is similar to the single-scale spatial
feature extraction method. According to different K values, different spatial features are
extracted in sequence, and the features are connected in series to obtain multi-scale spatial
features. The spatial information of multispectral LiDAR is the same as that of single-
wavelength LiDAR, including x, y, and z spatial coordinate information. Based on this, the
spatial feature expression method similar to traditional LiDAR is adopted [28]. For the
selected neighborhood points, a covariance matrix of local coordinates is established, and
its eigenvalues and eigenvectors are calculated. Calculate the proportion of each eigenvalue
to the total eigenvalues and arrange them in descending order, that is, the 3-component
values of the geometric space tensor λK

1, λK
2, λK

3, and use them as the first 3 spatial
features, where K is the neighborhood scale. Before performing spatial feature calculations,
the sum of the 3 feature values is standardized to eK

1, eK
2, eK

3. Based on 3 normalized
geometric tensors, construct linearity (LK

λ), planarity (PK
λ), scattering (SK

λ), omnivariance
(OK

λ), anisotropy (AK
λ), eigenentropy (EK

λ), change of curvature (CK
λ), there is a total of

7 spatial features. They are computed as follows:

LK
λ =

eK
1 − eK

2

e1

PK
λ =

eK
2 − eK

3

e1

SK
λ =

eK
3

eK
1

OK
λ = 3

√
eK

1eK2eK3

AK
λ =

eK
1 − eK

3

eK
1

EK
λ = −

3

∑
i=1

eK
i ln eK

i

CK
λ =

eK
3

eK
1 + eK2 + eK3
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Among them, the planarity value of flat objects is higher, and the surface objects with
irregular surfaces have higher values of scattering, omnivariance and change of curvature.
Verticality VK

λ is constructed using the feature vector of the third component V = (v1,v2,v3).
It is computed as follows:

VK
λ = 1− v3

||V||2
= 1− v3[

∑3
i=1 v2

i

] 1
2

In addition, height-based features are extracted, such as the Z coordinate value, the
neighborhood height difference ∆zK, and the neighborhood height standard deviation
StdKz. Based on the neighborhood selection, the neighborhood radius RK and the neigh-
borhood point cloud density feature DK are extracted. Among them, k is the number of
neighborhood points. They are computed as follows:

∆zK = max(z)−min(z)

StdKz =

[
1
k

k

∑
k=1

(z−meanz)
2

] 1
2

RK = max(
[
(x− xi)

2 + (y− yi)
2 + (z− zi)

2
] 1

2
), i = 1, 2, . . . , k

DK =
k

4
3 πR3

Single-scale neighborhood spatial features include 19-dimensional features. Af-
ter removing the same features (such as Z), multi-scale neighborhood features include
73-dimensional spatial features.

3.2.2. Multi-Scale Spectral Features

Multi-scale spectral features are similar to multi-scale spatial features. The spectral
features of a single neighborhood are first extracted and then the features are connected in
series to obtain multi-scale spectral features. The spectral information of the neighborhood
can reduce the influence of spectral abnormal values. Multispectral LiDAR point cloud
data provides spectral information of multiple wavelengths. Titan point cloud data after
preprocessing has spectral intensity information of three wavelengths, which is normalized
to pseudo reflectance information using the 99th quantile of each channel. Spectral features
include features constructed using the reflectivity of a single wavelength and features
constructed from the interrelationship of reflectivity of different wavelengths. Among the
features constructed by single-wavelength reflectance, the original reflectance information
(Ijk), the average value of the neighborhood point reflectance (meanK

j), and the normalized
value of the central point cloud reflectance (normK

j) are used to describe the relationship
between the central point cloud and the neighborhood point cloud. They are computed
as follows:

meanK
j =

K

∑
k=1

Ijk

K

normK
j =

Ijk −mean j

stddevj

The standard deviation (stdK
devj

), skewness (skewnessK
j), kurtosis (kurtosisK

j) and
coefficient of variation (CVK

j) of the reflectance of neighboring points are used to describe
the statistical characteristics of the reflectance of neighboring points. They are computed
as follows:
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stdK
devj

=

[
1
K

K

∑
k=1

(
Ijk −meanj

)2
] 1

2

skewnessK
j =

mean3
j

std3
devj

=
1
K
×

K

∑
k=1

(
Ijk −meanj

)3

std3
devj

kurtosisK
j =

mean4
j

std4
devj

=
1
K
×

K

∑
k=1

(
Ijk −meanj

)4

std4
devj

CVK
j =

stddvj

meanj

The features constructed by the interrelationship of reflectance of different wave-
lengths include ratio and NDFI. The ratio is the ratio of the total reflectivity of each channel
to the total channel reflectivity. NDFI is constructed based on the characteristics of Titan
multispectral LiDAR data [22]. They are computed as follows:

ratioK
j =

mean j

∑ 3
j=1 mean j

NDFIK
G−NIR =

mean3 −mean2

mean3 + mean2

NDFIK
G−MIR =

mean3 −mean1

mean3 + mean1

NDFIK
NIR−MIR =

mean2 −mean1

mean2 + mean1

Single-scale neighborhood spectral features include 24-dimensional features. After
removing the same features (such as original reflectance information Ijk), multi-scale
neighborhood features include 87-dimensional spectral features.

3.3. Feature Selection Based on Equalization Optimizer

The construction of the feature set is empirical. In order to screen out the features
suitable for Titan multispectral LiDAR point cloud data in land cover classification, it
is necessary to construct a high-dimensional feature set. So in Section 3.2, we obtained
160-dimensional high-dimensional spatial–spectral features. At the same time, the multi-
scale neighborhood features constructed by the same definition must have redundancy,
and feature selection is necessary.

Feature selection enhances the classification accuracy by selecting a subset of features,
or reduces the dimension of feature sets and computational costs without reducing the
classification accuracy of the classifier [33]. Feature selection can be divided into filtering
feature selection and wrapping feature selection [34] according to evaluation criteria.
Filtered feature selection is to evaluate features through a certain measurement index and
retain a subset of features with good performance. The synergies between features are not
taken into account in this process, and it is incomplete to consider only the representation
of a single feature [35]. Wrapper feature selection is a problem that takes the classification
results as the evaluation criteria and transforms feature selection into search optimization.
Most of the wrapped feature selection algorithms are developed based on optimization
algorithms, but the traditional optimization algorithms cannot deal with complex problems.
Therefore, meta-heuristic algorithm is developed in feature selection. The genetic algorithm
(GA) [36], particle swarm optimization (PSO) [37], simulated annealing (SA) [38] and
ant colony optimization (ACO) [39] are some of the most conventional meta-heuristic
approaches. They all belong to different categories of meta-heuristics, and many researchers
in different fields have evaluated their performance. The equalization optimizer-based
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algorithm is an optimization algorithm designed based on a physical approach and inspired
by the control volume-mass balance model used to estimate dynamic and equilibrium
states [40]. Through the fitting test of 58 functions, the Equalization Optimizer algorithm
is significantly better than the PSO, GA, Gray Wolf Optimizer (GWO), Gravity Search
Algorithm (GSA), Salp Swarm Algorithm (SSA) and Covariance Matrix Adaptive Evolution
Strategy algorithm (CMA-ES).

The basic theory of the Equalization Optimizer algorithm comes from the control
volume mass balance model:

V
dC
dt

= QCeq −QC + G

where V is the control volume, C is the concentration of particles in the control volume,
V dC

dt is the rate of change in mass in the control volume, Q is the volumetric flow rate
into and out of the control volume, Ceq is the concentration of particles inside the control
volume at an equilibrium state without generation, and G is the mass generation rate inside
the control volume.

After deforming and integrating it, the basic formula for equalization optimizer can
be obtained.

C = Ceq +
(
C0 − Ceq

)
F +

G
λV

(1− F) (1)

Ceq is the equilibrium pool, and the pool retains the four best individuals and one
average individual selected during the iterative process. F is an exponential term, which
controls and balances the weight of the Equalization Optimizer algorithm in the exploration
and exploitation process. G represents the generation rate, which is used for the update
rate of each individual concentration value. For the detailed calculation methods of Ceq,
F and G, refer to the research of Faramarzi et al. [40]. After the items are introduced, the
Formula (1) is expressed as Formula (2), where V is set to the unit value 1.

→
C =

→
Ceq +

(→
C −

→
Ceq

)→
F +

→
G

λV

(
1−

→
F
)

(2)

Since the original Equalization Optimizer algorithm is designed to solve the contin-
uous optimization problem, the feature selection algorithm is often based on the binary
method, that is, the feature is selected and removed, and the original Equalization Op-
timizer algorithm needs to be improved. The improvements made are in two aspects,
including the calculation of fitness values and the selection strategy of features.

Based on the purpose of feature selection, that is, to reduce feature dimensions and
improve classification accuracy, we refer to and improve the fitness function construction
strategy adopted by Zhang et al. [35] in the evolutionary algorithm, which can take into
account classification accuracy and dimensionality reduction.{

f (xi) = ρ · CA + (1− ρ) · DR

ρ =
9+0.99

(
50

ϕ+50

)
10

where CA represents classification accuracy and DR represents dimensionality reduction
rate. When the feature dimension is small, the value of ρ is close to 1, and the inspection of
the fitness function is mainly based on classification accuracy. As the feature dimension
increases, the value of ρ decreases until it is close to 0.9, and the dimensionality is reduced.
The importance has also increased. Therefore, under the new fitness function, the algo-
rithm considers both the classification accuracy of the model and the reduction of feature
dimensions, but the classification accuracy is still the most important.{

CA = NCC/NAS
DR = 1− (NSF/NAF)
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where NCC is the number of samples correctly classified, and NAS is the total number of
training samples. NSF represents the dimension of the feature subset after feature selection,
and NAF represents the feature dimension.

The measurement of classification accuracy uses K-Nearest Neighbors (KNN). The
classification principle of the K-nearest neighbor classifier is to consider that the samples
with similar distances in the feature space have the same category. In order to avoid the
influence of local outliers, K-nearest neighbor points are selected, and the center point
category is selected as the category with the highest proportion among the neighbor
points [41]. The establishment of the classification model is “lazy”. With the import of
testing data, the classification model is constantly being improved. The key parameters
in the classification model are K value and distance measurement. The choice of K value
is generally determined empirically. In order to reduce the classification time, the K
value in this study is selected as 5. The distance metric is used to calculate the distance
between sample features, describe the degree of similarity between each sample, and
the commonly used Euclidean distance is used in the study. X1 = (x11, x12, . . . , x1n) and
X2 = (x21, x22, . . . , x2n) are two samples, where n is the number of features, and the distance
between two samples is expressed as:

dist(X1, X2) =

(
n

∑
i=1
|x1i − x2i|p

)1/2

The improvement of the feature selection strategy is actually the binarization of the
equilibrium concentration value C. In feature selection work, binary coding is often used
to eliminate or select features, so here we will use a uniform random number between 0
and 1 to initialize the initial concentration value of each individual. We set the threshold
to 0.5, and use the Formula (3) to convert continuous concentration values into discrete
values, which can be used for binary coding for feature selection. Since the initialization
value is random, the probability of each feature being selected and the probability of being
eliminated are equal. After the Equalization Optimizer algorithm uses the optimal indi-
vidual to update the concentration value of each individual, there will be a concentration
value greater than 1 or less than 0. Although they have no effect on the feature selection
process, this error will continue to accumulate in subsequent iterations. The equilibrium
concentration values greater than 1 or less than 0 are corrected to 1 and 0 at the end of
each iteration.

SF_bin =

{
f eature selected, If 0.5 ≤ Cd

t
f eature net selected, If 0.5 > Cd

t
(3)

In terms of parameter settings, we set the number of iterations to 100 and the number
of individuals to 100. Since there are only 8000 training samples, 5-fold cross-validation is
used to obtain a relatively stable classification result of the KNN classifier.

3.4. Classification and Accuracy Evaluation

SVM is an efficient machine learning classification method. It obtains the support
vector on the category boundary and divides the optimal boundary of the classification
according to the support vector. At present, the robustness of SVM has been proven in text
classification [42], image classification [43], biometric recognition [44] and other fields, and
it is also very commonly used in land cover classification [45–47]. SVM does not have high
requirements for training samples, and good classification results can be obtained by only
using small samples for training. Point cloud category labeling is very difficult, and a large
number of training samples are difficult to obtain. SVM classifier can adapt to the training
set of small samples, so it is researched to apply SVM to the land cover classification of the
Titan multispectral LiDAR point cloud. After testing, the polynomial kernel function was
chosen, coef0 was set to 8, and gamma was set to −0.0625.
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The classification result evaluation is used to measure the effectiveness of feature
construction and the applicability of feature selection. The confusion matrix can provide
the classification effect of each category in the classification process. This study uses the
confusion matrix generated by the classification result and uses the confusion matrix to
calculate producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), class
average accuracy (AA) and kappa coefficient. Here, i represents the category of ground
objects, and ai is the correct classification number of category i. xi and yi is the number of
category i ground objects samples in the ground truth label and predicted label, respectively.
N is the total number of samples and C is the number of categories.

PAi =
ai
xi

UAi =
ai
yi

OA =
∑8

i=1 ai

N

AA =
∑8

i=1 PAi

C

Kappa =
N ∑C

i=1 ai −∑(xiyi)

N2 −∑(xiyi)

4. Result

In order to verify the effectiveness of the proposed land cover classification method
and explore the role of neighborhood features and feature selection in this method, a series
of comparative experiments are set up (Table 3).

Table 3. Experimental cases and classification features.

Case Classification Feature

Case 1 3 wavelength spectral information + height information
Case 2-1 Single-scale neighborhood feature (K = 20)
Case 3-1 Single-scale neighborhood feature (K = 50)
Case 4-1 Single-scale neighborhood feature (K = 100)
Case 5-1 Single-scale neighborhood feature (K = 150)
Case 6-1 Multi-scale neighborhood feature (K = 20, 50, 100, 150)
Case 2-2 Single-scale neighborhood feature (K = 20) + feature selection
Case 3-2 Single-scale neighborhood feature (K = 50) + feature selection
Case 4-2 Single-scale neighborhood feature (K = 100) + feature selection
Case 5-2 Single-scale neighborhood feature (K = 150) + feature selection
Case 6-2 Multi-scale neighborhood feature (K = 20, 50, 100, 150) + feature selection

4.1. Classification Results of Neighborhood Features
4.1.1. Classification Results of Single-Scale Neighborhood Features

We extracted neighborhood features at small, medium, and large scales (K = 20, 50,
100, 150), and compared the classification results with the original information (Case 1). The
original information has four dimensions, including three-channel spectral information and
height information. Neighborhood features have 43 dimensions, including neighborhood
spectral features and neighborhood spatial features. Under the condition of only using
small samples to train the classifier, using single-scale neighborhood features can obtain
more than 80% of OA and more than 84% of AA (Table 4). Compared with the original
information classification (Case 1), OA and AA increased by 4.3–14% and 0.06–7.8%,
respectively, and the kappa coefficient increased by 0.05–0.17. This result shows the
advantages of neighborhood features. It can use the information of neighborhood points to
reduce classification errors caused by outliers in the data acquisition process. From a visual
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point of view (Figure 4), neighborhood features can significantly reduce salt and pepper
noise. And as the neighborhood scale increases, the effect of reducing salt and pepper noise
becomes more significant. In Case 1 of Figure 4, there are a large number of Trees classified
as Cars. It can be found in Case 2-1 to Case 5-1 that this type of error is almost eliminated.

Table 4. Comparison of classification accuracy between original information and single-scale neigh-
borhood features.

Case 1 Case 2-1 Case 3-1 Case 4-1 Case 5-1

Feature dimension 4 43 43 43 43
OA 76.33% 80.65% 85.89% 88.68% 90.36%
AA 84.74% 84.80% 89.03% 91.40% 92.54%

Kappa 0.705 0.753 0.8169 0.8519 0.8732

Figure 4. Comparison of original information and single-scale neighborhood feature classification results.

4.1.2. Classification Results of Multi-Scale Neighborhood Features

Compared with the original information, the single-scale neighborhood feature has
an outstanding performance. However, we still recognize the limitations brought by the
single-scale neighborhood feature. The sizes of the objects in the scene are different, and the
boundaries between different objects are difficult to deal with. Small-scale neighborhood
features (Case 2-1) can better deal with the boundary between different objects. The large-
scale neighborhood feature (Case 5-1) is more effective for the misclassification points
inside the objects. Some examples are given in Figure 5, and the subfigures (a)–(c) all
confirm this conjecture. In order to obtain neighborhood features with better classification
performance, we concatenate four single-scale neighborhood features. Finally, we obtained
160-dimensional multi-scale neighborhood spatial–spectral features.
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Figure 5. Comparison of classification results between Case 2-1 and Case 5-1. The red marked point cloud is the point
correctly classified in Case 2-1, but not correctly classified in Case 5-1. The point cloud marked in green is the point correctly
classified in Case 5-1, but not correctly classified in Case 2-1. Refer to Figure 4 for the legend of objects in this figure. The
subfigure (a–c) shows the details.

Surprisingly, the multi-scale neighborhood features did not achieve better classification
accuracy, but the accuracy was greatly reduced. After the feature concatenation, the
performance of the neighborhood feature has “degraded”. Its OA and AA are 72.39% and
78.84%, respectively, which are even 4.0% and 5.9% lower than the original information
classification results. The reason for this phenomenon is that the feature dimension is too
high, there is more redundant information, and ‘Hughes’ phenomenon occurs. In order to
solve this problem, we also adopted further feature selection for dimension reduction.

4.2. Feature Selection Based on Equalization Optimizer Algorithm
4.2.1. Feature Subset

We applied feature selection based on Equalization Optimizer optimization algorithm
to four single-scale neighborhood features and one multi-scale neighborhood feature. There
is no “Hughes” phenomenon in single-scale neighborhood features. However, to verify
the effectiveness of multi-scale neighborhood features, we use single-scale neighborhood
features as a control experiment. Table 5 indicates that the feature dimensions of all
neighborhood features are compressed to a small range. Due to the characteristics of the
designed fitness function, the higher the feature dimension, the greater the proportion
of optimization for the purpose of dimensionality reduction. So, the 160-dimensional
multi-scale feature has the highest dimensional compression rate. The dimension reduction
rate of single-scale features is the same. When the Equalization Optimizer algorithm is
used for feature selection, the content of the obtained feature subset is not stable, but
the dimensionality reduction rate and the classification accuracy of the application of the
feature subset for classification remain basically stable.

By analyzing the content of the feature subset, we found that in all the feature subsets:
the spectral feature had been selected 29 times and the spatial feature had been selected
30 times. Among them, the feature types of the spectral features are relatively concentrated,
with meanK

j, CVK
j, ratioK

j, NDFIK
G−NIR selected many times, and the spatial features

are relatively scattered, with Z, StdKz, ∆zK, RK, CK
λ, OK

λ, SK
λ selected many times. In

the spatial feature, Z and ∆zK were selected every time, and it can be considered that
the two have a better ability to distinguish ground objects. Due to the combination effect
between the various features, it is not possible to conclude here that a certain feature
is important to the Titan multispectral LiDAR land cover classification work. However,
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the above combination of features has instructive significance for the construction of
classification features.

Table 5. Dimension reduction rate and feature subset of neighborhood feature after feature selection.

Neighborhood
Size

Feature Dimension
Dimension

Reduction Rate Feature SubsetBefore Feature
Selection

After Feature
Selection

Case 2 43 11 74.41% mean20
1, mean20

2, mean20
3, CV20

2, CV20
3, ratio20

3,
e20

3, R20, ∆z20, Std20z, Z

Case 3 43 11 74.41% mean50
2, std50

dev3 , CV50
2, ratio50

1,
NDFI50G− NIR, O50

λ, R50, V50
λ, ∆z50, Std50z, Z

Case 4 43 11 74.41% mean100
2, mean100

3, CV100
2, CV100

3, ratio100
2,

NDFI100
G−MIR, O100

λ, C100
λ, R100, ∆z100, Z

Case 5 43 11 74.41% mean150
1, mean150

2, CV150
1, ratio150

2, NDFI150
G−NIR,

S150λ, O150
λ, R150, ∆z150, Std150z, Z

Case 6 160 15 90.63%
mean50

1, S50
λ, ∆z50, Std50z, CV100

2, C100
λ, Std100z,

std150
dev1 , kurtosis150

3, ratio150
3, NDFI150

G−NIR,
S150

λ, E150
λ, C150

λ, Z

4.2.2. Classification Results of Multi-Scale Neighborhood Feature Subset

We performed classification tests on the feature subsets obtained by feature selection
based on the Equalization Optimizer algorithm and obtained OA and AA (Table 6) for each
case. The results show that after the feature selection of the five groups of neighborhood
features through the Equalization Optimizer algorithm, except for the neighborhood
features at the K = 150 scale, the remaining four groups obtained better results. The OA and
AA of single-scale neighborhood feature classification results increased by 0.08–4.68% and
0.15–1.88% compared with those before feature selection. The most obvious improvement
is the multi-scale neighborhood feature, which eliminates the “Hughes” phenomenon
(Figure 6) caused by high dimensions. The OA and AA of the multi-scale neighborhood
feature classification result increased by 19.6% and 14.57%, respectively, and performed
best among the five different types of neighborhood features tested. The confusion matrix
of the classification result is shown in Figure 7.

Figure 6. Comparison of multi-scale neighborhood feature classification results before and after feature selection.
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Figure 7. Confusion matrix of multi-scale neighborhood feature subset (Case 6-2) classification result
(the background color is rendered with PA).

Table 6. Classification accuracy of feature subset after feature selection.

Case 2-2 Case 3-2 Case 4-2 Case 5-2 Case 6-2

Feature dimension 11 11 11 11 15
OA 85.33% 89.55% 89.90% 90.44% 91.99%
AA 86.68% 90.90% 91.55% 91.98% 93.41%

Kappa 0.8095 0.8628 0.8673 0.8742 0.8942

5. Discussion

To explore the reliable land cover classification method of Titan multispectral LiDAR
point cloud data, this study constructed 43 spatial–spectral features. The spatial features
are mainly constructed with reference to the features in single-wavelength LiDAR target
classification research [28]. The spectral features use the statistical features of the three-
channel spectral intensity and NDFI. The NDFI is designed with reference to NDVI for
Titan Multispectral LiDAR point cloud data [16,22,23], and has an excellent performance in
the classification of vegetation and buildings. In this study, the spatial–spectral features
were constructed based on the spatial location of the point cloud, combined with the
neighborhood points of each central point cloud. To highlight the advantages of the
neighborhood feature, we compared the classification result of the neighborhood feature
with the classification result of the original information (three-channel spectral pseudo
reflectance + height value). Except that the classification effect of multi-scale neighborhood
features, which caused the “Hughes” phenomenon due to the high feature dimension, was
worse than the original information, the classification results of single-scale neighborhood
features were significantly better than the original information. The characteristic difference
shown by the original information is isolated; that is, the spatial information and the
spectral information do not have a good synergy. Using the local spatial position of the
point cloud to construct neighborhood points, and locally extracting the spectral and
spatial features of the multispectral point cloud can give full play to the potential of spatial–
spectral combination. In the process of acquiring multispectral point cloud data, there
are some abnormal values, which will aggravate the “salt and pepper” phenomenon in
the classification results. Using the spatial–spectral information of neighboring points can
greatly reduce this phenomenon. Additionally, in the studied neighborhood scale, as the
number of neighborhood points increases, the elimination of this phenomenon is more
obvious. This conclusion has been shown in Figure 8. Among the neighborhood features
constructed in this research, as the K value continues to increase, the classification effect
of single-scale neighborhood features is better. Whether it is OA, AA, or PA and UA for
each feature category, they all comply with this rule. However, since the larger the K value,
the more the number of neighborhood points, the higher the calculation cost, this study
did not continue to increase the number of neighborhood points. However, it can still be
inferred that as the size of the neighborhood increases, the types of features contained
in the neighborhood points tend to become more complicated, and the performance of
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the extracted spatial–spectral features will decrease. The classification accuracy does not
continue to increase as the size of the neighborhood increases.

Figure 8. Comparison of classification accuracy of original information, single-scale neighborhood features and multi-scale
neighborhood features. The original information includes three-channel spectral pseudo reflectance and height information;
multi-scale neighborhood features include four single-scale neighborhood features (k = 20, 50, 100, 150).

In the K value scheme in this study, a larger neighborhood scale can achieve higher
classification accuracy. This is because the distribution of the objects is continuous, and
the large-scale neighborhood has a stronger smoothing effect, and a better classification
effect can be obtained in the interior area of the objects. However, as the neighborhood
scale becomes larger, more local details are ignored, resulting in misclassification of the
boundary area. Large-scale neighborhoods cannot obtain good classification performance
at the boundaries of objects, while small-scale neighborhoods are easier to capture detailed
information. Therefore, it is necessary to consider the coordination of neighboring features
at different scales. There are methods for extracting features by adaptive neighborhood
size [27,31,32], but the extracted features are all single-scale. It is only the optimal scale
of spatial features, and there is no relevant research on the Titan multispectral LiDAR
point cloud. Therefore, this study constructed a multi-scale neighborhood feature to ex-
plore the applicability of multi-scale neighborhood features in land cover classification.
However, the concatenation of multiple single-scale neighborhood features leads to the
high-dimensionality of multi-scale neighborhood features. Under the condition of using
only a small sample training set, high-dimensional features have a “Hughes” phenomenon
in the SVM classifier, which leads to a worse classification result of multi-scale neighbor-
hood features than any single-scale neighborhood feature. It can be inferred that this is
because there is a lot of redundant information or interference information in the multi-
scale neighborhood features. To exert its true classification performance, it is necessary to
screen the features, so the research considers the feature selection.

The research uses the Equalization Optimizer algorithm to perform feature selection
on five kinds of neighborhood features and conducts a classification test on the obtained
five feature subsets. The test results intuitively reflect the effectiveness of feature selection
(Figure 8). It is worth pointing out that the use of feature selection based on the Equaliza-
tion Optimizer algorithm solves the “Hughes” phenomenon that occurs when the feature
dimension is too high in the multi-scale neighborhood. The classification performance
of multi-scale neighborhood feature subsets has been significantly improved, which can
take advantage of the advantages of multi-scale neighborhood features. Whether com-
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pared with single-scale neighborhood features or compared with multi-scale neighborhood
features without feature selection, multi-scale neighborhood feature subsets have strong
competitiveness. From the perspective of PA and UA of a single feature category (Table 7),
the accuracy performance of the multi-scale neighborhood feature subset (Case 6-2) is
satisfactory and very stable. The parts in bold in Table 7 highlight the best accuracy for each
object type. Under the premise of ensuring that the classification accuracy is not affected,
the feature selection work can remove redundant information, greatly reduce the dimen-
sion of the feature, and obtain a better classification effect with the lowest computational
cost. Thanks to the design of the fitness function, the fitness value reasonably balances the
relationship between classification accuracy and feature dimensions. When dealing with
high-dimensional features, it can give full play to the role of dimensionality reduction and
has strong feature compression capabilities. When dealing with low-dimensional features,
it better improves the accuracy of classification.

Table 7. Comparison of producer accuracy (PA) and user accuracy (UA) of neighborhood feature subset.

Case 2-2 Case 3-2 Case 4-2 Case 5-2 Case 6-2
PA UA PA UA PA UA PA UA PA UA

Unused land 87.19% 50.17% 89.75% 55.48% 90.97% 55.02% 92.09% 53.08% 92.49% 60.58%
Impervious ground 87.15% 73.82% 90.41% 80.42% 91.55% 78.35% 90.70% 81.65% 93.13% 82.62%

Grassland 75.31% 92.52% 80.50% 92.98% 79.44% 93.91% 80.58% 94.13% 82.95% 94.71%
Road 86.65% 91.83% 90.76% 94.08% 90.21% 93.13% 90.30% 94.02% 92.75% 94.30%
Car 85.89% 21.32% 92.37% 34.90% 93.70% 37.97% 96.04% 37.41% 96.74% 46.63%

Building 90.76% 89.39% 94.42% 92.20% 95.96% 91.00% 95.76% 94.36% 96.78% 91.69%
Tree 89.17% 98.43% 93.22% 98.93% 94.34% 99.34% 95.03% 99.14% 95.77% 99.21%

Power line 91.36% 15.50% 95.77% 24.39% 96.22% 30.91% 95.32% 32.90% 96.66% 47.41%

The parts in bold in Table highlight the best accuracy for each object type.

Compared with previous work, the focus of our research is to fully excavate the
spatial–spectral information of multispectral LiDAR point cloud data and obtain a point-
based land cover classification method with small sample training. Large-scale land cover
classification based on multispectral LiDAR data is time-consuming and labor-intensive.
In order to obtain a more convenient processing flow and lower calculation cost, most of
the research has carried out with an image-based method [18,21,22,24]. They achieved an
overall accuracy of around 90% or even higher. However, existing studies have shown
that point-based classification is better than image-based classification [19]. In addition,
under the point-based classification method, there are more categories (such as power lines,
cars, under-forest areas, etc.). More refined classification will increase the overall difficulty
of classification, so we believe that the classification accuracy obtained by comparing the
two classification methods is of no practical significance. In the point-based classification
study, Xiao et al. [48] carried out 3D land cover classification based on an Object Based
Image Analysis (OBIA) method, and obtained similar accuracy (OA, 91.63%; kappa 0.895)
to this study (OA, 91.99%; kappa, 0.8942). Compared to the feature threshold classification
method, our proposed method has fewer parameter settings (only K value and classifier
parameters), and has better robustness in different scenarios. Ekhtari et al. [19] processed
single-return points and multi-return points separately, and obtained higher accuracy (OA,
94.7%; kappa, 0.94), especially in the Building and Grassland categories, to obtain a lower
classification error. The different number of training samples may be the cause of the
difference in accuracy. In order to explore the feasibility of small sample training, we only
used 0.5% of the total sample as the training set, while they used 30% of the total sample. In
addition, the effectiveness of our method should be explored in a wider range of scenarios
in the future to meet the actual needs of land cover classification.

6. Conclusions

Titan multispectral LiDAR provides a wealth of spectral and spatial information. By
fully mining various spatial–spectral features, it can greatly improve the performance
of multispectral LiDAR point clouds in land cover classification. We propose a land
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cover classification method suitable for Titan multispectral LiDAR point clouds. This
study uses K-nearest neighborhoods to extract the spectral and spatial features of single-
scale multispectral LiDAR point clouds in small, medium, and large-scale neighborhoods
(K = 20, 50, 100, 150). Multi-scale neighborhood features are obtained through feature
serialization, which makes up for the lack of spatial–spectral collaboration information
in the original information. In addition, we used the Equalization Optimizer algorithm
to perform feature selection on high-dimensional multi-scale neighborhood features and
obtain low-dimensional multi-scale neighborhood features with stronger classification
performance. Finally, the SVM classifier is used for classification. In the case of using only
small training samples, 91.99% OA, 93.41% AA and 0.89 kappa coefficient were obtained in
the study area. Compared with the original information, OA, AA and kappa coefficient
increased by 15.66%, 8.7% and 0.19, respectively.

By comparing the classification results of the original information, single-scale neigh-
borhood features, multi-scale neighborhood features, single-scale neighborhood feature
subsets obtained by feature selection, and multi-scale neighborhood feature subsets, we
get the following conclusions:

• Compared with the original information, the 43 spatial–spectral features constructed
by this research have significant advantages in land cover classification. Feature extrac-
tion based on neighborhood points can play a synergistic effect of spatial information
and spectral information and play a key role in land cover classification.

• The scale of the neighborhood has an impact on the classification performance of
features. Small-scale neighborhoods have better classification performance in the
boundary area of the features, and large-scale neighborhoods improve the classifica-
tion accuracy of the interior areas of the features more significantly.

• The multi-scale neighborhood features obtained by concatenating the features of
single-scale neighborhoods will cause the “Hughes” phenomenon due to the high
dimensionality. Only concatenating single-scale neighborhood features cannot give
full play to the advantages of multi-scale.

• Feature selection based on the Equalization Optimizer algorithm can obtain fea-
ture subsets with lower dimensions and better performance. Compressing the 160-
dimensional multi-scale neighborhood feature to 15-dimensional, the overall accuracy
is improved from 72.39% to 91.99%; thus solving the “Hughes” phenomenon caused
by the high dimensionality.
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