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Abstract: This study presents a new method that mitigates biases between the normalized difference
vegetation index (NDVI) from geostationary (GEO) and low Earth orbit (LEO) satellites for Earth
observation. The method geometrically and spectrally transforms GEO NDVI into LEO-compatible
GEO NDVI, in which GEO’s off-nadir view is adjusted to a near-nadir view. First, a GEO-to-LEO
NDVI transformation equation is derived using a linear mixture model of anisotropic vegetation
and nonvegetation endmember spectra. The coefficients of the derived equation are a function
of the endmember spectra of two sensors. The resultant equation is used to develop an NDVI
transformation method in which endmember spectra are automatically computed from each sensor’s
data independently and are combined to compute the coefficients. Importantly, this method does
not require regression analysis using two-sensor NDVI data. The method is demonstrated using
Himawari 8 Advanced Himawari Imager (AHI) data at off-nadir view and Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS) data at near-nadir view in middle latitude. The results show that
the magnitudes of the averaged NDVI biases between AHI and MODIS for five test sites (0.016–0.026)
were reduced after the transformation (<0.01). These findings indicate that the proposed method
facilitates the combination of GEO and LEO NDVIs to provide NDVIs with smaller differences,
except for cases in which the fraction of vegetation cover (FVC) depends on the view angle. Further
investigations should be conducted to reduce the remaining errors in the transformation and to
explore the feasibility of using the proposed method to predict near-real-time and near-nadir LEO
vegetation index time series using GEO data.

Keywords: NDVI; GEO; LEO; transformation; view angle; surface anisotropy; endmember spectra

1. Introduction

The normalized difference vegetation index (NDVI) has been used for monitoring
terrestrial vegetation from the regional to the global scale [1], where the NDVI functions as
a proxy indicator of biophysical parameters involving the leaf area index (LAI) and the
fraction of absorbed photosynthetically active radiation (FAPAR) [2,3], among other pa-
rameters. The global NDVI time series of the Advanced Very High Resolution Radiometer
(AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar-
orbiting, low Earth orbit (LEO) satellite series has been provided since the early 1980s [4,5].
The AVHRR dataset can be integrated into or continued by LEO satellite sensors with
advanced sensor attributes, such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard the Terra and Aqua platforms and the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (NPP) spacecraft,
for long-term vegetation monitoring [6,7].

Next-generation geostationary (GEO) satellites for Earth observation began operation
in the 2010s and have provided highly calibrated data from optical sensors with improved
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temporal, spatial, spectral, and radiometric resolutions compared with the previous gener-
ation of GEO sensors [8]. For example, the Advanced Himawari Imager (AHI) onboard
Himawari 8 launched in 2014 and the Advanced Baseline Imager (ABI) onboard Geosta-
tionary Operational Environmental Satellites (GEOSs) 16 and 17 launched in 2016 and 2018,
respectively, can provide full-disk observation data in 10 min intervals and at 0.5–2 km spa-
tial resolution [9,10]. An important aspect of the GEO data for land surface monitoring is
its high temporal resolution, which enables observation of diurnal variations of reflectances
and radiances as well as the mitigating effects of cloud contamination. The GEO NDVI
time series has therefore been used for improved monitoring of land surface phenologies
in middle latitude forests [11,12] and for more accurate characterization of the seasonality
of the Amazon evergreen forest [13].

Combining the GEO NDVI dataset with the historical, global LEO NDVI dataset
increases the spatiotemporal coverage of satellite data, introducing the possibility of ad-
vanced vegetation monitoring. Before the GEO and LEO NDVI are combined, their consis-
tency should be evaluated. GEO–LEO NDVI inter-comparisons have thus been reported
in numerous studies [11–16]. In the inter-comparisons, the reflectances between GEO and
LEO sensors showed biases due to the sensor-dependent characteristics of the observations
(e.g., [17]). The primary cause of the biases is the coupled effects of surface anisotropy
and differences between the illumination and viewing geometric conditions of the sensors.
A GEO sensor observes land surfaces from a fixed, oblique direction with a large variation
of the solar angle, whereas LEO sensors such as MODIS and VIIRS observe the Earth from
various viewing angles along the scan direction, with a certain variation of the illumi-
nation condition specific to the location and the satellite overpass time [14]. Reflectance
biases between GEO and LEO sensors caused by the geometric condition result in biases
between NDVIs.

The reflectance biases can be reasonably avoided by selecting only relative-azimuthal-
angle-matched reflectances [17], which have been used in radiometric inter-comparisons at
forest and urban areas. For vegetation analysis using GEO and LEO reflectance time series,
bidirectional reflectance distribution function (BRDF) models were fitted, and the fitted
models were used to standardize reflectances to identical geometric conditions [15,16,18].
However, reflectance biases between sensors still remained after the BRDF corrections,
possibly as a result of the effects of calibration uncertainties and discrepancies in the
band configuration and spectral response function (SRF) [15–18]. These effects can be
mitigated using regression analysis [19] or spectral band adjustments and radiometric inter-
calibration [20], which require additional data such as hyperspectral surface reflectances
and/or atmospheric parameters [21,22].

In another relevant study involving inter-comparisons of GEO and LEO NDVIs [23],
the effects of the viewing zenith angle and SRF differences between Himawari 8 AHI
(off-nadir view) and Aqua MODIS (near-nadir view) were mitigated at regional scale at
middle latitude. More specifically, AHI and MODIS NDVIs were converted to the fraction
of vegetation cover (FVC) using endmember spectra automatically computed from each
sensor’s data. The FVC values of AHI and MODIS were nearly equivalent except for a
few cases involving a viewing angle dependency. The results imply that the FVC can be
used to relate the NDVIs of GEO at off-nadir view and LEO at near-nadir view and that a
GEO-to-LEO NDVI transformation is feasible [23], which should facilitate the combination
of GEO and LEO NDVIs with smaller biases.

The objective of the present study is to develop a new method that geometrically and
spectrally transforms GEO NDVI directly to LEO-compatible GEO NDVI at near-nadir
view by following the insights reported in [23]. First, a GEO-to-LEO NDVI transforma-
tion equation is derived based on a linear mixture model of anisotropic vegetation and
nonvegetation endmember spectra. Using the derived equation, an NDVI transformation
method is developed. Notably, this transformation does not require regression analysis
using two sensors’ NDVI because endmember spectra, which are used to determine the
coefficients of transformation equations, are computed from each sensor’s data indepen-
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dently. The method is numerically demonstrated using Himawari 8 AHI and Aqua MODIS
top-of-atmosphere (TOA) reflectance data at middle latitude sites.

2. Background

A parameter necessary to derive the NDVI transformation equation, the directional
FVC, is first defined. A general definition of the FVC, which differs from the directional
FVC, is the vertically projected area of vegetation canopy to a unit area. It can be derived
using scaled vegetation indices (pixel dichotomy model) [24], spectral mixture analysis [25],
machine learning approaches using a radiative transfer model (RTM) simulation [26],
or existing FVC products [27].

The directional FVC was assumed to be one minus a viewable gap fraction (a fraction
of land surface that is visible from above) [28–31]. The directional FVC changes with the
viewing angle (Figure 1), and the directional FVC at nadir view corresponds to the general
definition of the FVC.

Figure 1. Illustration of the viewing angle dependency of the directional FVC. The directional FVC at
nadir-view corresponds to the general definition of the FVC.

In the present study, reflectances are expressed by a sum of the vegetation and non-
vegetation reflectances showing surface anisotropy with the directional FVC for a fraction
of vegetation reflectances:

ρ̂band(i,j) = ω(j)ρv,band(i,j) +
(

1−ω(j)

)
ρs,band(i,j), (1)

where ρ̂band(i,j) is a modeled reflectance for band; i corresponds to the direction of the solar
angle specific to the solar zenith and azimuth angles; j corresponds to the direction of
the sensor (viewing) angle specific to the sensor zenith and azimuth angle; ω(j) is the
directional FVC; ρv,band(i,j) is the vegetation reflectance; ρs,band(i,j) is the nonvegetation
reflectance (subscripts v and s denote vegetation and nonvegetation (soil), respectively);
ρv,band(i,j) and ρs,band(i,j) vary with the viewing angle and with the sun angle condition
that changes sunlit and shaded parts over vegetation canopy and nonvegetation surfaces.
A spectrum that consists of multiple bands (two bands in the present study) of vegetation
or nonvegetation reflectances is referred to as an endmember spectrum. The endmember
spectra and the directional FVC are sensitive to the structure of the canopy and to the den-
sity and spatial distributions of canopy stands when the angular condition varies [32–34],
which is, however, not explicitly expressed in Equation (1).

The directional FVC for a pixel can be derived by minimizing the Euclidean dis-
tance between modeled and target spectra [25], where endmember spectra for a scene
are extracted prior to the minimization. Similarly, the directional FVC can be derived by
minimizing differences between NDVIs from modeled and target spectra with endmember
spectra for the scene [35,36]. In a previous study, the latter approach was used to derive
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the FVC for spatially uniform atmospheric conditions [23]. The directional FVC specific to
viewing directions can be expressed by

ω(j) =
f1

(
vatm
(i,j), ρρρatm

s(i,j)

)
+ ε1(i,j)

f2

(
vatm
(i,j), ρρρatm

v(i,j), ρρρatm
s(i,j)

)
+ ε2(i,j)

, (2)

and

vatm
(i,j) =

ρatm
n(i,j) − ρatm

r(i,j)

ρatm
n(i,j) + ρatm

r(i,j)
, (3)

ρρρatm
em(i,j) =

[
ρatm

em,r(i,j), ρatm
em,n(i,j)

]
, (4)

where ρatm
r(i,j) and ρatm

n(i,j) are the TOA, partially atmosphere-corrected or fully atmosphere-
corrected reflectances of the target spectrum and subscripts r and n correspond to red
and NIR bands, respectively; ρρρatm

em(i,j) is the TOA, partially atmosphere-corrected or fully
atmosphere-corrected endmember spectra for vegetation and nonvegetation (em corre-
sponds to v or s). The terms ε1(i,j) and ε2(i,j) are functions of the target NDVI and the second-
and higher-order interaction terms between the atmosphere and surfaces. The details of
Equation (2) are shown in Appendix A.

The values of ε1(i,j) and ε2(i,j) are equal to zero when the reflectances are atmospher-
ically corrected. The values of ε1(i,j) and ε2(i,j) for TOA-level or partially atmosphere-
corrected reflectances are expected to be close to zero because the individual terms of the
red and NIR bands in ε1(i,j) and ε2(i,j) tend to cancel out [23]. Thus, the expression form of
the equation for directional FVC as a function of TOA or partially atmosphere-corrected
reflectances is identical to that as a function of fully atmosphere-corrected reflectances
when ε1(i,j) = ε2(i,j) = 0. Note that, in general, the value of the directional FVC tends
to be sensitive to atmospheric correction levels unless correct endmember spectra are
chosen for a pixel such that the Euclidean distance between the modeled and target spectra
becomes zero.

3. Derivation of the NDVI Transformation Equation

Directional FVCs of two sensors are defined, and then the FVCs are used to relate
NDVIs of different sensors. The resultant NDVI transformation equation is a function of
the endmember spectra for two sensors.

Equation (2) is reformulated to simplify the derivation as follows,

ω(j) = g
(

vatm
(i,j), ρρρatm

v(i,j), ρρρatm
s(i,j), ε′1(i,j), ε′2(i,j)

)
=

vatm
(i,j) − vatm

s(i,j) + ε′1(i,j)(
1− η(i,j)

)(
vatm
(i,j) − vatm

v(i,j)

)
+ vatm

v(i,j) − vatm
s(i,j) + ε′2(i,j)

, (5)



Remote Sens. 2021, 13, 4085 5 of 20

where

vatm
em(i,j) =

ρatm
em,n(i,j) − ρatm

em,r(i,j)

ρatm
em,n(i,j) + ρatm

em,r(i,j)
, (6)

η(i,j) =
ρatm

v,r(i,j) + ρatm
v,n(i,j)

ρatm
s,r(i,j) + ρatm

s,n(i,j)
, (7)

ε′1(i,j) = −
ε1(i,j)

ρatm
s,r(i,j) + ρatm

s,n(i,j)
, (8)

ε′2(i,j) = −
ε2(i,j)

ρatm
s,r(i,j) + ρatm

s,n(i,j)
. (9)

Two sensor types are defined: an original sensor that is a sensor-to-be-transformed,
and a destination sensor. The directional FVC for each sensor is expressed by

ωsen(jsen) = g
(

vatm
sen(isen ,jsen)

, ρρρatm
sen,v(isen ,jsen)

, ρρρatm
sen,s(isen ,jsen)

, ε′sen,1(isen ,jsen)
, ε′sen,2(isen ,jsen)

)
, (10)

where the subscript sen in Equation (10) and in the following equations corresponds to a
(sensor-a, original sensor) or b (sensor-b, destination sensor).

The FVC is used as a parameter to relate the NDVI of two sensors (vatm
a(ia ,ja)

and vatm
b(ib ,jb)

).
The following equation with an error term (εω(ja ,jb)) is assumed:

ωa(ja) = ωb(jb) + εω(ja ,jb), (11)

where εω(ja ,jb) represents an error included in ωa(ja) with reference to ωb(jb) and is sen-
sitive to the structure of the canopy and to the density and spatial distribution of the
canopy stands.

An NDVI transformation equation describing the inter-sensor NDVI relationship is
derived using Equations (5)–(11), in which geometric variables (isen and jsen) are omitted
for brevity:

vatm
b =

p0 + p1vatm
a + ζ1

q0 + q1vatm
a + ζ2

, (12)

where

p0 = ηatm
a vatm

a,v vatm
b,s − ηatm

b vatm
b,v vatm

a,s , (13)

p1 = ηatm
b vatm

b,v − ηatm
a vatm

b,s , (14)

q0 = ηavatm
a,v − ηatm

b vatm
a,s , (15)

q1 = ηatm
b − ηatm

a , (16)

ζ1 = (ηatm
b vatm

b,v − vatm
b,s )ε′a,1 + vatm

b,s ε′a,2 + (vatm
a,s − ηatm

a vatm
a,v )ε′b,1 − vatm

a,s ε′b,2 + ε′a,1ε′b,2

− ε′b,1ε′a,2 − [(1− ηatm
a )ε′b,1 − ε′b,2]v

atm
a − (ηatm

b vatm
b,v − vatm

b,s + ε′b,2) (17)

· [ηatm
a vatm

a,v − vatm
a,s + ε′a,2 + (1− ηatm

a )vatm
a ]εω,

ζ2 = −(1− ηatm
b )ε′a,1 + ε′a,2 + (1− ηatm

b )[ηatm
a va,v − va,s + ε′a,2 + (1− ηatm

a )vatm
a ]εω, (18)

and

ηatm
sen =

ρatm
sen,v,r + ρatm

sen,v,n

ρatm
sen,s,r + ρatm

sen,s,n
, (19)

vatm
sen,em =

ρatm
sen,em,n − ρatm

sen,em,r

ρatm
sen,em,n + ρatm

sen,em,r
. (20)
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A flow diagram of the derivation is illustrated in Figure 2.

Figure 2. Illustration of the steps in the derivation of the NDVI transformation equation.

4. Transformation Algorithm
4.1. Overview of the Algorithm

A basic NDVI transformation algorithm is illustrated in Figure 3. First, endmember
spectra of the original GEO sensor (ρρρatm

a,v and ρρρatm
a,s ) are computed using the automated

algorithm of endmember computation which is described in Section 4.2; the NDVI of
the original sensor (vatm

a ) can also be computed (step 1). Second, endmember spectra
of the destination LEO sensor (ρρρatm

b,v and ρρρatm
b,s ) are computed using the same endmember

algorithm (step 2). Finally, endmember spectra for each sensor and the GEO NDVI are
used to estimate the LEO-compatible NDVI (v̂atm

b ) (step 3).
The NDVI computed using LEO data (vatm

b ), which is not shown in Figure 3, can
be used to evaluate the transformed NDVI here denoted by v̂atm

b to distinguish it from
the NDVI denoted by vatm

b . In our numerical demonstration described in Section 6, this
evaluation is carried out with the values of ζ1 and ζ2 set to zero. Real applications of the
time-series analysis using the method are discussed in Section 8.2.

Figure 3. Schematic of a basic algorithm for the NDVI transformation equation.
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4.2. Automated Endmember Computation

Vegetation and nonvegetation endmember spectra for original and destination sen-
sors are necessary to transform the NDVI using Equation (12). For this transformation,
the present study requires a single set of endmember spectra for each sensor scene. A repre-
sentative approach to endmember extraction is to use vertices of scatter plots for the target
area over the reflectance space [37] or feature space [38]. In a previous study, a similar
idea was used for computing vegetation and nonvegetation endmember spectra using
red–NIR reflectance scatter-plot information [23]; this approach is also used in the present
study. Instead of finding vertices, the algorithm automatically finds a point along the left
side boundary of the red and NIR reflectance scatter plot for computing the vegetation
endmember spectrum and a point along the right side boundary (soil line) for computing
the nonvegetation endmember spectrum. Note that the endmember spectra for the NDVI
transformation equations are merely parameter vectors and need not be pure [23], which is
discussed in Section 8.2.

5. Test Sites and Materials for Numerical Demonstration
5.1. Test Sites

Land surfaces at middle latitude where the viewing zenith angle of AHI shows middle
values—specifically, approximately 40◦–50◦—were explored. Among these land surfaces,
that of Japan (Figure 4a) was identified as suitable for our demonstration for the following
reasons: (1) Several climatic zones are included because Japan is located in a transitional
zone between sub-boreal to sub-tropical [39], and (2) large variations of reflectances along
seasons are expected because of Japan’s mountainous topography and higher solar zenith
angle at LEO (Aqua) overpass time in winter, which is a consequence of Japan being
located at true north of the sub-satellite point of AHI. The solar zenith angle variation
in our regions of interest (ROIs) was approximately 19–64◦ (area-averaged value), which
likely caused variations of the areas for shaded parts. These characteristics make our
demonstrations more stringent. Descriptions of the ROIs used in the present study are
introduced in Section 5.3.

The maps in Figure 4b–f show the five test sites: Hokkaido, Tohoku, Tokai, Shikoku,
and Kyushu (from north to south, 31–45◦N, 129–143◦E). Dotted rectangles or parallelo-
grams in the maps are polygons for the ROI, which vary with the date of observation.
The geographic coordinates for each site used for exploring data (the center of each site) and
the viewing angles of AHI for the coordinates are summarized in Table 1. The Hokkaido
and Tohoku ROIs are located primarily in a cool temperate zone; the other three ROI sites
are dominated by a warm temperate zone. The compositions of the land cover in the ROIs
differ across sites, as shown in Figure 4g, which was created using the MODIS land cover
product (MCD12Q1C) [40]. Evergreen forests in Figure 4g include, for example, coniferous
species such as Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis ob-
tusa) and broadleaf species such as Japanese chinquapin (Castanopsis sieboldii) and evergreen
oaks (e.g., Quercus glauca). Deciduous forests include deciduous oaks (e.g., Quercus serrata
and Quercus crispula) and Japanese beech (e.g., Fagus crenata), among others [39,41,42].
Nonforest vegetation in Figure 4g includes rice paddy, crop, and grasslands [43].
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(b)

(a)

(c) (d)

(c)

(e)

(b)

(d)

(e)

(f)

Figure 4. (a) Location of Japan and the centers of the five test sites. Contour lines in the left panel
depict the viewing zenith angle of AHI; (b) the Hokkaido site, where the ROIs are depicted by dotted
lines; (c) the Tohoku site; (d) the Tokai site; (e) the Shikoku site; (f) the Kyushu site; and (g) the
averages of land cover percentage in the ROIs for each site, as created on the basis of the MODIS
land cover products.

Table 1. Geographic coordinates of each site center, and the AHI viewing angles for each coordinate
in decimal degrees [23].

Hokkaido Tohoku Tokai Shikoku Kyushu

Latitude 43.0 38.29 35.12 33.69 33.28
Longitude 141.38 140.83 137.38 133.49 130.34
AHI viewing zenith angle 49.6 44.3 40.9 39.9 40.3
AHI viewing azimuth angle 181.0 180.2 174.2 167.1 161.6

5.2. Satellite Data

The Himawari 8 is located at 140.7◦E, and the AHI onboard the Himawari 8 observes
16 bands from the visible to the infrared region. The AHI performs a full disk observation
with 10 min intervals. The Center for Environmental Remote Sensing (CEReS) at Chiba
University distributes Himawari 8 AHI data, which are gridded over the geographic
coordinates [44,45]. Red-band data (band 3) are gridded with a 0.005◦ interval, and blue,
green, and near-infrared (NIR)-band data (bands 1, 2, and 4, respectively) are gridded with
a 0.01◦ interval. These data were downloaded from the CEReS ftp site (ftp://hmwr829gr.
cr.chiba-u.ac.jp/, (accessed on 27 August 2021)). The AHI TOA reflectances for each band
were computed using the apparent reflectance values, solar zenith angle, and the sun-to-

ftp://hmwr829gr.cr.chiba-u.ac.jp/
ftp://hmwr829gr.cr.chiba-u.ac.jp/
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Earth distance [23]. The AHI red band (band 3) reflectances were aggregated arithmetically
to obtain 0.01◦ data.

The MODIS onboard Aqua flies an afternoon orbit, and its Equator crossing time is
1:30 p.m. The Collection 6.1 Calibrated Radiances, the Daily L1B Swath 1 km (MYD021KM) [46],
and the corresponding Geolocation (MYD03) [47] were downloaded from the Level 1 and
Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Cen-
ter (DAAC) website (https://ladsweb.modaps.eosdis.nasa.gov/, (accessed on 27 August
2021)). Note that the MODIS data were limited to data including the test sites observed
from the near-nadir direction. The MODIS TOA reflectances for each band were computed
using scaled integer values, calibration coefficients, and the solar zenith angle.

5.3. Partial Scene Pair for ROIs

The ROI data for the five sites are the same as those used in [23] except that the AHI
data were converted from data from the National Institute of Information and Communica-
tions Technology (NICT) Science Cloud into CEReS gridded data because the gridded data
contain fewer geolocation errors [45]. Nearly coincident and collocated AHI and MODIS
data were used, and the date range of the data spanned between July 2015 and December
2018. The number of pairs of AHI and MODIS partial scenes for the Hokkaido, Tohoku,
Tokai, Shikoku, and Kyushu sites were 10, 12, 14, 16, and 12, respectively.

The ROIs were extracted to have as many pixels as possible from 300 × 300 km2

areas centered on the coordinates for each site (Table 1); during the extraction, pixels
corresponding to a MODIS zenith viewing angle larger than 10◦ or cloudy pixels were
excluded. The number of pixels used for analysis was greater than 1000 for every partial
scene. The coordinate information for all of the ROIs is provided in the supplementary
materials in [23].

6. Numerical Demonstration Procedure

To numerically demonstrate the NDVI transformation method, we evaluated differ-
ences between MODIS NDVI at near-nadir view and MODIS-compatible AHI NDVI at near-
nadir view (transformed AHI NDVI), where the MODIS NDVI was used as a reference.

For the five test sites shown in Section 5, the variables ζ1 and ζ2 in Equation (12) were
assumed to be zero in the numerical experiments. The reasoning for this assumption is
explained as follows. Similar frequency distributions of the directional FVCs (ωsen(jsen) in
Equation (10)) from the TOA AHI (off-nadir view) and TOA Aqua MODIS (near-nadir
view) data were observed at our test sites [23]. Although a few scenes exist in which the
FVCs show a strong viewing angle dependency, the assumption that εω in ζ1 and ζ2 are
zero during the NDVI transformation is mostly reasonable. In addition, ε′sen,1 and ε′sen,2 in
ζ1 and ζ2 were set to be zero because ε1(i,j) and ε2(i,j) for each sensor would be close to zero.
These assumptions enable us to omit ζ1 and ζ2 from the NDVI transformation equation.

Scene-level and pixel-by-pixel comparisons of NDVIs were conducted. MODIS and
AHI pixels that include water bodies identified by the land/sea mask in the MYD03
product were excluded from our analysis of the NDVI differences after endmember
computations [23]. In the scene-level comparisons, differences between area-averaged
values of AHI NDVI or transformed AHI NDVI and MODIS NDVI were computed for all
partial scenes. Their averages for each site, denoted by m, were computed as follows:

dorig,m =
1

Km

Km

∑
k=1

(
vatm

a,m,k − vatm
b,m,k

)
, (21)

dtrans,m =
1

Km

Km

∑
k=1

(
v̂atm

b,m,k − vatm
b,m,k

)
, (22)

https://ladsweb.modaps.eosdis.nasa.gov/
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and

vatm
a,m,k =

1
Na,m,k

Na,m,k

∑
n=1

vatm
a,m,k,n (23)

vatm
b,m,k =

1
Nb,m,k

Nb,m,k

∑
n=1

vatm
b,m,k,n (24)

v̂atm
b,m,k =

1
Na,m,k

Na,m,k

∑
n=1

v̂atm
b,m,k,n (25)

where dorig,m is the average of the differences between the area-averaged AHI and MODIS
NDVIs for site m; dtrans,m is the average of the differences between the area-averaged
transformed AHI and MODIS NDVIs; vatm

a,m,k,n, vatm
b,m,k,n, and v̂atm

b,m,k,n are the AHI, MODIS,
and transformed AHI NDVIs for the n-th pixel of the k-th date at site m, respectively; Km is
the number of the date relying on the site; and Na,m,k and Nb,m,k are the number of pixels
relying on the date and site for the AHI and MODIS, respectively.

In the pixel-by-pixel comparison, NDVIs obtained at 0.01◦ or 1 km spatial resolution
were aggregated at 4× 4 pixels using the arithmetic mean for mitigating the effects of
geolocation errors and pixel size differences. Each pixel of an aggregated MODIS NDVI
was paired with an aggregated original or transformed AHI NDVI using a nearest-neighbor
algorithm. Linear regression analysis was conducted to evaluate the results obtained using
these NDVIs for each partial scene. In addition, for each site, the aggregated MODIS NDVI
for all dates were combined to generate a single MODIS NDVI dataset. Similarly, a single
NDVI dataset of AHI or transformed AHI at each site was generated. Note that each pixel
in the AHI or transformed AHI dataset is paired with one of the pixels in the MODIS NDVI
dataset. The AHI, MODIS, and transformed AHI NDVI of the `-th pixel for the dataset
of site m were denoted by vatm∗

a,m,`, vatm∗
b,m,`, and v̂atm∗

b,m,`, respectively. The differences between
vatm∗

a,m,` and vatm∗
b,m,` (∆vorig,m,`) and between v̂atm∗

b,m,` and vatm∗
b,m,` (∆vtrans,m,`) were computed for

each pixel:

∆vorig,m,` = vatm∗
a,m,` − vatm∗

b,m,` (26)

∆vtrans,m,` = v̂atm∗
b,m,` − vatm∗

b,m,` (27)

The mean of the absolute values for Equations (26) and (27) in each site, referred
to as the mean absolute difference (MAD) of NDVI, and the standard deviation (SD)
of Equations (26) and (27) in each site were also computed. In the following equations,
the subscript state corresponds to either the original AHI (orig) or the transformed AHI
(trans), and we have

µstate,m =
1

Sm

Sm

∑
`=1
|∆vstate,m,`|, (28)

σstate,m =

√√√√ 1
Sm

Sm

∑
`=1

(
∆vstate,m,` − ∆vstate,m

)2, (29)

and

∆vstate,m =
1

Sm

Sm

∑
`=1

∆vstate,m,` (30)

where µstate,m is the MAD for site m and σstate,m is the SD for site m. Parameter Sm is the
total number of the pixel pair dependent on site m.



Remote Sens. 2021, 13, 4085 11 of 20

7. Results
7.1. Scene-Level Evaluations of NDVI Transformation

Results for relative frequency distributions of TOA NDVIs for AHI and MODIS are
shown in Figures 5 and 6. Figure 5 corresponds to the “best date” for each site, where the
absolute value of the averaged AHI (transformed) minus the MODIS NDVIs was minimal
among all dates. By contrast, Figure 6 corresponds to the “worst date”, which provides the
maximal absolute value of the averaged AHI minus the MODIS NDVIs. The left column
in Figure 5 shows similar distributions of the AHI and MODIS NDVI, although slight
differences are observed, especially at higher NDVI values. Thus, the MODIS NDVI was
slightly higher than the AHI NDVI. The right column in Figure 5 shows a much more
similar distribution of the AHI (transformed) and MODIS NDVI, indicating successful
transformations of the NDVI. The left column in Figure 6 shows the same trend as the
left column in Figure 5; however, the right column in Figure 6 shows slight under- and
over-corrections (e.g., Figure 6d,f), which are not observed in the right columns in Figure 5.

Figure 5. Relative frequency distributions of the NDVI for the AHI and MODIS (left column) and
the transformed AHI and MODIS (right column) for best date. Each row of figures corresponds to
a site.
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Figure 6. Relative frequency distributions for the worst date, where the absolute value of the averaged
transformed AHI NDVI minus the averaged MODIS NDVI was maximal, at each site.

The mean of the averaged AHI or transformed AHI minus MODIS NDVIs for each site
(dorig,m and dtrans,m) is summarized in Table 2. The original AHI NDVIs were approximately
0.02 smaller than the MODIS in NDVI units. Biases between the transformed AHI and
MODIS NDVIs were much smaller (the absolute value of the mean was smaller than 0.01).

Table 2. Mean of the averaged AHI or the transformed AHI minus MODIS NDVIs for the five sites
(dorig,m and dtrans,m).

Hokkaido Tohoku Tokai Shikoku Kyushu

dorig,m −0.024 −0.026 −0.019 −0.022 −0.016
dtrans,m −0.007 0.002 −0.0003 0.001 0.001

Figure 7 shows the averages and standard deviations of the coefficients of the NDVI
transformation equation (Equations (13)–(16)) for each site. The averaged p0 values are
negative values and fall between −0.1 and 0 (Figure 7a). The Hokkaido and Shikoku sites
show larger negative values. The averaged p1 and q0 values are approximately 0.4–0.7 and
0.4–0.5, respectively. The averaged q1 for Shikoku is higher than those of the other sites.
This coefficient reflects nonlinear effects of the NDVI transformation equation and simply
ηb minus ηa. The ηb for Shikoku is higher than the corresponding ηa in almost all cases,
indicating that inter-sensor relationships between the NDVIs for Shikoku could be slightly
more nonlinear than those for the other sites.
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(a)

p
0

(b)

p
1

(c)
q

0
(d)

q
1

Figure 7. Averages for the four coefficients in the NDVI transformation equation (p0, p1, q0, and q1)
for the five test sites. (a–d) correspond to p0, p1, q0, and q1, respectively. The error bars correspond to
the standard deviation.

7.2. Pixel-by-Pixel Evaluations of the NDVI Transformation

Aggregated NDVIs were used for pixel-by-pixel evaluations. Figure 8 shows the
spatial distribution of the NDVI differences between sensors for the partial scene of the
Shikoku site on 13 April 2018. Figure 8a shows the spatial distribution of the aggregated
MODIS NDVI. Negative biases could be identified in numerous parts in the original
NDVI differences (Figure 8b). The large errors are attributable to sensor noises and to
random errors caused by remaining relative geolocation differences, atmospheric and cloud
contamination differences due to differences in the observation times (within approximately
5 min), and unidentified error sources. Overall negative errors were reduced or turned into
small positive errors after the transformations (Figure 8c).

Figure 8. Maps of aggregated NDVI and their differences between AHI and MODIS for the data
corresponding to Shikoku region on 13 April 2018: (a) MODIS NDVI, (b) AHI NDVI minus MODIS
NDVI, and (c) transformed AHI NDVI minus MODIS NDVI.

Density scatter plots of AHI NDVI vs. MODIS NDVI for the data (Shikoku, 13 April
2018) are shown in Figure 9a, and plots of the transformed AHI NDVI vs. MODIS NDVI are
shown in Figure 9b. These plots indicate that the AHI NDVI approached the one-to-one line
after the transformations, indicating that the biases were mitigated. The results for other
data for Shikoku and other sites typically showed the same trend, although substantial
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biases of the NDVI were observed in specific pixels after the transformations. Figure 9c,d
show the results for Hokkaido on 14 July 2017. After the transformation, negative biases
were observed at certain points where the MODIS NDVIs were less than approximately 0.5
(Figure 9d). These negative biases might be attributable to the fact that directional FVCs
from two sensors showed biases over areas that included sparsely distributed vegetation.
In such areas, the light interception by the vegetation canopy may have sharply increased
with increasing viewing zenith angle, thereby increasing the NIR transmittances and
reflectances of vegetation as well as the top-of-canopy reflectances. The increase in the AHI
NIR reflectances subsequently resulted in FVC biases between the sensors [23]. The FVC
biases would have propagated into the transformed AHI NDVI in such cases.

A
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Figure 9. Density scatter plot of the aggregated NDVIs: (a) AHI vs. MODIS NDVI for Shikoku, April
13 2018; (b) transformed AHI vs. MODIS NDVI for Shikoku, April 13 2018; (c) AHI vs. MODIS NDVI
for Hokkaido, 14 July 2017; and (d) transformed AHI vs. MODIS NDVI for Hokkaido, 14 July 2017.

Finally, Table 3 summarizes the MAD (µorig,m and µtrans,m) and the SD (σorig,m and
σtrans,m). The MAD decreased after the transformations, whereas the SD slightly increased.
The relatively large increase in the SD in Hokkaido is attributable to the directional FVC
biases between the sensors.

Table 3. The MAD between the AHI or transformed AHI NDVI and MODIS NDVI (µorig,m and
µtrans,m), and the SD for the NDVI differences (σorig,m and σtrans,m) obtained using NDVI data for
pixel-by-pixel comparisons.

Hokkaido Tohoku Tokai Shikoku Kyushu

µorig,m 0.042 0.036 0.032 0.028 0.031
µtrans,m 0.037 0.027 0.027 0.022 0.026
σorig,m 0.046 0.035 0.036 0.029 0.038
σtrans,m 0.058 0.037 0.038 0.032 0.039

8. Discussion
8.1. Comparison of the Developed Method with Other Methods

Previous studies regarding vegetation index (VI) inter-comparisons between GEO
and LEO sensors have typically applied BRDF correction/adjustment of reflectances to
mitigate the effects of surface anisotropy [15,16,18,48]. Two sensors’ VIs derived using
the corrected/adjusted reflectances were then used to compare phenologically significant
transition dates [11]. In the present study, our intention was to reduce the absolute NDVI
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differences between sensors. A few studies quantitatively investigated the absolute NDVI
differences using BRDF-adjusted reflectances (e.g., [16,48]); for example, Tran et al. [16] re-
ported that mean absolute differences between atmospherically corrected, near-solar-noon
AHI NDVI and atmospherically corrected and BRDF-adjusted MODIS NDVI (adjusted
to solar noon and an oblique AHI viewing angle) was only 0.018–0.030 over Australian
grassland/pasture sites. The remaining errors between the VIs are likely attributable to
discrepancies in pixel footprints, geolocation accuracy, cloud mask methods, atmospheric
correction methods, SRFs, and calibration uncertainties. The method developed in the
present work is distinct from the common approaches using the BRDF method. In par-
ticular, our method is capable of standardizing the GEO NDVI to the near-nadir viewing
direction and mitigating the effects of differences in the SRFs.

In the present study, we used the directional FVC as a parameter to derive the NDVI
transformation equation on the basis of the equivalence of the FVCs between sensors
with the error term. Similar approaches assuming the equivalence of physical parame-
ters for deriving inter-sensor VIs or reflectances equations have been reported [22,49–54].
To quantitatively estimate the coefficients of the equations, which are functions of phys-
ically meaningful parameters, nonlinear regression was successfully applied for global
applications [52]. On the contrary, coefficients of NDVI transformation equations could
be obtained without using regression analysis. For example, atmospheric parameters and
hyperspectral profile of surfaces [22] or pixel-by-pixel minimum and maximum NDVIs
from smoothed NDVI products [55] were prepared and used to compute the coefficients
for NDVI conversion equations. Compared to these, our method does not require any
prior information, and coefficients of the transformation equation could be automatically
computed using reflectance data.

8.2. Benefits and Limitations of the Developed Method

The method developed in the present study can not only be used to geometrically and
spectrally transform the NDVI but may be less sensitive to several biases included in the
data. This reduced sensitivity is attributable to the endmember spectra used to compute
the coefficients of the transformation equation and the target spectra both being influenced
by sensor-dependent biases (e.g., biases in gain coefficients for radiometric calibration)
and, thus, directional FVCs tend to be sensor-independent, leading to correct transforma-
tions of the NDVI. The advantage of using such “image endmembers” for reducing the
effects of biases included in the data has also been reported in studies for spectral mixture
analysis [56] as well as relative radiometric normalization between different sensors [57].

The NDVI transformation reduced biases between NDVIs in our results; however,
the variability of the NDVI differences remained or slightly increased, possibly because of
the viewing angle dependency of the FVC and errors that cannot be corrected in the trans-
formation. The errors likely arise from observation time differences between the sensors
(within approximately 5 min [23]) causing cloud and atmospheric condition differences,
pixel footprint differences, geolocation errors, and intrinsic sensor noise. Thus, considera-
tion of the directional FVC biases, i.e., εω in the transformation, and improvements in the
data quality (e.g., sensor noise and geolocation errors) would further reduce the variability
of the NDVI differences after the NDVI transformation [51]. Additionally, to mitigate the
effects of differences in FVC as a function of direction in numerical evaluations of the
method, reference data can be chosen that utilize MODIS data obtained at similar viewing
zenith and relative-azimuthal angles to AHI [17].

In real applications of the transformation algorithm, finding pure endmember spectra
from coarse spatial resolution (1 km) data is challenging [23]. Even though reflectance
spectra used for endmembers were not pure, we expect that the NDVI transformation using
Equation (12) functions properly if the FVC values computed using those endmembers
are known to be equivalent between sensors or the correct εω value is known. Meanwhile,
the effects of non-purity for endmember spectra obtained from 1 km resolution data
on the transformation should be quantitatively evaluated using high spatial resolution
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(e.g., ≤10 m) data. This evaluation would, however, require considerable efforts for data
processing and should be conducted in future works.

Note that the NDVI transformation for full-disk scale is not available using a single
implementation of the method because atmospheric contamination should be as spatially
uniform as possible and because variations of the sun and viewing angles should be as
small as possible in the data for processing. Therefore, regional-scale NDVI transformation
with moving-window approaches would be required to cover broader areas.

Although our proposed method still faces several unresolved problems, it can be
used to predict near-real-time LEO-compatible GEO NDVI toward time-series vegetation
analysis for a specific region. In this application, regional- or full-disk-scale reference sensor
(LEO) reflectances with a certain temporal resolution (e.g., 8-day) should be prepared and
used to predict the endmember spectra of a destination sensor for the time when a GEO sys-
tem makes an observation. In addition, GEO reflectances observed in various solar zenith
and azimuth angles should be normalized prior to or during the NDVI transformations.

9. Conclusions

In this study, we derived a GEO-to-LEO NDVI transformation equation based on a
linear mixture model of anisotropic vegetation and nonvegetation endmember spectra.
Using the derived equation, we developed an NDVI transformation method in which
endmember spectra from each set of sensor data are computed independently and subse-
quently combined to compute the coefficients of the transformation equation. The proposed
method could reduce the effects of surface anisotropy caused by viewing angle differences
and SRF differences at the scene level. Moreover, the NDVI transformation is insensitive to
calibration biases because the endmember spectra are computed using data. Notably, our
method does not require regression analysis for the NDVI transformation because the end-
member spectra used in the coefficients of the transformation equations are independently
extracted from each sensor dataset.

Numerical demonstrations of the method were conducted using Himawari 8 AHI
at off-nadir-view and Aqua MODIS at near-nadir-view data in middle latitude test sites,
where the directional FVCs of the sites were reported to be nearly identical except for a few
cases. The results showed that, compared with the original AHI NDVI, the transformed
AHI NDVI was closer to the MODIS NDVI. The magnitudes of the averaged NDVI biases
between the AHI and MODIS were reduced from 0.016–0.026 to <0.01 after the NDVI
transformation was applied to the AHI NDVI. However, biases between FVCs from GEO
and LEO sensors, which were caused by the viewing angle dependency of the directional
FVC, may have added errors during the NDVI transformation. We expect that inclusions
of the directional FVC biases would reduce the transformation errors.

The developed method is universally applicable to NDVI transformation among
distinct sensors. Thus, the method can be used for not only GEO and LEO sensors but also,
for example, LEO sensors on different platforms.

In future studies, further evaluations of the NDVI transformation using data obtained
using various viewing angles and land-cover types are necessary. In addition, although this
study used TOA reflectances for evaluation and demonstration purposes, the proposed
method is capable of transforming partially or fully atmosphere-corrected NDVIs, which
should be evaluated in a separate study. Furthermore, NDVI transformation across different
atmospheric conditions (e.g., TOA to bottom-of-atmosphere) should be investigated and
evaluated to explore the possibility of avoiding atmospheric corrections of original sensor
data. Finally, the proposed method should be expanded to be capable of near-real-time
GEO-to-LEO NDVI transformation across broader spatial scales. This would make it
possible to obtain the spatial information of vegetation index time series with high temporal
resolution and NDVI compatibility between GEO and LEO sensors.
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Appendix A. Description of Directional FVC

The description of directional FVC (ω(j) in Equation (2)) is introduced in this section.
This equation was derived in [23] and is written here again as

ω(j) =
f1

(
vatm
(i,j), ρρρatm

s(i,j)

)
+ ε1(i,j)

f2

(
vatm
(i,j), ρρρatm

v(i,j), ρρρatm
s(i,j)

)
+ ε2(i,j)

, (A1)

where

f1

(
vatm
(i,j), ρρρatm

s(i,j)

)
= ρatm

s,n(i,j) − ρatm
s,r(i,j) − vatm

(i,j)

(
ρatm

s,n(i,j) + ρatm
s,r(i,j)

)
, (A2)

f2

(
vatm
(i,j), ρρρatm

v(i,j), ρρρatm
s(i,j)

)
= vatm

(i,j)

(
ρatm

v,n(i,j) + ρatm
v,r(i,j) − ρatm

s,n(i,j) − ρatm
s,r(i,j)

)
− ρatm

v,n(i,j) + ρatm
v,r(i,j) + ρatm

s,n(i,j) − ρatm
s,r(i,j), (A3)

and endmember reflectances (ρatm
em,band(i,j)) are expressed by

ρatm
em,band(i,j) = ρa,band(i,j) + T↓band(i,j)T

↑
band(i,j)ρem,band(i,j) +

T↓bandT↑band(i,j)Sbandρ2
em,band(i,j)

1− Sbandρem,band(i,j)
, (A4)

where ρa,band(i,j) is atmospheric reflectances, T↓band(i,j) and T↑band(i,j) are the downward and
upward atmospheric transmittances, and Sband is the spherical albedo of the atmosphere.
Note that vatm

(i,j) and ρatm
em,band(i,j) are variables that can be obtained or computed from obser-

vation data.
Parameters ε1(i,j) and ε2(i,j) in Equation (A1) are expressed as

ε1(i,j) = on(i,j) − or(i,j) − os,n(i,j) + os,r(i,j) − vatm
(i,j)

(
on(i,j) + or(i,j) − os,n(i,j) − os,r(i,j)

)
, (A5)

ε2(i,j) = ov,n(i,j) − ov,r(i,j) − os,n(i,j) + os,r(i,j) − vatm
(i,j)

(
ov,n(i,j) + ov,r(i,j) − os,n(i,j) − os,r(i,j)

)
, (A6)

ftp://hmwr829gr.cr.chiba-u.ac.jp/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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where

oband(i,j) =
T↓band(i,j)T

↑
band(i,j)Sband[ω(j)ρv,band(i,j) +

(
1−ω(j)

)
ρs,band(i,j)]

2

1− Sband[ω(j)ρv,band(i,j) +
(

1−ω(j)

)
ρs,band(i,j)]

, (A7)

oem,band(i,j) =
T↓band(i,j)T

↑
band(i,j)Sbandρ2

em,band(i,j)

1− Sbandρem,band(i,j)
. (A8)

Parameter oband(i,j) is a function of the second- and higher-order interaction terms
between the surface and atmosphere, and oem,band(i,j) is the interaction terms between
the surface of an endmember and the atmosphere. For the fully atmosphere-corrected
reflectances, ρa,band(i,j) and Sband are zero and T↓band(i,j) and T↑band(i,j) are unity; thus, oband(i,j)

and oem,band(i,j) become zero.
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