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Abstract: Savanna ecosystems are challenging to map and monitor as their vegetation is highly
dynamic in space and time. Understanding the structural diversity and biomass distribution of
savanna vegetation requires high-resolution measurements over large areas and at regular time
intervals. These requirements cannot currently be met through field-based inventories nor spaceborne
satellite remote sensing alone. UAV-based remote sensing offers potential as an intermediate scaling
tool, providing acquisition flexibility and cost-effectiveness. Yet despite the increased availability
of lightweight LiDAR payloads, the suitability of UAV-based LiDAR for mapping and monitoring
savanna 3D vegetation structure is not well established. We mapped a 1 ha savanna plot with
terrestrial-, mobile- and UAV-based laser scanning (TLS, MLS, and ULS), in conjunction with a
traditional field-based inventory (n = 572 stems > 0.03 m). We treated the TLS dataset as the gold
standard against which we evaluated the degree of complementarity and divergence of structural
metrics from MLS and ULS. Sensitivity analysis showed that MLS and ULS canopy height models
(CHMs) did not differ significantly from TLS-derived models at spatial resolutions greater than
2 m and 4 m respectively. Statistical comparison of the resulting point clouds showed minor over-
and under-estimation of woody canopy cover by MLS and ULS, respectively. Individual stem
locations and DBH measurements from the field inventory were well replicated by the TLS survey
(R2 = 0.89, RMSE = 0.024 m), which estimated above-ground woody biomass to be 7% greater
than field-inventory estimates (44.21 Mg ha−1 vs 41.08 Mg ha−1). Stem DBH could not be reliably
estimated directly from the MLS or ULS, nor indirectly through allometric scaling with crown
attributes (R2 = 0.36, RMSE = 0.075 m). MLS and ULS show strong potential for providing rapid
and larger area capture of savanna vegetation structure at resolutions suitable for many ecological
investigations; however, our results underscore the necessity of nesting TLS sampling within these
surveys to quantify uncertainty. Complementing large area MLS and ULS surveys with TLS sampling
will expand our options for the calibration and validation of multiple spaceborne LiDAR, SAR,
and optical missions.

Keywords: biomass; carbon; LiDAR; TLS

1. Introduction

Savanna vegetation structure is shaped by the interaction of climate, soils and a variety
of disturbance agents acting at multiple spatio-temporal scales [1,2]. The actions of fire,
herbivores, termites, and cyclones have marked effects on the structure of savanna tree
crowns, leading to high degree of structural diversity [3–5]. Mapping and monitoring
the structure of savanna ecosystems is therefore challenging not only because of their
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heterogeneous spatial patterning, but also because of disturbance driven variability in
individual tree crown structure [6]. Structural attributes such as height, canopy diame-
ter, and projected foliage cover are commonly assessed through field inventories—but
these measures are often subjective and prone to sampling errors [7]. Robust assessment
of structural change in tropical savannas requires methods that can account for spatial
and temporal heterogeneity, and a high level of accuracy and precision in structural at-
tribute measurement.

Remote sensing is very attractive from a monitoring and management perspective,
offering large area assessment at ever increasing spatial, temporal and spectral resolu-
tions [8,9]. Despite many advances in spaceborne imaging technology, savanna ecosystems
remain challenging from an earth observation perspective due to their inherent mix of
discontinuous woody cover and herbaceous vegetation [10]. Light-detection-and-ranging
(LiDAR), especially airborne laser scanning (ALS), has emerged as a prominent technology
for mapping and monitoring vegetation in a variety of ecosystems across the globe [11].
ALS is particularly well suited to the measurement of savanna ecosystem structure where
it can delineate subtle topographic and vegetation characteristics [12]. The inclusion of
ALS in ecological studies has advanced the field of savanna ecology, revealing new in-
sights into the controls and drivers of carbon storage [13,14], and providing pathways for
understanding how vegetation structure influences the ecology and diversity of various
fauna [15,16].

Nonetheless, despite the many advantages of ALS, certain ecological processes op-
erate at even finer spatial scales than can be assessed from traditional airborne platforms.
Detecting stress, sub-canopy structural changes, and recruitment dynamics are all examples
of processes that sit at the limits of airborne surveying. Terrestrial laser scanning (TLS) has
emerged as the gold standard for fine-scale 3D reconstruction of above-ground elements,
and is increasingly being used in forestry and ecological surveying [17,18]. One of the main
constraints of TLS is the time-intensive nature of data acquisition and post-processing,
and the relatively small spatial extent that can feasibly be covered [19]. Newer sensors are
overcoming some of these barriers by increasing the speed and ranging distance, and en-
abling larger area coverage in suitable environmental conditions [20]. Reduced size and
weight of modern LiDAR sensors has broadened the field of UAV-based laser scanning
(ULS), offering a high degree of acquisition flexibility and increased spatial resolution
due to lower and slower flying speeds [21–23]. In conjunction with these developments,
handheld and mobile laser scanning (MLS) systems have also been gaining traction,
enabling greater freedom of movement and increased speed of acquisition in comparison
to TLS. MLS enables navigation in confined spaces, and the continuous mapping approach
can reduce occlusion and provide thorough coverage in complex environments [24–26].

Given these recent advances in LiDAR sensor and platform technologies, choosing
the right solution for a particular mapping and monitoring problem has become more
challenging. The relative strengths and weaknesses of different systems needs to be
explored across a range of ecosystems to best match system performance with the specific
research or management objectives. The objective of this study was to assess the degree of
divergence and complementarity of three different laser scanning systems for capturing
the 3D structure of tropical savanna woodland structure. We explore the relative strengths
and weaknesses of terrestrial laser scanning (TLS), mobile laser scanning (MLS) and UAV
laser scanning (ULS) in a vegetation monitoring context, by addressing two key questions:

1. Are there significant differences in the representation of woody canopy height and
cover captured by TLS, MLS and ULS?

2. How reliably can tree stem DBH and above-ground woody biomass be mapped from
TLS, MLS and ULS?
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2. Materials and Methods
2.1. Study Site

This study was undertaken in northern Kakadu National Park in the Northern Ter-
ritory of Australia (Figure 1). The climate is tropical, with maximum and minimum tem-
perature averaging 34.1 ◦C and 22.6 ◦C respectively (Köppen climate classification = Aw).
Rainfall is highly seasonal, with the vast majority of the annual 1557 mm yr−1 falling
predominantly in the December—March wet season [27]. The vegetation is representative
of much of the Australian tropical savanna zone, with an over-storey dominated by Eu-
calyptus tetrodonta, Eucalyptus miniata, and Erythrophleum chlorostachys. The under-storey
is characterized by annual grasses, particularly Sorghum species. Our data collection
campaign took place on 23/24 July 2019, well into the dry season and one month after a
fire passed through—the occurrence of which is typical every 1–2 years in this system [28].
The herbaceous grass layer was reduced by the fire, but small shrubs were still present.

Figure 1. Location of the study site in northern Australia (a), and an aerial view of vegetation cover within the 20 × 20 m
subplots of the 1 ha study area (b).

2.2. Field Inventory

A series of long-term monitoring plots were established in the savanna woodlands
of the Jabiru region in 2017 to provide reference sites for understanding natural system
dynamics and informing the closure criteria of the adjacent Ranger uranium mine [29].
Each plot measures 100 m × 100 m, and the four corners and center are marked with
permanent posts. We selected one of these sites for our study and each woody plant with a
stem diameter > 0.03 m and that was > 1.5 m in height was inventoried in the field. Survey
tapes were laid out in a 20 m × 20 m grid to guide the field crew, and each individual tree
was: (i) tagged with a RTK dGPS (Leica GS16 with Precise Point Positioning); (ii) identified
to species level; and (iii) measured with a DBH tape at 1.3 m above ground level. A total of
521 trees consisting of 572 stems were inventoried in the field.

2.3. Laser Scanning

The selected site was surveyed on 24 July 2019 with three different LiDAR systems,
operating from terrestrial, mobile and UAV platforms (Table 1). Terrestrial laser scanning
(TLS) was conducted from a surveying tripod at 1.8 m agl, using a Riegl VZ-2000i system
with integrated RTK-GNSS (Figure 2). Sixteen scan locations were established, using a reg-
ular grid spacing of 30 m. The scanner was operated at 600 kHz with an angular sampling
resolution of 30 mdeg. The scanner communicated with a RTK base station (Emlid RS2)
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established at the site and operating over a LoRa network. Real-time positioning error of
the scanner at each scan location was < 0.05 m.

Figure 2. Site conditions at the time of the LiDAR surveys. Occlusion from the grass layer was minimal due to the effects of
a fire one month prior.

Mobile laser scanning (MLS) was conducted with a GreenValley LiBackpack D50.
The unit consists of two Velodyne VLP-16 sensors, one operating vertically and one hori-
zontally. The system uses Simultaneous Location and Mapping (SLAM) technology for
co-registration. The MLS system was carried as a backpack by a field technician who
walked slowly through the site ensuring consistent coverage and loop closure. The trajec-
tory of the mobile unit was displayed in real time to the operator via a tablet to ensure full
coverage of the site.

UAV laser scanning (ULS) point clouds were collected using the Nextcore® system
(www.nextcore.co) which uses a Quanergy M8 discrete return LiDAR sensor integrated
with a Spatial Dual (www.advancednavigation.com) INS including IMU and dual antenna
RTK GPS, mounted on a DJI Matrice 600 Pro. The UAV was flown in a grid pattern at
3.5 ms−1 at approximately 40 m agl with a line spacing of 18 m. The sensor pulse rate was
1200 kHz, which resulted in average point densities of 2000 points per m2 within the one
hectare plot.

Table 1. Instrument, surveying, and processing characteristics of the three LiDAR systems. Reported
point densities are after the application of a 0.01 m sub-sampling spatial filter. Note: TLS = terrestrial
laser scanning, MLS = mobile laser scanning, ULS = UAV laser scanning.

TLS MLS ULS

Instrument Riegl VZ-2000i LiBackPack D50 Nextcore Version 1

Manufacturer Riegl Green Valley
International Nextcore

Sensor Riegl Velodyne Quanergy M8
Platform Tripod Backpack Drone (DJI M600)

Acquisition time 120 min 20 min 15 min
Co-registration
processing time 60 min 20 min 20 min

Filtered point density (m2) 7340 2401 2015

www.nextcore.co
www.advancednavigation.com
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2.4. Point-Cloud Processing

Raw processing of the TLS dataset was conducted in Riegl’s RiSCAN Pro software
suite (v2.9). Scan data were projected into the WGS84 coordinate system (UTM Zone 53S)
and filtered for noise based on reflectance and deviation characteristics. The Multi-Station
Adjustment (MSA) plugin was used to finely co-register the individual scans, which were
already well positioned given the integrated GNSS with real-time correction.

Raw MLS data were converted to a point cloud incorporating the IMU data from the
backpack using proprietary SLAM algorithms in the LiBackpack software from GreenValley
International. The point cloud was geo-referenced in LiDAR360 by detecting six pyramid
structures that were placed throughout the site as ground controls. The 3D RTK-GNSS
location of the peaks of each pyramid were recorded during the field campaign.

ULS point clouds were PPK geo-registered using the proprietary Nextcore® software.
Each of the flight-lines underwent a statistical outlier removal (SOR) filter in CloudCompare.
The number of neighbors used to compute mean distance was set to 10, and the standard
deviation multiplier was set to 2. There was still some systematic misalignment of flight-
lines following the PPK correction. To correct for this, each flight-line was sequentially
registered to its neighbor using the Iterative Closest Point (ICP) algorithm implemented
in CloudCompare. The random sample limit was set to 250,000 and RMS error difference
threshold set to 1 × 10−08. After registration, flight-line point clouds were merged into a
single point cloud.

Co-registered point clouds from each platform were exported to the ASPRS LAS
format version 1.4 for further analysis. A 0.01 m spacing filter was applied to all three clouds
to remove duplicate points and ensure an even distribution of points across the landscape.

2.5. Structural Analysis
2.5.1. Canopy Characterization

The MLS, and ULS point clouds were finely co-registered to the TLS point cloud using
the Iterative Closest Point (ICP) algorithm in CloudCompare [30]. The random sample
limit was set to 500,000 and the RMS error difference threshold set to 1 × 10−05, with 100%
overlap specified. Ground point classification was conducted with the lasground_new tool
in the LAStools suite [31], using -wilderness and -extra_fine settings, and the point clouds
were subsequently normalized to height above ground using lasheight. Canopy height
models (CHMs) were generated with lasgrid at multiple spatial resolutions using the 95th
percentile height. CHM resolution increased in 0.25 m increments from 0.25 m to 5 m
resolution to enable a sensitivity analysis of the resolution at which the combinations of
the three scanning systems were significantly different. Differences in canopy height distri-
bution derived from the three laser scanning systems was tested across the range of CHM
resolutions with the Kolmogorov–Smirnov test [32] in the stats package in R (version 4.0.3).

The 0.25 m resolution CHMs derived from the three scanning systems were used
to assess the percentage of woody canopy cover at multiple height class thresholds that
represented key strata in the savanna woodland (0.25 m, 3 m, 7 m, 12 m). For each height
threshold, median woody canopy cover for 20 m × 20 m subplots embedded in the 1 ha
site (n = 25) was compared between TLS-MLS and TLS-ULS with linear regression.

2.5.2. Individual Tree Delineation and Measurement

Individual trees segmentation was applied to the point clouds derived from the
three scanning systems using the approach described by [33] and implemented in Li-
DAR360 (v4.1, GreenValley International) (Figure 3). Results were manually inspected
post-segmentation and edited to correct any instances of over- or under-segmentation.
Following this quality control checking, the point clouds representing individual trees
were processed further in 3DForest (v0.5) to derive individual tree attributes—tree height,
crown diameter, crown area, crown volume and stem DBH [34]. An overview of the full
processing pipeline is provided in Figure 4.
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Figure 3. Cross-section through the TLS point cloud, displaying an example of the individual tree segmentation.
Color scheme is a randomised palette.

Above-ground woody biomass (AGB) was estimated at the individual tree level using a
set of locally calibrated allometric equations that included the dominant species at the site [35].
AGB was derived from the field inventory as a function of stem DBH (Equation (1), and from
the TLS data as a function of stem DBH and tree height (Equation (2)).

ln(AGB) = β0 + β1 ∗ ln(D) (1)

ln(AGB) = β0 + β1 ∗ ln(D) + β2 ∗ ln(H)2 (2)

Multiple linear regression and Random Forest modeling (randomForest [36]),
conducted in R, were used to assess the relationship between individual tree biomass
(as determined from DBH allometry) and additional measures of tree 3D structure (canopy
height, crown area, crown width, crown volume).

Figure 4. Overview of the processing workflow and software packages used at different stages of analysis.

3. Results
3.1. Woody Canopy Characterization

All three LiDAR sensing systems provided high quality point-cloud data which cap-
tured the three-dimensional structure of the savanna vegetation in rich detail (Figure 5).
Viewing the 1 ha plot from an oblique angle, the three point clouds showed very simi-
lar structure and it is evident that all three systems captured the canopy patterns well
(Figure 5a–c). A cross-sectional slice through the point clouds (5 × 30 m) revealed the
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narrower beam footprint and higher precision of the TLS instrument, with crisp trunk and
branch detail, as well as good definition of material in the herbaceous layer (Figure 5d).
The MLS and ULS point clouds were less resolute in comparison, exhibiting some minor
noise around tree trunks and evidence of occlusion in the lower stems and herbaceous
layer (Figure 5e–f).

The generation of canopy height model (CHM) raster layers confirmed that differences
between the three scanning systems was minimal from a visual perspective and displayed
very similar spatial patterns of canopy height (Figure 6a–c). Subtle differences were
evident, however, and the canopy height distribution ((Figure 6d–f) differed significantly
between all three systems at 0.25 m (KS-test, p < 0.001). Sensitivity analysis showed that
these differences remained significant until a CHM resolution of 2 m was reached for the
TLS-MLS comparisons, and 4 m for TLS-ULS and MLS-ULS comparisons (KS-test, p > 0.05).

Estimation of maximum canopy height was very consistent across the three systems,
even at 0.25 m raster resolution. However, the MLS and ULS showed consistent bias in
woody canopy cover estimation, over- and under-estimating the woody fraction respec-
tively at multiple height intervals (Figure 7 and Table 2).

Figure 5. Oblique view of the point clouds derived from the three LiDAR platforms: (a) TLS, (b) MLS and (c) ULS.
Cross-sectional view of the point clouds derived from: (d) TLS, (e) MLS, and (f) ULS.
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Figure 6. Canopy height models derived from the three co-incident LiDAR datasets, plotted at 0.25 m
resolution (a–c) and their height class distributions (d–f).
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Figure 7. Canopy cover comparisons between MLS and ULS at different height class intervals,
against a TLS reference. Solid black is the 1:1 fit.
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Table 2. Summary statistics of woody canopy attributes collected by the three LiDAR systems at the
1 ha plot scale.

Attribute TLS MLS ULS

CHM max height (m) 18.02 18.65 18.05
Woody canopy cover (%) 51.5 55.3 39.8

Woody canopy cover > 3 m (%) 42.4 46.1 36.9
Woody canopy cover > 5 m (%) 39.9 44.7 34.8

Woody canopy cover > 10 m (%) 18.9 22.1 17.9

3.2. Individual Tree Characterization

Assessment of 3D structure at the individual tree level highlighted some further
distinctions between TLS, MLS and ULS characterization of 3D structure. The TLS capture
provided a very clean representation stem, branch and leaf structure, with points spaced
close enough together to give the impression of a continuous surface (Figure 8a). Extracting
a point-cloud slice from 1.25–1.35 m (to encompass the traditional DBH measurement
height) revealed a clear ring of points that allowed for DBH measurement via cylinder
fitting (Figure 8d).

The MLS scan captured the general size and shape of individual trees very well, includ-
ing small under-storey plants, but loss of detail was evident compared to TLS (Figure 8b).
The MLS point cloud exhibited more noise around tree stems, which is particularly clear in
the thick ring of points extracted at DBH measurement height (Figure 8e). The ULS also
captured the general shape of individual trees very well, and although many returns were
received from tree stems the density of points in the 1.25–1.35 m range was much lower
than from TLS and MLS (Figure 8c,f).

Figure 8. Example of a single large tree as captured by the three LiDAR systems (a–c). Horizontal slice cut through each
stem at 1.25–1.35 m above ground level, showing the pattern and density of points available for DBH fitting from each
system (d–f). .

Considering this, we used a broader portion of the tree stems (1–2 m) for cylinder
fitting and DBH estimation. Comparison of the DBH distributions against those obtained
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from the field inventory showed that the TLS estimates closely mirrored the field-measured
values (Figure 9a,b), but MLS and ULS estimates (Figure 9c,d) were skewed to larger values
and were more normally distributed than the inverse-J patterns evident in the field and
TLS data.

Figure 9. Distribution of DBH estimates from field inventory (a) and the three LiDAR
approaches (b–d).

Linear regression between field-measured DBH and TLS-estimated DBH confirmed
that the TLS could reliably extract individual tree DBH for a broad range of species
(Figure 10). Taller tree species with larger sample sizes in the plot such as Eucalyp-
tus tetradonta, Corymbia porrecta and Xanthostemon paradoxus showed the strongest fits
(Figure 10), while smaller statured species with narrower DBH ranges exhibited greater
error (e.g., Figure 10).

Based on the DBH representation findings discussed above, we restricted our analysis
of above-ground woody biomass to the field and TLS datasets. Our field inventory returned
a total of 572 stems, corresponding to 41.08 Mg ha−1 of above-ground woody biomass
and 20.54 Mg C ha−1 from DBH-based allometry (Equation (1)). Segmentation of the
TLS dataset identified almost 100 more stems (n = 669) than measured in the field survey,
which were mostly in the smaller size classes (Figure 9b). TLS-estimated biomass, using
DBH allometry according to Equation (2), was 7/% greater than the field-inventory estimate
at 44.21 Mg ha−1 of above-ground woody biomass and 22.10 Mg C ha−1.

Mapping out the distribution of individual tree biomass spatially showed that field
records and TLS predictions were very closely co-aligned (Figure 11a–b). The TLS tree
location mapping showed very few instances of omission from field-mapped locations,
and a number of commissions which were predominantly located at the very boundary of
the plot (Figure 11c). Omissions in the field-inventory mapping along the plot boundary
(e.g., south-western corner) are indicative of positioning errors associated with the manual
boundary line placement in the field.
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Figure 10. Comparison of TLS-derived DBH with field-measured values for the dominant woody species.

3.3. Allometric Scaling

Given that the MLS and ULS point clouds from our acquisitions were not suitable for
direct DBH/AGB retrieval (Figure 9), we explored the possibility of predicting AGB in
the MLS and ULS datasets through allometric scaling of tree crown parameters. MLS and
ULS captured the general crown structure of individual trees very well (Table 3), and the
relationship between tree height and crown area that was sensed by the three scanning
systems was very consistent (Figure 12). However, both multiple linear regression and Ran-
dom Forest modeling failed to establish a reliable relationship between canopy attributes
and stem DBH/AGB (R2 = 0.34, RMSE = 0.075 m).

Table 3. Summary statistics of individual tree attributes collected by the three LiDAR systems.

Attribute TLS MLS ULS

Crown volume max (m3) 428.37 475.29 406.37
Crown volume mean (m3) 19.94 23.49 41.67

Crown volume CV (m3) 2.33 2.29 1.6

Woody biomass (Mg ha−1) 44.21 - -
Woody biomass (Mg C ha−1) 22.10 - -



Remote Sens. 2021, 13, 257 13 of 19

Figure 11. Spatial distribution of tree biomass as mapped through field inventory (a, n = 572) and from
TLS (b, n = 669) using DBH-based allometric equations. Agreement, omissions, and commissions
between field and TLS mapping are shown in (c) with overlay blending.



Remote Sens. 2021, 13, 257 14 of 19

Figure 12. Relationship between individual tree height and crown area, as determined from the three
different LiDAR systems.

4. Discussion

Laser-based technologies have transformed our ability to measure and monitor sa-
vanna vegetation structure. The level of detail and efficiency exhibited in this study
from all three sensors is very encouraging from a long-term monitoring and manage-
ment perspective—providing rigorous baselines from which to assess current state and
future dynamics.

4.1. Efficient Monitoring of Habitat Structure

TLS has emerged as the gold standard for 3D characterization of vegetation structure
in ecosystems around the globe [17,19]. The high quality results obtained here from TLS
are unsurprising, but it is worth noting that the scan position density that we employed
(30 m spacing, 16 scans ha−1) was considerably lower than current recommendations in
the literature which suggest aiming for 10 m spacing [37]. The TLS literature is heavily
skewed towards forested ecosystems where high density scanning is critical for minimizing
occlusion. In savanna woodlands and shrublands, which occupy 20% of the global
terrestrial surface, the probability of occlusion is much lower and long-range scanners
allow for wider scan position placement [20]. This is important in the context of habitat
monitoring, as TLS is often considered too time intensive for broad extent and repeat
coverage sampling.

Nonetheless, the time required for our TLS survey, and subsequent processing, was
still substantially longer than that required for MLS and ULS captures (Table 1). The effi-
ciency of MLS and ULS in terms of time are clear, but do they provide sufficient structural
information for ecosystem monitoring? From a canopy height model perspective there
is minimal difference among the three scanning approaches and systems. The TLS CHM
could not be matched by MLS or ULS at the 0.25 m resolution, but was indistinguishable
from MLS at 2 m resolution and ULS at 4 m resolution. For many ecological applications
2–4 m is more than sufficient for providing insight into how canopy growth is tracking
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over time, and the extended geographic coverage may often outweigh the benefits of finely
detailed local structural representation.

The minor under-estimation of woody canopy cover by ULS was consistent across
the subplots of our study site. Similar findings have recently emerged from dry sclero-
phyll forests in Tasmania, where ULS underestimated canopy cover by a few percent in
comparison to TLS at the plot scale [38]. Here we show that this under-estimation is a
consistent trend across multiple height classes, indicating that the source of this bias is not
only under-storey, but also small canopy features such as the edges of branches for example.
MLS on the other-hand consistently over-estimated canopy cover in comparison to TLS.
This is contrary to the few published studies exploring MLS characterization of woody
canopy—which have mostly been conducted in forested ecosystems where tall dense
canopy restricts access of the laser beam through to the canopy surface [21,39,40]. In the
open savanna woodland of our study, ground-based TLS and MLS can penetrate canopies
well with good fields of view. In this instance we attribute the over-estimation of canopy
cover by MLS to the nosier point cloud that it produced in comparison to TLS, and these
results could likely be improved through further post-processing of the MLS point cloud.

4.2. Individual Trees and Biomass Scaling

Given that MLS and ULS were able to characterize individual tree height and crown
attributes very well, albeit with minor bias, we had anticipated that estimation of above-
ground biomass would have been possible from these point clouds through allometric
relationships with crown attributes. However, our TLS data showed that DBH-AGB did
not scale in a predictable manner with tree height, crown diameter, area, and volume
(R2 = 0.36, RMSE = 0.075 m). This was initially surprising in light of how well AGB scales
as a function of tree height and crown diameter in many ecoregions around the globe [41],
but it is an important reminder of how local-scale variability is averaged out in regional
and global syntheses. Savanna eucalypts have notoriously complex crown structures,
exacerbated by the actions of fire, termites and cyclone damage [42]. As shown recently in
a similar savanna setting in Litchfield National Park, savanna trees exhibit a wide range
of crown size variability for a given DBH [6]. In addition to confounding the estimation
of DBH and AGB from crown attributes, this variability also brings into question the
reliability of using DBH allometry in the first instance for biomass estimation in these
systems. The growing use of TLS for building Quantitative Structure Models (QSMs) of
trees and accounting for biomass volumetrically has started revealing errors associated with
DBH-based allometry in a variety of ecosystem types [43,44] and needs greater exploration
in different savanna settings.

4.3. Limitations and Future Directions

TLS is a mature field, with well established protocols for data acquisition and pro-
cessing [17]. TLS can be deployed in many different ecosystems with high confidence
placed in data capture and structural representation, with efficient open-source tools for
tree segmentation and structural modeling [45]. Our results obtained from MLS and ULS
are encouraging and capture key elements of the savanna woody structure thoroughly.
As expected both MLS and ULS did not detect some of the finer-scale ecosystem elements
as well as TLS, but are more than sufficient for addressing many ecological questions.

A challenge that arises when comparing different platforms is that the end results are
influenced heavily by the acquisition and pre- and post-processing parameters. As such,
meaningful generalisations are difficult to make. TLS has the advantage of being a mature
technology, with a large user-base and established collection and pre- and post-processing
protocols. MLS and ULS are at earlier stages of development and uptake. Furthermore, it is
a rapidly expanding industry and a wide variety of sensors and platform exist, from very
high-end survey-grade systems (e.g., RIEGL RiCOPTER flying a RIEGL VUX-1) to lighter
weight and lower cost options (e.g., DJI M600 with a Velodyne or M8 sensor). Some MLS
systems rely solely on SLAM for positioning, while others have integrated RTK-GNSS,
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so results and noise levels will vary. Additionally, the actual flight/walk patterns and
speeds have a marked impact on point-cloud characteristics—and optimal acquisition
parameters may be ecosystem specific. Fortunately, since the point-cloud outputs from
MLS and ULS share many features of TLS point clouds (at lower densities) analysis of these
products can make use of and further advance breakthroughs in TLS processing pipelines.

A key challenge moving forward with MLS and ULS surveying will be to optimize the
acquisition and processing parameters in a robust and repeatable manner. We suggest that
TLS be leveraged at the start of baseline and long-term monitoring programs to provide a
benchmark against which the MLS and/or ULS acquisitions can be optimized. This will
enable MLS and ULS to be applied over larger areas and at more frequent time intervals,
with intermittent re-calibration against nested TLS collections in key spatial locations
and temporal stages throughout the monitoring program. Furthermore, establishing the
scaling uncertainty of TLS measurements through to large area ULS surveying will greatly
benefit the earth observation community by assisting in the calibration and validation of
spaceborne optical, LiDAR and SAR missions (e.g., GEDI, ICESAT-2, NISAR, BIOMASS).
When considering the faster acquisition time and the ability to collect data over larger areas,
MLS and ULS systems could prove particularly useful for expanding the geographic range
and representation of current calibration and validation libraries, with known uncertainties
from the nested TLS models.

Lastly, while we have primarily focused here on comparing the individual point clouds
and derived products produced through TLS, MLS and ULS surveying, we recognize
that much could be gained through their integration. For example, a fused point cloud
derived from both TLS and ULS could provide rich vegetation detail from the oblique TLS
perspective and comprehensive terrain characterization from the aerial ULS viewpoint.

5. Conclusions

From a canopy modeling perspective, the differences between the TLS, MLS, and ULS
were negligible for most applications, but there was a large difference in the acquisition
time, with MLS and ULS offering distinct advantages. The trade-off comes through at the
individual tree and stem modeling level, where TLS can reproduce DBH estimates from
the field with high accuracy and precision, and capture smaller stems than are typically
measured in field surveys. Comparisons among TLS, MLS and ULS are challenging as there
are a large range of parameters that can be modified across a wide range of applications.
TLS surveying is relatively mature, whereas optimal sampling and processing strategies
for MLS and ULS are less mature, but rapidly developing. Future research should focus
on using TLS as a benchmarking tool to optimize the acquisition parameters of MLS and
ULS for a given research and/or management objective. Importantly, this needs to be done
across a range of different ecosystem types as the strengths and weaknesses of each sensing
system, and platform, will vary with site-specific conditions.

TLS provides a holistic representation of 3D structure that cannot be obtained through
traditional field inventory and provides an avenue for optimizing MLS and ULS acqui-
sition parameters, generating correction coefficients for MLS and ULS canopy products,
and exploring new allometric models linking point-cloud metrics directly to above-ground
woody biomass.
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