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Abstract: Biomass is a principal variable in crop monitoring and management and in assessing carbon
cycling. Remote sensing combined with field measurements can be used to estimate biomass over
large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves
are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre
production can be used to produce bioenergy through anaerobic digestion. First, biomass was esti-
mated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery
was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised
Additive Models were employed to explore how well biomass was explained by various spectral
vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1)
was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and
R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting
background effects seemed to limit model performance. The best performing VI (R740/R783) was
used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1).
The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the
plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2
red-edge bands at 20-m resolution, the difference from the best model based on green and near-
infrared bands at 10-m resolution was rather small.

Keywords: generalized additive models; remote sensing; sisal; crassuleacean acid metabolism;
multispectral; precision agriculture; bioenergy; carbon

1. Introduction

Agave sisalana (sisal) is a perennial crop native to Central America and has been
widely introduced to tropics and subtropics, where it is mainly cultivated at commercial
plantations [1]. Sisal is a plant that is well adapted to survive in hot and dry conditions [2].
It has succulent leaves with thick and waxy outermost layer (epidermis) and large water
storage cells inside the leaves in the mesophyll [3]. It uses Crassuleacean Acid Metabolism
(CAM or CAM photosynthesis), which means the CO2 uptake happens during night when
the evaporative demand is lower [2,4]. Sisal is grown for hard fibre extracted from its
leaves that is used for ropes, baskets and carpets, and as a reinforcing composite, for
example in the automotive industry [5]. In addition, the plant could potentially be used in
pharmaceutical and chemical industries [6]. The global production of sisal peaked at over
800,000 Mg in the 1960s, after which competition with synthetic fibres led to a sharp decline
in production [2,7]. According to the Food and Agriculture Organization of the United
Nations (FAO), the annual production of sisal in 1998–2018 averaged 320,000 Mg [7]. This
places it sixth among natural fibres in terms of production and accounts for approximately
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2% of global plant fibre production and 70% of the world’s hard fibres. The total area under
sisal cultivation in 1998–2018 was on average 359 357 ha and the largest producers were
Brazil, Tanzania, Kenya, Madagascar, China, Haiti, and Mexico.

Recently, the global prospects of sisal and other Agave plants as a biofuel feedstock has
received notable attention, reflecting the growing need for sustainable and decentralised
energy sources [8–11]. In the current sisal-fibre industry, there is a largely neglected
potential to channel the waste products towards biofuel production, since fibre consists
of only approximately 4% of sisal biomass and traditionally the residue is deposited into
open ponds and only some of it is utilised as fertiliser [1,11]. The high productivity of
Agave in arid and semi-arid environments [12], drought tolerance traits and high water use
efficiency could also create opportunities to grow Agave for biofuel production in marginal
lands unsuitable for food production [2].

Despite the rapid development of remote sensing technologies and their growing use
in crop mapping [13], remote sensing has not been tested for retrieving the biomass of
sisal or any other plant in the Agave genus. However, remote sensing of crop biomass is
a relatively rapid and cost-effective method. It can be used for large-scale monitoring of
crops, providing valuable information for resource planning, growth assessment, yield
optimization and prediction, or simply precision agriculture [14–18]. Furthermore, remote
sensing of biomass can be used to derive information on carbon cycling [19,20].

Multispectral satellites with medium spatial resolution, such as the European Space
Agency (ESA) Sentinel-2, have demonstrated functionality for large-scale biomass esti-
mation in different environmental contexts [21,22] and have also been applied for crop
mapping [14,23]. A common approach in multispectral biomass modelling is to calculate
vegetation indices (VIs). VIs are combinations of spectral bands which can be used as
indicators of plant biophysical characteristics [16,23]. Traditional VIs, calculated from red
and near-infrared (NIR) bands are still widely used, but in some contexts other bands (such
as green) have shown greater sensitivity to, for example, chlorophyll concentration [24,25].
VIs calculated from the red-edge bands that are positioned in the region of rapid increase in
plant reflectance between red and NIR wavelengths are also known to be valuable [24,26],
particularly when vegetation is dense and when traditional VIs tend to saturate [27]. While
the added value of the red-edge bands has been recognised in crop remote sensing [16,28],
in some instances the red-edge bands are only as good as or have even lower sensitivity to
plant variables than other bands [23,29].

Due to the unique spectral and structural characteristics of different plant species, the
sensitivity of VIs to plant variables is often species specific [29–31]. Species-specific research
is thus required to understand the relationships between plant variables and VIs and to
evaluate the feasibility of such a modelling approach for plants that have not yet been
studied. In this study, our general objective was to assess the utility of medium-resolution
multispectral satellite imagery in estimating the leaf biomass of sisal. More specifically, the
research questions were: (1) what is the relationship between Sentinel-2 VIs and sisal leaf
biomass and (2) how accurately the biomass can be modelled using such data? The study
was conducted at an 8851-ha plantation, which consists of blocks at various growing stages
and under different management practices.

2. Materials and Methods
2.1. Study Area

Teita Sisal Estate (3◦30′S, 38◦24′E, 750–900 m a.s.l) is located in the town of Mwatate
in Taita-Taveta County in the Coast Province of Kenya and is right next to the Taita Hills
(Figure 1). The Taita Hills are the northernmost part of the Eastern Arc Mountains, a chain
of ancient mountains across the Eastern regions of Tanzania and Kenya [32,33]. The area
has a semi-arid climate, where two rainy seasons occur in March to June and October to
December. The long-term annual mean precipitation is 611 mm and mean temperature
is 24.9 ◦C [34]. The main vegetation types in the nearby lowland areas are bushlands,
grasslands, and riverine forests [35,36]. Small-scale farming of crops, mainly maize and
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beans, is also widely practiced. The soil type (Ferralsols) is characterized by deep, acidic,
dark red, sandy clay soil [36]. The estate is one of the largest sisal plantations in the world
and is the largest in Kenya, with a cultivable area of approximately 8851 ha. The monthly
fibre production is 800 Mg on average, while the total sisal fibre production in Kenya in
1998–2019 averaged 22,975 Mg per year [7].
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The following three sisal varieties are primarily cultivated at the plantation:
Agave sisalana, Agave hildana, and Agave hybrid 11648, of which the latter occupies the
majority of the area [37]. The crop is grown vegetatively from bulbils or suckers and the
plant density at the estate is 4995 plants per hectare. Sisal is planted in double rows (two
single rows next to each other) with 3.75 m spacing between double rows, 0.7 m between
single rows, and 0.9 m between plants. Before planting the fields are fertilised with sisal
waste produced during the fibre extraction. After the planting herbicides are applied for
weed control. Management practices in subsequent years include desuckering, mowing,
and bush clearing. Generally, the old blocks receive less attention than the young ones.
Therefore, the younger blocks had minimal ground vegetation, while many of the older
blocks had a varying cover of weeds and shrubs (Figure 2).
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2019) and from prior knowledge of planting time to cover the range of plant sizes and 
different growing conditions. Furthermore, seven of the plots were positioned next to gas-
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a 12-month period for University of Helsinki research [40]). The 20 m2 square plots were 

Figure 2. Images from the study area (Teita Sisal Estate). (A) Sisal suckers ready to be planted. (B) 1-year-old block with
minimal ground vegetation. (C) 3-year-old block with no ground vegetation. (D) 7-year-old block and dry weeds. (E)
13-year-old block at the end of flowering stage and with minimal ground vegetation. (F) Old field, where weeds have
taken over.

Sisal forms a rosette of sword-shaped (lanceolate) leaves around its stem [2,3]. Ap-
proximately 85% of the aboveground biomass (AGB) is contributed by leaves [38]. The
water content of the leaves is approximately 80% and decreases with plant age [1,39]. Leaf
harvesting starts at the age of 2–3 years when the oldest leaves, lowermost in the rosette,
are cut manually. Harvesting continues approximately once a year up to 15 years. At the
end of its life-cycle sisal grows a flower stalk up to 7 m long (Figure 2E). The leftover stump,
known as sisal ball, is what remains after all the leaves and the stalk have been harvested.
The sisal ball consists of a stem, bits of leaf bases, and the base of a flower stalk [11].

2.2. Field Plots and Leaf Biomass Estimation

Field plots (n = 58) were selected at Teita Sisal Estate between 22 and 29 August 2019
(Figure 1). Plot locations were chosen subjectively based on the normalized difference
vegetation index (NDVI) calculated from a Sentinel-2 image (acquisition date 16 April
2019) and from prior knowledge of planting time to cover the range of plant sizes and
different growing conditions. Furthermore, seven of the plots were positioned next to
gas-chamber measurement sites (CO2, N2O, and CH4 fluxes were measured at these sites
over a 12-month period for University of Helsinki research [40]). The 20 m2 square plots
were oriented with two sides parallel to the sisal rows such that four double rows (=8 single
rows) were inside the plot (Figure 3).
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Figure 3. Schematic of the plot design for field estimation of biomass.

Plot locations were recorded with a GNSS receiver (Trimble GeoXH) by measuring the
centre and the four corners of the plot. On average, the location of the centre was logged
326 times. A differential correction was applied to the measured locations in relation to
a GNSS base station. The location of the base station was determined using Trimble RTX
post-processing service. Plot polygons (20 m2) were then digitized in QGIS 3.4.5 using a
square-drawing tool [41]. Centre location was used as the exact centre of the polygon and
orientation was guided by the corner locations.

Proximity to roads was avoided and homogeneity in the plot was preferred when
choosing the locations. The number of plants in the two midmost double rows was counted
and multiplied by two to estimate the total number of plants in the plot. The number
of leaves was counted and plant height and maximum leaf width were measured from
one subjectively determined representative plant in the two midmost rows. Plant height
was measured with a measurement tape from topsoil to the terminal spine of the leaf
unfolding upwards from the middle of the rosette. Maximum leaf width was measured
with a measurement tape along the upper surface of the leaf. The mean values of these
two plants were calculated to constitute representative plot-specific plant metrics. If a
considerable variance in plant sizes was visually observed, plants were then divided into
two size-class categories that were measured separately. Some plots had shoots growing
on the ground and they were included only if they were higher than 50 cm. Furthermore,
the presence of ground vegetation and flower stalks and harvesting status were noted.
Information on block age and variety was received from plantation’s books [37].

Dry leaf biomass (Mg ha−1) for the field plots was predicted using a species-specific
allometric model developed by Vuorinne et al. [39]. This log-log linear model [R2 = 0.96,
root mean squared error (RMSE) = 7.7g] predicts leaf mass as:

log(B) = −4.12 + 0.84 log(W2H), (1)

where B (Mg ha−1) is the dry mass of a leaf, W (cm) the maximum width of a leaf, and H (cm)
the height of a plant. The predicted values were transformed back from the logarithmic
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scale to the original scale with bias correction recommended by [42]. The correction factor
(CF) was calculated as:

CF = (SE/2)2, (2)

where SE is the standard error of the regression.
First, plot-specific plant metrics were used to predict the mass of a representative leaf,

which was then multiplied by the number of leaves in the plant and then by the number
of plants in the plot to estimate the total leaf biomass in the plot. Plot biomass varied
between 0 and 42.3 Mg ha−1 (mean 12.1 Mg ha−1, Figure 4 and Table 1) and block age
varied between 0 and 17 years (mean 7.5 years).
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Figure 4. Histogram showing the distribution of the biomass in the field plots. Bin width = 5 Mg ha−1.

Table 1. Summary of the field plot biomass.

Min. 1st. Quantile Median Mean 3rd. Quantile Max.

Leaf Biomass (Mg ha−1) 0.0 5.1 10.0 12.1 16.0 42.3
Block Age (years) 0 3 7 7.5 13 17

2.3. Sentinel-2 Satellite Image

A Sentinel-2 image with acquisition date 28 September 2019 was downloaded from the
Copernicus Open Access Hub [43] as a level 2-A product (ID: S2B_MSIL2A_20190928T0726
59_N0213_R049_T37MDS_20190928T105635.SAFE). Of the cloud-free Sentinel-2 images
from the study area, this was the one with the nearest date to the field data collection.
Level 2-A products are analysis-ready bottom of atmosphere (BOA) reflectance images
corrected with the Sen2Cor procedure [44]. The MSI (Multi-Spectral Instrument) sensor
aboard Sentinel-2 satellites has 13 spectral bands with a spatial resolution of 10 to 60 m
(Table 2; [45]). All bands with 20-m spatial resolution and 10-m bands down-sampled to
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20-m were used in this study (B2, B3, B4, B5, B6, B7, B8A, B11, B12). Hereafter, they will be
referred to as Blue, Green, Red, RE1, RE2, RE3, NIR2, SWIR1, and SWIR2.

Table 2. Sentinel-2 spectral bands.

Band Spectral Band Central Wavelength (nm) Band Width (nm) Spatial Resolution

B1 Coastal aerosol 443 20 60
B2 Blue 490 65 10
B3 Green 560 35 10
B4 Red 665 30 10
B5 Red-edge, RE1 705 15 20
B6 Red-edge, RE2 740 15 20
B7 Red-edge, RE3 783 20 20
B8 Near infrared 842 115 10

B8A Near infrared narrow, NIR 865 20 20
B9 Water vapour 945 20 60

B10 Shortwave infrared 1380 30 60
B11 Shortwave infrared, SWIR1 1910 90 20
B12 Shortwave infrared, SWIR2 2190 180 20

Reflectance values for the field plots were calculated from the image by taking an
area-weighted average of the pixels that fell under the plot polygon. The weights were
based on pixel area that overlapped the plot polygon. The calculation was performed with
a purpose-built script using Python programming language [46].

2.4. Vegetation Index Calculation

Reflectance in spectral bands can be combined into VIs with simple arithmetic to
increase sensitivity to biomass [23,24]. Here the VIs were calculated using plot reflectance
in all bands with 20-m spatial resolution. All possible two-band combinations were tested
by using three common vegetation index formulas. These were the ratio-based spectral
index (RSI):

RSI =
Band A
Band B

(3)

normalised difference spectral index (NDSI):

NDSI =
(Band A − Band B)
(Band A + Band B)

(4)

and reciprocal difference spectral index (RDSI):

RDSI =
1

Band A
− 1

Band B
(5)

All the bands were tested as both Band A and Band B which resulted 216 band com-
binations altogether. In addition, a selection of published VIs were tested as references
(Table 3). These included Soil Adjusted Vegetation Index (SAVI) and Enhanced Vegetation
Index (EVI) which are based on NIR to Red ratio, but with additional parameters to account
for atmospheric and background effects. The other indices (Canopy Chlorophyll Content
Index (CCCI), Inverted Red-Edge Chlorophyll Index (IRECI) and Modified Chlorophyll
Absorption Ratio Index [MCARI]) take advantage of the bands positioned in the red-edge
spectral region near 700 nm [24,47]. Furthermore, widely used normalized difference
vegetation index (NDVI) was used as a reference, although it was automatically included
also in NDSI combinations.
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Table 3. Vegetation indices used as a reference.

Index Formula Reference

SAVI ((NIR − Red))/((NIR + Red + 0.16)) [48]
EVI 2.5 × (NIR − Red)/((NIR + 6Red − 7.5Blue) + 1) [49]

CCCI ((NIR − RE1)/(NIR + RE1))/((NIR − Red)/(NIR+Red)) [50]
IRECI (NIR − Red)/(RE1 − RE2) [51]

MCARI ((RE1-Red) − 0.2(RE1 − Green))(RE1/Red) [26]
NDVI (NIR − Red)/(NIR + Red) [52]

2.5. Modelling Biomass with Vegetation Indices

The relationships between biomass and VIs were analysed with Generalized Additive
Models (GAM) in R-Studio [53] using mgcv-package [54]. With GAMs, it is unnecessary
to identify polynomial terms or predictor transformations to improve model fit. GAMs
are also flexible in approximating responses and have relaxed assumptions of predictor-
response relationship. Thus, they have the potential to achieve better fits than purely
parametric models. In multispectral remote sensing, GAMs have been used, for example,
to model leaf-area-index [55], fractional vegetation cover [56], and biomass [57]. GAM
is a semiparametric generalized linear model that fits the response curves as a sum of
smoothing functions [54]:

y = βo +
k

∑
j=1

f j
(
Xj
)
+ ε (6)

where y is the response vector, βo is the model intercept, f j
(
Xj
)

the smooth function, and ε
is the residual. In GAMs, the relationship between the linear predictor and the mean of the
dependent variable is provided by a link function. Here, a Gaussian-error structure was
used with an identity link function. Smoothing function, which sets the upper limit on the
degrees of freedom associated with the smoothing, was set to k = 3, which is considered
conservative and should avoid overfitting. The models were evaluated based on deviance
explained (D2), which was calculated as:

D2 =
(Null deviance − Residual deviance)

Null deviance
(7)

The modelling included two steps. First, GAMs were calculated for all the bands and
VIs, and then, the reference VIs and two VIs with the highest D2 from each group (RS,
NDSI, RDSI) were selected for further evaluation. The performance of these indices was
tested with two exhaustive cross-validation methods. The leave-one-out cross-validation
(LOOCV; [58]) was used first. In LOOCV, one observation at a time is left out and used as
a validation set, while the model is trained with all the other observations. The process
is repeated until all the observations have been used for validation, which results in a
prediction size equal to the sample size. Then, mean absolute error (MAE) and RMSE were
calculated between observed and predicted values. MAE as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (8)

and RMSE as:

RMSE =

√
∑n

i=1(yi − ŷi)

n
(9)

where y is the observed value, ŷ is the predicted value, and n is the number of observations.
Normalised RMSE (nRMSE %) was calculated as:

nRMSE =
RMSE

y
∗ 100 (10)
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where y is the mean of the predicted biomass.
As recently demonstrated by Ploton et al. [59], cross-validations such as LOOCV can

be subject to spatial autocorrelation if the observations are close to each other, leading to
overoptimistic validation statistics. In a plantation environment, spatial autocorrelation
should not be a similar issue as in natural environments, but some of our observation were
from the same blocks, which we thought could affect LOOCV. Therefore, another validation
was performed that we call leave-block-out cross-validation (LBOCV). The observations
were first divided into subsets with all the observations from the same block constituting
their own subset. Overall, there were observations from 30 different blocks (= 30 subsets),
with 1 to 4 observations in each. We then ran a cross-validation similar to LOOCV, but
instead of leaving out single observations, we left out the block subsets one at a time.

LBOCV was used also to calculate pixel-scale uncertainty for the final biomass map
that was predicted using the best performing VI-biomass GAM. First, all the 30 models
where one block had been left out were used to predict plantation biomass. Then standard
deviation and coefficient of variation (CV, also known as relative standard error) of these
predictions were calculated for all pixels [57].

3. Results
3.1. Relationship between Biomass and Vegetation Indices

Generally, biomass had an inverse relationship with Blue, Green, Red, RE1, SWIR1,
and SWIR2 (Figure 5). With RE2, RE3, and NIR the relationship was positive. Although
these relationships were evident, so was the variation, as there were notable spreads around
the general trends. The bands that explained the most deviance in biomass were RE1, NIR,
and RE3. The second best explainers were SWIR1, Red and Green while the least deviance
was explained by RE2 and Blue.

Figure 6A–C shows the explained deviances (D2) of the VI-biomass GAMs fitted
with all the possible two-band combinations for three VI forms (RSI, NDSI, RDSI). In
all groups, the best combinations included one of the two red-edge bands (RE2, RE3) or
the near-infrared band (NIR), while combinations without these bands showed lower
performance. The results for RSIs and NDSIs were almost identical. The best combi-
nation of bands for both VI forms was the two red-edge bands, namely RE2/RE3 and
(RE3 − RE2)/(RE3 + RE2) (D2 = 0.76). Other RE and NIR combinations also showed good
performance, but the second-best combination was the G band together with either the
RE3 or NIR band (NIR/Green and RE3/Green, D2 = 0.73, (NIR − Green)/(NIR + Green)
and (RE3 − Green)/(RE3 + Green); D2 = 0.72). Overall, RDSIs showed lower performance
than RSIs or NDSIs, although the best band combinations were similar. For RDSI, the best
explanatory power was achieved with 1/RE3-1/RE1 (D2 = 0.68) and the second best with
1/RE3-/Green (D2 = 0.67).
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GAMs were also fitted for all reference VIs. These models and the two best-performing
RSIs, NDSIs, and RDSIs were then cross-validated using LOOCV and LBOCV methods.
The LOOCV produced only slightly more optimistic statistics than LBOCV. The model fits
(D2) and validation MAEs and RMSEs are presented in Table 4. Reference VIs with the
best explanatory power were IRECI (D2 = 0.64) and MCARI (D2 = 0.64). However, the best
RSI, NDSI, and RDSI outperformed all reference VIs. Figure 7 shows best two VIs of all
the VI groups and reference VIs and NDVI and SR. Since RE2/RE3, RE3/1–RE1/1, and
RE3/1–G/1 had inverse relation to biomass, they are shown as 1–VI to make the relation
positive and the comparison to other models easier.
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relation to biomass positive.

The impacts of the additional plot variables (ground vegetation, flower stalks, har-
vesting status, variety, and age) were analysed visually by plotting the variables with the
highest performing VI (Figure 8A–E). Ground vegetation seemed to lead to overestimation
in blocks with high biomass density, although there were a few observations contradicting
this trend (Figure 8A). Conversely, in the lower densities, biomass was generally under-
estimated for the blocks without ground vegetation. Furthermore, low density blocks
that had not yet been harvested had greater prediction error than those that had been
harvested (Figure 8C). Flower stalks, variety, or age did not seem to introduce notable error
trends (Figure 8C–E).
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Table 4. Explained deviances (D2) and mean absolute error (MAE), root mean squared error (RMSE), and normalised root
mean squared error (nRMSE) of leave-one-out and leave-block-out cross-validations of the two best RSI, NDSI, RDSI, and
all reference VIs.

Index D2 MAE MAE RMSE RMSE nRMSE nRMSE
LOOCV LBOCV LOOCV LBOCV LOOCV LBOCV

(Mg ha−1) (Mg ha−1) (Mg ha−1) (Mg ha−1) (%) (%)

RE2/RE3 0.76 3.60 3.77 4.90 5.15 46 49
(RE3 − RE2)/(RE3 + RE2) 0.76 3.66 3.80 4.97 5.17 47 49

NIR/Green 0.72 3.89 4.18 5.11 5.42 48 51
(NIR − Green)/(NIR + Green) 0.72 3.90 4.19 5.12 5.41 48 51

1/RE3–1/RE1 0.68 4.11 4.49 5.80 6.25 54 58
1/RE3–1/Green 0.67 4.17 4.45 5.66 6.11 53 57

MCARI 0.64 4.34 4.54 5.93 6.20 56 58
IRECI 0.64 4.37 4.61 5.97 6.24 56 59
EVI 0.62 4.37 4.58 5.92 6.26 56 59

SAVI 0.61 4.37 4.62 6.02 6.33 57 60
CCCI 0.60 4.26 4.38 6.09 6.31 57 60
NDVI 0.58 4.43 4.65 6.26 6.57 59 61Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
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3.2. Biomass Map

The best performing model (RE2/RE3) was used to predict leaf biomass at the planta-
tion level (Figure 9). Since the identity link function in GAM allows the model to predict
negative values, they were set to 0. Biomass densities ranged from 0 to 46.7 Mg ha−1 (mean
biomass 10.6 Mg ha−1) and the total biomass at the plantation was 94,044 Mg. There was
large intra- and inter-block variation in biomass. Primarily, the age of a block and leaf
harvesting controlled the biomass. The lowest densities were found from recently planted
blocks, while the densities of the mature and old blocks where harvesting had begun were
close to the plantation mean. The highest densities were found from 2- to 4-year-old blocks,
where leaves had not yet been harvested or the harvesting had just begun. The areas with
no biomass were recently ploughed blocks.
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Many of the blocks appeared internally heterogeneous. For example, the block with
high biomass density in the middle of eastern edge of the plantation had randomly dis-
tributed spots with lower density, indicating possible disturbances. Furthermore, there
were regular north-south oriented line-shaped spatial patterns that were almost perpendic-
ular to the crop rows, indicating more rigorous growth in some parts of the block.

The uncertainty maps are presented in Figure 10. Pixel-scale standard deviation was
generally low, except in the blocks with the highest biomass densities. Conversely, CV
was the highest in the fields with low biomass, especially in the blocks that had just been
planted. Hence, the stability of the predictions was lowest in high density blocks in terms
of actual biomass quantities and in low density blocks relative to the amount of biomass.
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4. Discussion

Although remote sensing can be a feasible method for a large-scale assessment and
monitoring of crop biomass, the methods and outcomes are often species specific. The
objective of this study was to assess the utility of Sentinel-2 imagery in estimating leaf
biomass of Agave sisalana. The results show a strong relationship between multispectral
vegetation indices and biomass. The best results were achieved with ratio and normalised
difference VIs and the most valuable single bands were RE2, RE3, and NIR, but also Green.
The two best ratio indices appear to be similar to Red-edge Chlorophyll Index (CIRE)
and Green Chlorophyll Index (CIGreen), while the normalised difference ratio indices are
similar to Green NDVI (GNDVI) and Red-Edge NDVI (NDVIre), all of which Gitelson and
Merzlyak [24] and Gitelson et al. [25,60] revealed were sensitive to LAI and green-leaf
biomass at the leaf and canopy level. The applicability of these indices for crop studies
using Sentinel-2 data have also been demonstrated before [23].

The distinctive feature of the RE indices that showed the highest sensitivity to sisal
leaf biomass is that even though they are broadly based on the same spectral regions as in
previous crop studies, they were calculated using bands with slightly different positioning.
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Originally, CIRE, and NDVIRE were formulated using narrow spectral bands (1 nm) as
750/700 nm and (750 − 700 nm)/(750 − 700 nm), respectively [24,60]. Hence, when
calculated from multispectral data, the band corresponding to NIR has usually been used
as numerator and the band nearest to 700 nm as denominator. For example, Kross et al. [29]
calculated NDVIRE using RapidEye NIR (760–850 nm) and RE (690–730 nm) bands, when
estimating the LAI and biomass of corn and soybean. Using Sentinel-2 data, Clevers
et al. [23] calculated CIRE using RE3 (773–793 nm) and RE1 (698–713 nm) for retrieving
chlorophyll and LAI of potato. Here, the best performing RE indices were calculated using
RE2 (733–748 nm) and RE3 (773–793 nm). Using RE2 instead of the band closest to 700 nm
(as in other crop studies) increased the explained deviance by 9.3% at best.

The functioning of the red-edge indices is based on the premise that the red-edge
position (the point of the maximum slope between red and NIR wavelengths) is mainly
controlled by chlorophyll content, shifting to higher wavelengths with increasing chloro-
phyll [47]. Therefore, it can provide information about various plant parameters. It is
known that the reflectance near 700 nm is a sensitive indicator of the red-edge position and,
furthermore, that the ratio of 750 nm to that near 700 nm is directly proportional to chloro-
phyll content and green-leaf biomass [60]. However, these relationships were originally
observed for maize with leaf biomass of 0 to 3.5 Mg ha−1, while sisal leaf biomass in the
study area ranged from 0 to 46.7 Mg ha−1, with the mean at 10.6 Mg ha−1. Structural differ-
ences between these crops at the leaf and canopy level are also prominent. Presumably, due
to higher biomass quantities and the consequent expansion of chlorophyll concentration,
the sisal RE position can move to longer wavelengths than that of maize. This is supported
with two indicative observations. Firstly, the RE1 band centred at 705 nm had a negative
relation to biomass, resembling a spectral response that healthy plants generally exhibit on
the red band. Secondly, the ratio (RE2/RE3) that was most sensitive to sisal leaf biomass
was calculated from longer wavelengths than those that have optimal sensitivity for maize
biomass [59].

Relatively high biomass densities and sisal structure also likely explain why reference
VIs, all of which included the Red band, had weaker sensitivity to biomass. Although
NIR/Red ratios are known to correlate with biomass, they tend to saturate at high den-
sities [27]. This is because at red wavelengths, the absorption coefficient of chlorophylls
is high and the depth of light penetration into the leaf is low [61,62]. In contrast, sisal has
thick pulpy leaves with high water content, multiple leaf layers (and consequently a high
amount of green biomass) [2,3], and high chlorophyll content. This is likely to explain why
the Red band showed low sensitivity to biomass. In addition to the Red band, the best
reference VI (IRECI) contained also the RE bands, whereas reference VIs based solely on
the NIR and R bands, such as NDVI, showed lower performance.

In addition to the NIR and RE bands, the Green band also showed good sensitivity
to biomass. A strong relationship, almost as strong as for RE indices, was observed for
NIR/Green and (NIR-Green)/(NIR+Green), known as ClGreen and GNDVI [24,25]. These
indices also appeared to be slightly more sensitive to lower biomass values than the RE
indices. Just like the red-edge position, the reflectance at the green spectral region is
controlled by chlorophyll content. In this region, the absorption coefficient of chlorophyll is
smaller and light can penetrate deeper into the leaf than at the red region [61,62]. Therefore,
the green region does not saturate as easily and is highly sensitive to changes in chlorophyll
content [24,25]. Although the NIR/red combinations have been the preferred option in
vegetation studies, Gitelson et al. [25] have advocated the use of NIR/green combinations
due to the wider dynamic range of the green bands. Clevers et al. [23] have also found
ClGreen to be a better indicator of potato canopy chlorophyll content than CIRE. In Sentinel-2,
the G band is available at 10-m resolution, whereas the RE bands are available only at 20-m
resolution. Hence NIR/Green can be calculated at higher resolution, although this does
not necessarily boost the model performance [56]. Furthermore, unlike the red-edge bands,
the NIR and Green bands are found from all multispectral satellites, which makes this
combination more available and interoperable with other optical sensors.
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One challenge of the VI-modelling approach is how to minimize the impact of external
factors and to establish a truly sensitive relationship between VIs and biomass [13,30].
In terms of model fit, the performance of the best models in this study appear to be
slightly lower than in other studies that have used multispectral data for crop biomass
assessment. For example, Kross et al. [29] achieved a coefficient of determination (R2)
ranging between 0.86 and 0.88 when mapping corn and soybean biomass with RapidEye
imagery. Prabhakara et al. achieved an R2 of 0.86 for six winter crops with a handheld
multispectral spectrometer [31]. For wheat biomass assessment, Wang et al. used an
HJ1 satellite data that yielded an R2 of 0.79 [18]. Then again, for biomass assessment of
rangeland grasses with Sentinel-2, Sibanda et al. achieved R2 of 0.58 [22].

Compared to the crops in the studies mentioned above (soybean, corn, wheat), which
grow in more homogeneous fields, the growing conditions of sisal in the study area were
rather different. Although this was a monoculture plantation, the varying management
practices yielded blocks that were heterogeneous in terms of ground vegetation between
the crop rows (Figure 2). Some blocks had no or a minimal number of weeds, while in
other blocks the 3.75-m space between the sisal rows was fully covered with tall grass or
shrubs, or both. In older blocks, tall (up to 10 m) acacia trees also grew among sisal. With
Sentinel’s 20-m resolution, this means that the signal is always a mixture of sisal and either
soil, trees or ground vegetation, or all. Spectral regions used in the red-edge and NIR to
G ratios, which showed the best sensitivity to biomass, have exhibited low sensitivity to
soil background effects [63,64]. However, it should be acknowledged that the sensitivity of
VIs to soil depends on the soil type and wider evaluation of soil-adjusted indices could
therefore be relevant [65]. The CV map also showed that the prediction stability was low in
recently planted fields, meaning that the models omitting observations from these fields
had large error for such fields. Ground vegetation also seemed to introduce uncertainties
in the models with an over- or under-prediction trend depending on the biomass density.
Hence, also the effects of ground vegetation should be analysed further. Overall, the
background effects could be studied, for example, by stratifying the observations based on
the growing conditions (e.g., the abundance of ground vegetation).

Even though the acquisition date of the Sentinel-2 image was a month apart from the
fieldwork, changes in ground vegetation were presumably small, since both the fieldwork
and image acquisition dates were in the middle of the dry season. Over a year, however,
the seasonality of the rains and resulting phenological patterns cause the ground vegetation
to change both in abundance and colour. If ground vegetation causes bias as speculated,
the models may potentially perform poorer during the rainy season due to the greening
of herbaceous vegetation [66,67]. This study covered for wide range of plant ages and
growing conditions but only in one area at one point in time. The generalisation of results
in space and time is therefore constrained, because of factors arising from sensor variations
and changes in biotic and abiotic conditions [68]. Further research is needed to see how
the relationship between sisal leaf biomass and VIs varies between sensors, in different
regions, and over time.

The 1-month gap between the fieldwork dates and the acquisition date of the nearest
fully cloud-free Sentinel-2 image of the study area demonstrates one shortcoming of the
optical satellites. In areas with regular cloud cover, the potential benefits of the frequent
revisit time (less than one week for Sentinel-2) of multispectral satellites can seldom be
realized [69]. This makes the availability of data unpredictable and hampers the possibility
of frequent monitoring. The use of complementary data sources such as radar, which
are not affected by cloud cover, should be studied. Combined with multispectral data,
SAR could also enhance the model accuracy [66]. Another potential complementary or
alternative data source for biomass modelling is UAVs [70] or airborne remote sensing [71].
With UAVs or other data sources with comparable spatial resolution, the background effects
could probably be diminished, since earlier research has demonstrated the possibility of
separating Agave rows from weeds using fine-resolution data [72]. Furthermore, with air-
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borne and UAV remote sensing, data acquisition can be scheduled according to phenology
and weather [73].

The study area consisted of field blocks at different stages of the growing cycle. The
resultant map revealed that with 20-m resolution, the variations in biomass densities can
be detected not only across the plantation but also inside the blocks, since many of them
were internally heterogeneous. In addition, during fieldwork it was observed that in the
older fields some of the plants had been fully harvested, while others still had leaves. In
the biomass map, such areas exhibited irregular spatial patterns. Furthermore, the map
had regular patterns indicating better growth in some areas, probably due to edaphic
factors such as favourable soil moisture or nutrients. These observations indicate that the
resolution would be sufficient for monitoring the growth and detecting disturbances in
individual blocks at sisal or other Agave plantations. By using the NIR to Green ratio, the
map can be produced at 10-m resolution, adding even more detail to the analysis.

Sisal plantations are an established land-use type in East Africa and in other tropical
and subtropical regions [7]. This study showed how multispectral satellite data can be
applied to retrieve the leaf biomass of sisal in a plantation environment. This is beneficial
for agricultural management, since this offers the means to assess resources and monitor
growth remotely over large areas. In addition to sisal, other Agaves grown at commercial
plantations, such as for the beverage and sweetener industries in Central America, also have
great economic importance [4]. This study paves the way for the use of multispectral remote
sensing for obtaining crop information at Agave plantations for precision agriculture.

5. Conclusions

In this study, Sentinel-2 vegetation indices were tested for mapping Agave sisalana leaf
biomass in a plantation environment. The best results were achieved with indices based
on the green (R560), red-edge (R740 and R783), and near-infrared (R865) bands, which
resulted in explained deviance = 76% and RMSE = 5.15 Mg ha−1 (49% of the mean) at best.
These results demonstrate the effectiveness of medium resolution multispectral satellite
data for modelling sisal leaf biomass. Such crop information can be used for agricultural
monitoring and to study carbon cycling at sisal plantations. Because cloud cover affects the
availability of such data, complementary data sources should be investigated. Furthermore,
since varying ground vegetation seems to introduce uncertainties to the models, the
accuracies could be increased by studying the background effects. Finally, further study is
recommended to assess the relationships between sisal biomass and vegetation indices in
other areas and between years and seasons.
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