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Abstract: Recently, generative adversarial network (GAN)-based methods for hyperspectral image
(HSI) classification have attracted research attention due to their ability to alleviate the challenges
brought by having limited labeled samples. However, several studies have demonstrated that
existing GAN-based HSI classification methods are limited in redundant spectral knowledge and
cannot extract discriminative characteristics, thus affecting classification performance. In addition,
GAN-based methods always suffer from the model collapse, which seriously hinders their develop-
ment. In this study, we proposed a semi-supervised adaptive weighting feature fusion generative
adversarial network (AWF2-GAN) to alleviate these problems. We introduced unlabeled data to
address the issue of having a small number of samples. First, to build valid spectral–spatial feature
engineering, the discriminator learns both the dense global spectrum and neighboring separable
spatial context via well-designed extractors. Second, a lightweight adaptive feature weighting com-
ponent is proposed for feature fusion; it considers four predictive fusion options, that is, adding
or concatenating feature maps with similar or adaptive weights. Finally, for the mode collapse,
the proposed AWF2-GAN combines supervised central loss and unsupervised mean minimization
loss for optimization. Quantitative results on two HSI datasets show that our AWF2-GAN achieves
superior performance over state-of-the-art GAN-based methods.

Keywords: generative adversarial networks; hyperspectral image classification; adaptive weighting
feature fusion; semi-supervised deep learning

1. Introduction

Due to hyperspectral images (HSIs) contain hundreds of narrow and consecutive
spectral bands, which enrich surface semantic information of remote sensing images [1–3],
accurate interpretation of HSI ground materials has received significant attention from
the machine learning and remote sensing communities [4]. With their abundant spectral
signatures and high-resolution spatial context, hyperspectral image data provide powerful
technical support for the applications of urban road monitoring [5], crop pest control [6],
and environmental protection [7]. Classification is the cornerstone of these HSI applications.

Hyperspectral image classification aims at assigning a unique identifiable target to
each pixel. Many recent studies have demonstrated that supervised deep learning meth-
ods can alleviate the challenges of high-dimensional non-linear characteristics in HSIs,
and promote classification performance [8–11]. However, suffering from “the curse of
the dimension,” if less labeled data are available, the Hughes phenomenon [12] will be
observed with the increase in the number of trainable parameters. At present, three chal-
lenges still prevent deep learning methods from supplying precise and effective pixel-wise
HSI classification maps. First, the redundant spectral characteristics of HSI pixels make
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conventional optical imagery analysis unusable if we want to extract discriminative fea-
tures for hyperspectral interpretation. Second, traditional deep learning methods employ
a set of spectral–spatial filter banks to represent advanced features of HSIs. However,
how to effectively encode spatial and spectral information is a challenging task. Third,
the generalization of deep learning models is constrained by their shortage of labeled
pixels, which gives rise to insufficient classification accuracy. In this study, we analyze
these challenges and offer promising suggestions to mitigate them.

The first challenge, i.e., the redundant hyperspectral characteristic of HSI pixels,
originates from abundant spectral signatures and the high-similarity neighboring spatial
context. Traditional models aim at employing feature engineering to explain semantic
features of spectral bands. For example, Hu et al. [13] directly use the convolutional neural
network (CNN) to learn the spectral domain; Chen and Zhao et al. [14,15] adopt dimen-
sionality reduction methods to extract the principal components for training deep CNNs.
Nevertheless, these methods do not possess the potential feature representation ability
of deep learning frameworks. Other scholars have introduced local neighboring spatial
information, and achieved promising results. Mei et al. [16] incorporate the spatial context
by band-wise means and standard deviations in a neighboring HSI cuboid. Li et al. [17]
utilize pairs of neighboring pixels to extract spatial semantic features, and predict the
final land-cover category with a majority voting strategy. Such research highlights the
universality of HSI interpretation in the deep learning community. However, the afore-
mentioned approaches focus only on statistics of spatial features, and overlook spectral
purity characteristics.

The second challenge is derived from the complexity of HSI distribution, and can
be interpreted as a “matter of the same spectrum in surface cover” and the “the same
objects but different spectrum in surface cover” [18]. Multiple works adopt neighbor-
ing spatial prior knowledge to improve CNNs and enrich spectral semantic information.
For example, Li et al. [19] applied three-dimensional (3D) CNNs for accurate HSI classifica-
tion. The approach in [20] produced a rough segmentation map by extracting CNN-based
spectral–spatial features from a 3D hyperspectral cuboid. Other recent studies have shown
that there are two main ways to learn a spectral–spatial representation for HSI classification.
The first way is to build an explicit engineering framework of the two constituent features.
For instance, Liang et al. [21] proposed a superpixel based sparse auto-encoder to extract
manifold feature for classification, while Liu et al. [22] designed a superpixel-guided layer-
wise embedding CNN for remote sensing image classification. In the second paradigm,
spectral–spatial features were implicitly learned from 3D homogeneous areas with an-
notations for the target pixels [23–26]. Zhong et al. [23] learned a set of spectral–spatial
residual filter banks to extract continuous HSI features. Furthermore, Wang et al. [24]
attempted to interpret HSI paths through dense convolutional filter banks, and obtained
promising results. Zhu et al. [25] proposed an improved deep convolutional capsule neural
network (Conv-CapsNet), which considered the pixel position attributes of HSIs. In ad-
dition, Cui et al. [26] utilized a multiscale pyramid to capture different spatial contexts of
neighboring information for HSI classification. All the above methods improved the repre-
sentation capacity of HSIs in learning spectral–spatial combinations. However, the joint
spectral–spatial filter banks that introduced spatial context limit the contribution of each
individual component to HSIs. Existing studies show that weighting fusion may be able
to address this: Zhang et al. [27] applied a predictive weighting decision to highlight the
validity of each component.

For the third challenge, obtaining a sufficient amount of labeled HSI data usually
involves sustaining a higher cost, and can result in many technical issues. Deep learning
models have become irreplaceable in mainstream HSI classification methods because of
their representation ability. Several scholars suggest that these models require a large
amount of data for generalization. For example, Chen and Li et al. [14,17] extended the
training data by adding noise and pixel pairs. It is worth mentioning that in contrast with
traditional visual images [28], which contain hundreds of categories, HSIs actually include
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much fewer land-cover categories that need to classify. Furthermore, several scenes of HSIs
are extremely lacking in training samples. Therefore, the theory that deep learning models
require massive data for training is not suitable for HSIs. The required amount of unlabeled
data for HSIs remains a topic of discussion. Several studies aimed at semi-supervised
learning employed a small number of labeled HSI samples and a large number of unlabeled
HSI samples for training. Mnih et al. [29] transmitted labels from annotated HSI pixels
to non-annotated ones via multilayer neural networks. Fang et al. [30] adopted a semi-
supervised double branch convolutional network with a resampling strategy for training
sufficiently. Furthermore, Hu et al. [31] applied shape adaptive neighboring information to
select valuable unlabeled data. Although such studies have obtained accurate classification
results, these results may have been obtained from homogeneous areas with features with
high spatial relatedness, rather than being achieved by the deep learning model.

To address these difficulties, two common semi-supervised frameworks–generative
models and graph-based models—have been applied [32,33]. For instance, Wan et al. [32]
constructed a graph neural network (GNN) with multiscale superpixels to reduce the
calculation complexity accompanying HSIs. However, the local spatial regions built with
superpixel methods cannot reconstruct the pixel-wise class boundaries. In addition, the uti-
lization of unlabeled data only exists in homogeneous areas. If the patched neighboring HSI
cuboid is small enough, the number of valuable unlabeled pixels is limited. Recently, gener-
ative adversarial networks (GANs) for HSI classification have attracted extensive attention
in regards to small samples [33–39]. Specifically, Zhu et al. [36] built GANs with CNNs for
HSI classification. Zhong et al. [37] combined graph models with a semi-supervised GAN
to alleviate the challenge of limited labeled data, and refined HSI boundaries. However,
this method applied two models for the solution, which is not a good end-to-end frame-
work. Moreover, Wang et al. [40] proposed an adaptive dropblock and applied it to GANs
to extract effective HSI pixels. Nevertheless, the model only took the first three principal
component analysis channels of HSIs, and could not maximum spectral advantage.

Several reports have pointed out that high-quality generated samples are key to
promoting the discriminator for HSI classification. However, the high-dimensional HSI
spectral bands present a variety of non-linear characters in a highly spatial distribution,
and thus it is difficult to reconstruct real hyperspectral cuboids through spectral–spatial
engineering. Radford et al. [41] suggested to applying the transposed convolutions and con-
volutions without pooling layers instead of fully connected layers to construct generators
and discriminators in GANs. Most GAN-based methods follow this principle, such as HS-
GAN [35], and MS-GAN [42]. Although transpose convolutions generate shift-invariant
local spectral–spatial information, the parameter sharing makes it unable to highlight the
sensitive characteristics during the training process. Furthermore, regularization methods
limit the two land-cover categories with similar spectral distributions to be regarded as
a single category. Thus, it is necessary to select appropriate spectral and spatial features
during the sample generation.

Inspired by [27] and [40], in this study, we build a semi-supervised GAN via an adap-
tive weighting feature fusion approach (AWF2-GAN) for HSI classification. Considering
the limitation of labeled data, the discriminator is extended to double-branch networks
to extract global spectral signatures and local spatial contexts. The generator contains
fully connected layers for training so as to match the real HSI pixels. Moreover, we pro-
posed an adaptive weighting feature fusion strategy for taking constraint conditions of
spectral–spatial combinations in the discriminator into account; this is similar to employ-
ing an attention mechanism. By giving different fusion weights to each pixel, the fused
spectral–spatial feature can be better expressed. Our fusion module can be configured
through employing one of four options: by adding or concatenating spectral and spatial
feature maps with similar or adaptive weights. Finally, we take the center loss and mean
minimization loss into account for stabilizing GAN training. The main contributions of the
paper are summarized as follows.
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(1) A novel GAN-based framework for HSI classification named AWF2-GAN is proposed;
it considers an adaptive spectral–spatial combination pattern in the discriminator,
and improves the efficiency of discriminative spectral–spatial feature extraction.

(2) To explore the interdependence of spectral bands and neighboring pixels, the adaptive
weighting feature fusion module provides four sets of weighting filter banks to
improve performance.

(3) To alleviate the mode collapse of AWF2-GANs, we jointly optimize the framework
by considering both center loss and mean minimization loss.

The remainder of this paper is organized as follows. Section 2 introduces the GANs
and the center loss. Section 3 presents the details of the proposed AWF2-GAN classifica-
tion framework and adaptive weighting feature fusion module. Section 4 evaluates the
performance of our method compared with those of other HSI methods. Section 5 provides
a discussion of the results, and a conclusion is presented in Section 6.

2. Related Works
2.1. Generative Adversarial Networks

Recently, GANs have attracted significant attention from the visual imaging commu-
nity, such as for image generation and translation. This stems from the fact that GANs can
provide superior representation capacity to reconstruct real data distribution implicitly [43].
A GAN contains two subnets, the generator G and the discriminator D. G attempts to learn
the latent mapping from the implicit distribution of the input, and synthesize the data
subject to this mapping. D judges whether the input is from the real distribution or the
fake one. Generally, G takes the random noise vectors z as the input, and transforms
them to synthetic images X f ake = G(z). D takes the real images or the output of G as
input, and outputs the true probability distribution P. D and G are competitively trained
to maximize the log-likelihoods they tend to their considered accurate sources. This is
expressed as follows:

LG = Ez∼Pz [log(1− D(G(z)))], (1)

LD = Ez∼Pz [log(1− D(G(z)))] + Ex∼Pdata [logD(x)]. (2)

Under the alternating optimization, the GAN is trained to balance D and G, and is
guided to the Nash equilibrium. Specifically, we freeze the weights of D, and optimize
G through the minimization of the Equation (1). Then we fix G, and optimize D through
the maximization of the Equation (2). Each iteration of the model forms a confrontation
training mode to promote the discriminator D and generator G mutually. When the Nash
equilibrium is achieved, G explores the real data distribution and D has enhanced the
advanced capacity to distinguish real/fake data and identify the categories labels.

Due to the output restrictions of the discriminator, GANs are not suitable for multilabel
image classification. Odena et al. [44] proposed an auxiliary classifier GAN (ACGAN) to
solve this limitation, and achieved accurate prediction for HSIs. The architecture of their
network is shown in Figure 1.

Figure 1. Architecture of ACGAN for HSI classification [44].

In the ACGAN, the generator G receives the embedding vectors from random noise
z, and their assigned true labels Y are used as input. The synthetic data generated from
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G and the real data with its corresponding annotations are fed into D. Then D predicts
the input in terms of categories C with the softmax classifier, and outputs the probability
to discriminate the real data from fake data. Therefore, the loss function of the ACGAN
consists of the log-likelihood of its identified correct source LS and the log-likelihood of the
corresponding labels LC, which can be calculated as follows:

LS = Ez∼Pz [log(1−D(G(z)))][0] + Ex∼Pdata [logD(x)][1], (3)

LC = Ex∼Pdata [logD(x)][1 : C], (4)

where [0] and [1] are the inputs of D derived from the real data and the fake data, respec-
tively. During the training of the ACGAN, D is optimized to maximize LC + LS, and G is
optimized to maximize LC − LS. Finally, G provides the samples of the desired category
and D accurately predicts the classification map.

2.2. Center Loss for Local Spatial Context

In contrast to deep learning methods that learn a set of spectral–spatial filter banks to
measure the similarity loss function, methods that measure the center loss function [45] pay
more attention to local spatial feature cohesion and intra-class consistency. Cai et al. [46]
first introduced the center loss into attention residual networks for HSI classification.
They minimized the intra-class distribution while keeping features of different classes
separate. Therefore, the similarity measurement of the class centers of deep features can be
determined in terms of their corresponding annotations:

LCen =
1
2

m

∑
i=1

∥∥xi − cyi

∥∥2
2, (5)

where m is the size of mini-batch, xi denotes the ith feature distribution of deep charac-
teristics, and cyi ∈ R indicates the yith class center of deep features. Then, the updated
equation of cyi and the gradients of LCen take the following form:

∆cj =
∑m

i=1 η(yi = j) ·
(
cj − xi

)
1 + ∑m

i=1 η(yi = j)
, (6)

∂LCen
∂xi

= xi − cyi , (7)

where η(·) denotes the execution condition, which is the updating constraint of cyi , and j is
the current updating class label. If a value of 1 is returned, the condition is satisfied; if 0 is
returned, the updating of cyi is stopped.

3. Methodology

3.1. The Proposed AWF2-GAN Framework

To solve the challenges associated with applying deep learning to HSI classifica-
tion, we proposed a semi-supervised AWF2-GAN framework. As shown in Figure 2,
the discriminator D of the AWF2-GAN is comprised of three parts: spectral filter banks,
spectral–spatial filter banks, and an adaptive weighting fusion module. The generator G is
built with fully connected filter banks that explore the real distribution and reconstruct the
synthetic cuboids implicitly.

Here, we use the Pavia University dataset to illustrate the framework. We suppose
an HSI cuboid X contains n pixels X ∈ Rlx×n (lx denotes the spectral bands of each pixel).
Then, the neighboring cuboids are extracted from X in the form of image patches: the
labeled group X1 =

{
x1

i
}
∈ Rlx×s×s×nl and unlabeled group X2 =

{
x2

i
}
∈ Rlx×s×s×nu

are the real inputs of D, where s, nl, and nu represent the spatial sizes of neighboring HSI
cuboids, and the numbers of labeled and unlabeled samples, respectively. Since each pixel
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belongs to HSI cuboid groups in the
{

X1
i , X2

i

}
set, n = nl + nu. Meanwhile, the synthetic

group Z = {Zi} is the fake input of D for training, and is acquired from the generator
G by feeding labels y and random noise vectors z into the fully connected filter banks.
Actually, D is a dual-branch fusion networks that employs the spectral filter banks to learn
the advanced features of spectra, and utilizes the spectral–spatial filter banks for the local
spatial semantic representation.

Figure 2. Framework of the AWF2-GAN for HSI classification.

It is worth mentioning that HSI cuboids X have W × H pixels, and retain redundant
spectra lx. In contrast to image-based classification frameworks, those of patch-based
methods select training samples and their neighboring pixels to explore effective local spatial
characteristics. Therefore, constructing 3D spectral–spatial cuboids with s× s image patches
increases the potential to generalize models. Even with a small number of HSI samples,
such a sampling strategy still retains sufficient trainable parameters. In the following, we
utilize 9× 9× lx neighboring cuboids as inputs in each filter bank, and take tensor volumes
to represent outputs, embeddings, and variables in each layer of the AWF2-GAN.

The extracted spectral signatures Xspc and spatial contexts Xspa are sent into an
adaptive weighting feature fusion module, and discriminative fusion features are output.
This lightweight module involves feature summing and feature concatenation, and four
agile options for feature fusion.

Finally, the combined feature is passed through the softmax operation, and the classi-
fication map Ŷ = {ŷi} is predicted.

3.2. Adaptive Weighting Feature Fusion Module

In the proposed AWF2-GANs, the generator G and the discriminator D are composed
of different sets of filter banks. In D, spectral and spatial filter banks learn the spectral
distribution and spatial correlation of the central pixels in neighboring cuboids of HSIs.
In this section, to fuse the extracted spectral and spatial features. We commence with the
basic fusion methods, i.e., element-wise addition and channel concatenation, to check their
effectiveness. Furthermore, we propose a novel weighting fusion method with an adaptive
feature weighting strategy, and obtain the relationship between the spectral and spatial
feature with a lightweight neural network.

3.2.1. Basic Feature Fusion Modules

Baseline fusion models are employed to combine the spectral and spatial features
of HSIs via feature addition and channel concatenation. The straightforward methods
generally perform the above operations on the outputs Xspc and Xspa of the feature ex-
tractors. However, if Xspc and Xspa terms from complex feature engineering, their tensor
dimensions are not aligned, and therefore they cannot be fused directly.
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Instead, the simple baseline fusion models are built for tensor alignment, and trans-
form the input Xspc and Xspa into output features Gspc and Gspa, respectively. For the
feature dimensions, the intermediate layer between the inputs and outputs contains a
Conv2D-BN-ReLU block. Specifically, we adopt a convolutional operation (Conv2D) to
align feature tensors of both Xspc and Xspa with the same kernel of size 1 × 1. Batch
normalization [47] and a rectified linear unit (BN-ReLU) are at every convolutional layer
of each branch. Then, we acquire the normalization results Gspc and Gspa, and use these
to standardize the training process. Finally, the coarse fusion feature Fss is formed with
Gspc and Gspa via element-wise addition or concatenating along the channel dimension.
Figure 3a,b illustrate the architectures of these two basic fusion models.

(a) (b)

Figure 3. Basic fusion models with (a) element-wise addition and (b) feature concatenation.

The construction of the baseline fusion strategy is motivated by several points. The
Conv2D-BN-ReLU block consists of three parts, Conv2D employs a 2D kernel of size
1 × 1 to construct feature maps through element-wise addition, and we can enhance
the correlation between different channels. Furthermore, the block introduces much
fewer order of magnitude parameters, and Conv2D share their non-linear weighting
coefficients in each feature map. This will not greatly impact feature dimension reduction.
BN and ReLU are important for normalization because they standardize the output to
avoid either feature becoming dominant, thus encouraging contribution from both of them.
Furthermore, BN and ReLU can accelerate the backpropagation of the gradients so as to
improve generalization on testing sets.

3.2.2. Fusion Models with Adaptive Feature Weighting

The aforementioned basic fusion models regard both features as having the same
tensor shape, and assumes that spectral and spatial features account equally form the
fusion feature. In effect, the contribution of different features to each pixel in neighboring
cuboids is different. This may be due to the semantic information or spectral content in
highly textured areas or homogeneous regions. In particular, the proportion of spectral
signatures depends on the abundance of surface materials, and that of spatial contexts
stems from the material composition within the local neighborhood. Considering this,
we propose an adaptive weighting mechanism to measure the importance of each feature to
neighboring pixels. The novelty of this mechanism is that different features are predictable
and assignable in all cases.

(1) Feature Adaptive Weighting: Our adaptive feature weighting strategy is inspired by
the multiview fusion mechanism for 3D object monitoring and image interpretation. In this
paper, we employ the same fundamental to machining the spectral and spatial features,
and consider hyperspectral interpretation from the 3D perspective.

Figure 4 presents the adaptive feature weighting built with multibranch neural net-
works. In each branch, each layer/operator contains a fully-connected (FC)-ReLU block,
which maps the distributed feature representation from coarse fusion to the label space
of samples. This initializes the weights of each feature in each pixel. For different branch
networks, the feature map of each element contains a different weight matrix, that is,
the parameter variation is provided by FC operators that are not shared.
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(a) (b)

Figure 4. Adaptive weighting fusion models with (a) element-wise addition and (b) feature concatenation.

We suppose that T f and b f denote the transform (weight) matrix and the bias of
the non-linear layer that directly takes the coarse fusion feature tensors Fss as the input.
Subsequently, Fss is transformed into projection vectors v through the FC-ReLU blocks
of different branches. In this way, the output of the k + 1th layer in the ith branch can be
represented as

vk+1
i = R

(
Fk

ssTk+1
fi

+ bk+1
fi

)
, i ∈ N+, (8)

where R(·) indicates a non-linear activation function (which is chosen as the ReLU function
in this paper).

We adopt two measures to integrate all feature tensors from various branches into n
branches, as shown in Figure 4. Therefore, the weighted feature Vcomb after branch fusion
is formulated by a weighted sum as

V k+2
comb =

n

∑
i=1

(
vk+1

i

)
, i ∈ N+, (9)

or by channel concatenation as

V k+2
comb =

[
vk+1

1 , vk+1
2 , . . . . . . , vk+1

i

]
, i ∈ N+, (10)

where “,” denotes the channel concatenation notation.
Finally, the adaptive probabilistic predictive feature transformed with the softmax

activation function is as follows

ρcomb = E(V comb). (11)

Thus, each element of the fusion feature maps have a unique weight.
(2) Adaptive Feature Allocation: The fusion architectures that adopt adaptive feature

weighting are described in Figure 4. Through these designs, with the predictive feature
given by Equation (11), the hybrid predictive matrix can be allocated to branch fusion
features by a multiplication to refine the fusion weights as follows:

A f f = ρcomb ⊗ V comb. (12)

Whether through weighted summation or channel concatenation, each feature of each
element is assigned a unique score. Thus, whether in the highly textured neighborhood
or in hyperspectrally homogeneous regions, the proposed adaptive feature weighting
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mechanism always enhances discriminability, and thus improves the capacity for HSI
interpretation.

3.3. Details of the AWF2-GAN Architecture

In deep learning methods, the main means to significantly improve HSI classification
is to extract discriminative spectral–spatial characteristics. Thus, learning a set of efficient
spectral–spatial filter banks is common in HSI feature extraction. Nevertheless, HSIs consist
of complex hyperspectral channels and limited labeled trainable data, which constrains
the representation of spectral–spatial filter banks. Furthermore, Ref. [27] pointed out that
the effects of hyperspectral contents is obviously distinct from those of spatial contexts in
highly textured local neighborhoods or homogeneous regions.

We learned a set of global spectral filter banks and neighboring spectral–spatial filter
banks for HSI feature extraction, and extended them into the discriminator D of the AWF2-
GAN. In addition, a generator G was employed in the AWF2-GAN to synthesize fake
data. This added interference factors to D to improve its robustness. Furthermore, the fake
data and the real data were passed to D to balance training data through our AWF2-GAN.
The architecture of D and G in the AWF2-GAN is illustrated in Figure 5. For the input of D,
it takes the raw 3D neighboring cubes of HSIs as input data without feature preprocessing.
The sampling strategy of neighboring cubes are randomly selected which centered at
pixels in labeled group X1. Also, D contains two branches, they treat the input cubes as
the independent component for feature extraction from each other. For the input of G, it
consists of the random noise vectors with corresponding labels y to generate synthetic data
cubes Z.

Figure 5. Adaptive weighting feature fusion discriminator (upper), consisting of a dense spectrum and spatially separable
feature extractors. Their resulting features are fed into an adaptive weighting fusion model, which outputs a vector that
indicates whether the data is fake or real and contains categorical probabilities. A generator (lower) contains consecutive
spatial and spectral feature generation blocks to generate synthetic HSI cuboid Z.

3.3.1. Adaptive Weighting Feature Fusion Discriminator

We built two extractors to consider the composition of spectral and spatial filter banks.
One is the dense spectrum feature extractor, and the other is the spatially separable feature
extractor. They train the networks on 3D HSI cuboids with dimensions of 9× 9× lb (where
lb are the bands of the spectra; we take 103 from the Pavia University dataset for illustrative
purposes). The spectral signature and spatial contexts are obtained from the above two
extractors, and we feed them into the adaptive weighting fusion module to predict fusion
features. Then we map the fusion features to sample labels of each neighboring cuboid
(or central pixel) through the FC layer with a softmax activation function. The feature
extractors are described below.
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(1) Dense Spectrum Feature Extractor: The main task of the spectral extractor is to capture
the global spectral differences of the input neighboring cuboids, and purify the salient
features of the central pixel within redundant spectral bands. Here, the obtained feature
considers the overall bands of hyperspectral pixels centered at neighboring cuboids. Details
of dense spectrum feature extraction are depicted above the discriminator in Figure 5.

To obtain differences between spectra, the dense spectrum feature extractor is designed
as a denseNet. We suppose that the network includes l layers/operators, each of which
is calculated as an FC-ReLU block with weight matrix H and bias vector b. Then the lth
input feature is a dense connection mapping from the 0th to the l− 1th layer. Thus, the lth
operation of the extractor ψ

(
X l ; ξ

)
and the output feature Xspc take the form

X l =
[

X0, ψ
(

X0; ξ1
)

, . . . . . . , ψ
(

X l−1; ξ l
)]

, (13)

ψ
(

X l−1; ξ l
)
= R

(
X l−1

)
H l + bl , l ∈ N+, (14)

Xspc = ψ
(

X l ; ξ l+1
)

. (15)

This dense feature extractor combines the advantages of spectral channels to maintain
an abundance of feature maps. In addition, each FC-ReLU block contains various neural
units to delay the gradient descent, which results in a deeper monitoring effect.

(2) Spatially Separable Feature Extractor: We also explore the local spatial representation,
i.e., we encode the spatial relationship into the input neighboring HSI cuboids. It can
be regarded as an auxiliary discriminative factor to the global dense spectral feature.
The spatially separable feature extractor has two core components: an adaptive dropblock,
and a set of continuous separable feature convolutional filter banks (Sep-Conv blocks).
The architecture of this extractor is illustrated below the discriminator in Figure 5.

Specifically, the adaptive dropblock is utilized to regularize the neighboring texture
information. This has been verified in [40] to alleviate overparameterization and standard-
ize neurons.

Meanwhile, Sep-Conv considers the local spatial similarity between spectral channels,
and begins with a depth convolution with kernels of size k× k. The output channel M of
kernels is consistent with that of input image channel N. Then, the point convolutional
filter banks of size 1× 1 are applied to integrate the local spatial semantics. Again, we
combine these semantics with a dense connection. If Sep-Conv blocks have L layers with
h filter banks and biases b, the spatial feature extractor architecture ϕ

(
XL−1; δL

)
can be

represented as follows:

XL =
[

X0, ϕ
(

X0; δ1
)

, . . . . . . , ϕ
(

XL−1; δL
)]

, (16)

ϕ
(

XL−1; δL
)
= R

(
XL−1

)
∗ HL + bL, L ∈ N+, (17)

Xspa = ϕ
(

XL; δL+1
)

, (18)

where ∗ is the convolution operation, and δ denotes the trainable parameters from various
separable convolution operations. δ can be calculated as

δ = k× k×M + M× N. (19)

The specific configurations of D are provided in Table 1. In order to guarantee the
generalization of spectral features and avoid “the curse of the dimension,” four FC-ReLU
blocks are employed as subcomponents. All the fully connected layers are initialized with
“He normal distribution initialization method” [48] and zero bias vectors. Furthermore,
we reduce the number of neurons of each subcomponent from 1024 to 128 in turn, and
gather significant features from deep spectral mapping and output spectral feature cuboids
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with dimensions of 9 × 9 × 128. It is worth mentioning that this shallow structure is
sufficient for the neighboring cuboid sizes utilized in our experiments, which is not more
than 9× 9. An ablation study to assess the classification performance with respect to the
subcomponents architecture is given in Section 5.2.

Table 1. Implementation details of the proposed generator G of the AWF2-GAN.

Generator G
Block Input Dimension Layer/Operator 1 Reshape 1 Number of Neurons 1

Spatial Feature Generation
1 × 1 × 200 FC-ReLU No 9

1 × 1 × 9 FC-ReLU No 9 × 9 × 9
1 × 1 × (9 × 9 × 9) † Yes †

Spectral Feature Generation
9 × 9 × 9 FC-ReLU No 512

9 × 9 × 512 FC-ReLU No 256
9 × 9 × 256 FC-ReLU No 103

Synthetic HSI cuboid Z 9 × 9 × 103 Output † †

Note: 1 ”†” denotes no operation.

Table 2 lists the generic layer specifications of the spatially separable feature extractor.
All the convolution layers in the network include a kernel size of 3× 3, a stride with 1, and
padding mode of “same,” and obtain shift-invariant features from patches. ReLU, as the
activation function, is executed at each Sep-Conv block. Although deep feature mapping
can be achieved by increasing the number of kernel, we found that more kernels may not
necessarily improve the classification accuracy. A detailed ablation study on the influence
of the number of kernels in Sep-Conv blocks on accuracy is provided in Section 5.2. We also
discuss the selection of optimal depths of Sep-Conv blocks in Section 5.3.

Table 2. Specific configurations of the proposed discriminator D of the AWF2-GAN.

Discriminator D

Compoment
Input

Dimension 1
Layer

/Operator
Neural
Units 2 Kernel 2 Concatenation 2

Dense Spectrum
Feature Extractor

9 × 9 × 103 FC-ReLU 1024 † No
9 × 9 × 1127 FC-ReLU 512 † Yes
9 × 9 × 1639 FC-ReLU 512 † Yes
9 × 9 × 2151 FC-ReLU 128 † No

Spectral Feature Xspc 9 × 9 × 128 Output † † †

Spatially Separable
Feature Extractor

9 × 9 × 103 Adaptive
Dropblock † † No

9 × 9 × 103 Sep-CONV † 3 × 3 × 128 No
9 × 9 × 231 Sep-CONV † 3 × 3 × 64 Yes
9 × 9 × 295 Sep-CONV † 3 × 3 × 64 Yes
9 × 9 × 359 Sep-CONV † 3 × 3 × 64 Yes
9 × 9 × 423 Sep-CONV † 3 × 3 × 128 No

Spatial Feature Xspa 9 × 9 × 128 Output † † †

Adaptive
Weight Matrix

(
Xspc + Xspa

)
/
(
Xspc; Xspa

) Adaptive Weighting
Feature Fusion † † †

Classification
Vectors 1 × 1 × (1 + 9) Fully-connection † † †

Note: 1 We used the neighboring spatial cuboids from the Pavia University dataset for this example (9× 9× 103). 2 “†” denotes no operation.

Since the features are extracted from two paths with different physical meanings,
a fusion module (discussed in Section 3.2) is added after these two extractors. Four groups
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of feature weighting schemes are used to generate adaptive weight matrix A f f . The
resulting prediction ŷ1

i
[
1 : ny

]
is passed through the softmax layer, and a vector outputs

that shows the probabilities of an HSI cuboid belonging to the ny categories). Again, ŷ1
i [0]

indicates the genuineness of the training cuboid. To meet the conditions of softmax, the
average pooling and flatten operation are generally executed on the adaptive weight matrix
A f f .

3.3.2. Generator with Fully Connected Components

In GANs, generated samples are employed to improve the classification performance
of the discriminator. Ref. [37] suggested that the discriminator allows a bad generator
as the regularizer to enhance latent representation of hyperspectral cuboids. This is in
contradiction with what was proposed by [39]. Actually, the structure of generators has
different physical meanings in various stages of GANs. Furthermore, rough noises hinder
sample generation, and result in the model collapse.

To this end, we proposed spatial and spectral feature generation blocks built by
groups of FC-ReLU blocks, as shown in Figure 5. The reason for this choice is that the fully
connected layer provides more trainable parameters, and allocates an unique trainable
weight for each element of the feature map. During the first few iterations (nb_epoch),
G acts as a regularizer of D, forcing D to approach the real distribution of HSI cuboids.
With the optimization of the AWF2-GAN, the fitting ability of FC-ReLU blocks provide
more promising results for G. The data generation is divided into two steps: spatial feature
generation, and spectral feature generation. The specific configuration of each layer of the
AWF2-GAN is given in Table 1.

We suppose a set of Gaussian noise vectors z with their homologous labels y. Then,
z is sent into the spatial feature generator to generate the feature tensor with neighborhood
space. Next, we use three FC-ReLU blocks to design the spectral feature generator, which
gradually approaches the real sample distribution in different neurons, and generates
pseudo hyperspectral cube Z.

3.4. Training Loss Functions

The semi-supervised GAN focuses on addressing the limited number of labeled HSI
samples. Thus, generator G’s unlabeled set and synthetic set are important regularizers
of the discriminator D to improve HSI classification. The objective loss function of the
semi-supervised GAN takes the form

LSEMI(ΩD, ΩG) = LSUP(ΩD, ΩG) + LUNSUP(ΩD, ΩG)

= LSUP(ΩD) + LG(ΩD, ΩG)

+ LD1(ΩD) + LD2(ΩD, ΩG)

, (20)

where ΩD and ΩG are the hyperparameters of D and G, respectively. LSUP, LD1, and
LD2 are the supervised and unsupervised entries of D, and the unsupervised entry of G,
respectively.

Given the labeled HSI cuboid X1 =
{

x1
i
}
∈ R9×9×103 with its corresponding anno-

tation Y1 =
{

y1
i
}
∈ R1×(1+ny), the prediction of D can be formed as Ŷ1 = D

(
X1; ΩD

)
.

Therefore, each entry of LSEMI is formulated as

LSUP(ΩD) = −EX1∼pdata
logD

(
X1; ΩD

)
[1 : n]

= −EX1∼Pdata
logŶ1

[1 : n]
, (21)

LD1(ΩD) = −EX1∼pdata

(
1− logD

(
X1; ΩD

)
[0]
)

= −EX1∼pdata
log
(

1− Ŷ1
[0]
) , (22)
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LD2(ΩD, ΩG) = −Ez∼pz
logD(G(z; ΩD))[0]

= −Ez∼pz
logD(Z; ΩD)[0]

= −Ez∼pz
logŶ1

[0]

. (23)

where ΩD = {ξD, δD} indicates the parameters of D, which can be updated from Equations (14)
and (17). ΩG = {ξG} denotes the parameters of G. Due to the G consists of FC–ReLU blocks,
the parameters of ΩG can be updated by the Equation (14). Ŷ1

[0] is the authenticity of the pixel
xi ∈ X1, and Ŷ1

[1 : n] dentoes the output vectors of softmax, which is the probaility of each
category that y1

i belongs to.
To stabilize the training of GANs, we introduced the mean minimization loss into the

unsupervised entry. This decreases the value and variance in high-dimensional features
from the second to last layers of D, and inhibits overfitting. The mean minimization loss
takes the form

Ω∗ = argmin
Ω

(
1
N

N

∑
i=1

average( f (xi; Ω))

)
, (24)

where N is the total number of batch samples, xi is the training sample, and f (xi; Ω)
indicates the high-dimensional output of the network, which in this paper is the output
before the fully connected layer.

For the supervised item, to constrain the intra-class feature distribution, we employed
the center loss to guide the feature distribution to shift to the central classes. It can be
applied as a regular term before the softmax operation, and can be formulated as

n∗y = argmin
ny

(
1
2

m

∑
i=1

(
F
(

xi; y1
i
[
1 : ny

])))
, (25)

where F
(

xi; y1
i
[
1 : ny

])
denotes the central distribution before the softmax operation.

LD1 + LD2 is also part of the GAN loss for training the generator of the AWF2-GAN,
whose corresponding loss function LG can be formulated as

LG(ΩD, ΩG) = −Ez∼pz
log(1− D(G(z; ΩD))[0])

= −Ez∼pz
log(1− D(Z; ΩD)[0])

= −Ez∼pz
log
(

1− Ŷ1
[0]
) . (26)

The training of the AWF2-GAN involves two alternating steps through RMS or ad-
jacent optimization fashions at each iteration. First, the gradients of D, −∇ΩD LSEMI are
employed to update ΩD to learn discriminative characteristics of HSIs. Second, the gra-
dients of −∇ΩD LG are applied to update ΩG to improve the adversarial training of the
AWF2-GAN.

4. Experimental Results

In this section, two challenging hyperspectral datasets are adopted for classification
with the proposed AWF2-GAN. To verify the effectiveness of the AWF2-GAN, several
advanced GAN-based HSI algorithms, HS-GAN [35], 3D-GAN [36], SS-GAN [37], and
AD-GAN [40] are employed for comparison. Furthermore, to demonstrate the feasibility
of the spectral–spatial feature fusion architecture, we also compared AWF2-GANs with
various fusion options: F2-Concat (with basic concatenation), F2-Add (with basic addition),
AWF2-Concat (with adaptive weighting concatenation) and AWF2-Add (with adaptive
weighting addition).

4.1. Experiment Setup

In this paper, two hyperspectral image datasets were employed to evaluate the perfor-
mance of the proposed model: Indian Pines and Pavia University.
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(1) Indian Pines (IN) contains scenes from India acquired by the AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) sensor. It includes 16 categories and images are
145× 145 pixels with 20 m ground sample distance. Samples are shown in Figure 6. Since
20 bands were discarded due to atmospheric absorption, there are 200 spectral bands in
the range of 400–2500 nm.

(2) Pavia University (UP) includes imagery of Northern Italy obtained by the ROSIS
(Reflective Optics System Imaging Spectrometer) sensor. The images are 610 × 340 pixels
with 9 urban land-cover classes, and 1.3 m spatial resolution per pixel (see Figure 7). After
abandoning 20 noisy bands, the remaining 103 spectral bands in the range of 430–860 nm
are employed for evaluation.

(a) (b) (c)

Figure 6. Indian Pines data with (a) color composite with RGB bands (29,19,9), (b) ground truth,
and (c) category names with labeled samples.

(a) (b) (c)

Figure 7. Pavia University imagery: (a) color composite with RGB bands (61,25,13), (b) ground truth,
and (c) class names with available samples.

To demonstrate the effectiveness of the AWF2-GAN algorithm, we use five represen-
tative HSI classification methods for comparison. Due to the high accuracy and robust
performance in terms of classical HSI classification of SVM, the SVM-based HSIs classifier
was adopted for the comparison. The EMAP(Extended Multi-Attributes Profiles) with
SVM [49] was employed for the spectral-spatial classification, which considered four at-
tributes: (1) a, the area of the regions; (2) d, the length of the diagonal of the box bounding
the region; (3) i, the moment of inertia; (4) s, the standard deviation. These extended
attribute profiles (EAPs) are obtained by applying thickening and thinning operations to
extract spatial information on the first three components of HSI, which were computed
by PCA, and retain 20 principal components. For the penalty λ and gamma γ parame-
ters of SVM, the grid-search and 10-fold cross-validation are employed to finetune them.
In this experiment, the search range was exponentially growing sequences of λ and γ
(λ = 10−5, 10−4 . . . , 105; γ = 10−5, 10−4 . . . , 105). For fair comparison, all GAN-based
methods used their optimal parameters. For HS-GAN, the kernel size was set as 1× 3,
and the number of training epochs was set to 200. For 3D-GAN, the convolutional kernel
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sizes were set according to the literature [36]. For SS-GAN, the spatial size of 3D input
was set as 9× 9, and other parameters were suggested in the literature [37]. For AD-GAN,
the adaptive dropblock was executed one time in the discriminator.

We also compared the proposed AWF2-GANs with the four feature fusion options. All
the parameters of AWF2-GANs are initialized with “He normal distribution initialization
method” [48]. For convergence speed and accuracy, the framework is optimized using
a RMSProp optimizer with the hyper parameters γ = 0.9 and learning rate lr = 0.0005.
Taking account of the model collapse of GANs, lr decay is 0.9 per 50 steps and the total
iterations are nb_epoch = 200. Each batch size is set to 16 within 9× 9 input patches for
local spatial contexts. All experiments are implemented with TensorFlow deep learning
framework CUDA 9.0, an Intel Xeon Gold 6154 CPU, 256 GB of RAM, and an NVIDIA
TITAN V 12GB GPU.

4.2. Experiments on the IN Dataset

The IN dataset contains a complex sample distribution in which trainable labeled sam-
ples of categories are unbalanced. Specifically, there are some categories with no more than
50 labeled samples, such as “Alfalfa”, “Grass-pasture-mowed” and “Oats.” Conversely,
“Soybean-mintill” has more than 2000 labeled samples. Furthermore, the partial spec-
tral bands between these classes are approximate, like those between “Corn-mintill” and
“Soybean-notill”, which have the similar spectrum in range from 100 to 150 spectral bands.
This is caused by the phenomenon of “foreign matter of the same spectrum in surface
cover” [18], which also reported this viewpoint in literatures [6,23,39]. To this end, the IN
dataset can evaluate the stability of the AWF2-GANs. For fair comparison, all compared
algorithms use their optimal parameters as suggested in the literature. Besides, to address
the model collapse of GAN-based methods, the Monte Carlo sampling strategy is employed
to marginalize noise during training.

The first test was a quantitative experiment to evaluate the proposed model and
other state-of-the-art methods. In this test, we randomly selected 525 labeled samples
to constitute the labeled group X1 mentioned in Section 3.1; this is a small size that only
accounts for approximately 5% of the total labeled samples. Only 3 samples in this class
were randomly selected for training if the number of samples of one class was less than
40; meanwhile, only 5 samples were randomly selected for training when the number of
samples of one class was more than 40 but no more than 100. For the unlabeled group
X2, the sampling ratio was equal to X1. To assess the performance of various methods,
we adopted three evaluation indices: the overall accuracy (OA), average accuracy (AA),
and kappa coefficient (κ). Table 3 reports the individual classification performance of
various methods, and Figure 8 presents the produced classification maps.

Firstly, although the SVM showed considerable accuracy through EMAPs, that contain
high texture spatial information, it still had the worst performance. Secondly, GAN-based
classifiers (e.g., HS-GAN, 3D-GAN, SS-GAN, and AD-GAN) provided higher classification
accuracy than the SVM. This illustrates that GAN-based deep learning algorithms have
a framework suitable for HSI classification. Thirdly, F2-GANs with basic fusion options
(F2-Concat and F2-Add) achieved superior accuracies compared to 3D-GAN, proving that
spectral–spatial combinations can improve classification performance. Lastly, AWF2-GANs
with adaptive feature weighting options (AWF2-Concat and AWF2-Add) achieved the best
results, thereby demonstrating that well-designed spectral–spatial networks combining
weighting fusion features are suitable for HSI classification. Furthermore, it achieves perfect
accuracy on the “Alfalfa,” “Grass pasture,” “Grass-pasture-mowed,” “Hay-windowed,”
“Oats,” and “Wheat” categories, three of which contain few labeled training samples.
As shown in Figure 8, AWF2-GANs obtained more uniform regions for ground objects in
contrast to other algorithms. Moreover, AWF2-Add preserved the most accurate boundary
of the “Soybean-mintill” class.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Classification maps for the IN dataset with 525 labeled training samples: (a) training
samples (b) SVM (EMAPs) (c) HS-GAN (d) 3D-GAN (e) SS-GAN (f) AD-GAN (g) F2-Concat. (h) F2-
Add. (i) AWF2-Concat. and (j) AWF2-Add.

In the second test using the Indian Pines dataset, we verified the sensitivity of the
models to different percentages of labeled training samples. We randomly selected 1%, 3%,
5%, 7%, and 10% of labeled samples per class. Table 4 details the overall accuracy for these
classification methods with these training samples. Similar to in our first experiment, SVM
(EMAPs)’s generalization performance for HSI improved by increasing the percentage of
randomly selected training samples. However, the SVM displayed the slowest convergence
of all methods. Secondly, GAN-based methods achieved advanced classification accuracies
compared to traditional methods. Thirdly, F2-GANs had higher classification accuracies
than previous GAN-based algorithms in all tested cases, which proved that spectral–spatial
combinations extracted more effective and discriminative features than spectral–spatial
representations. Besides, AWF2-GANs with adaptive feature weighting options provided
the best performance in comparison to the other methods in all tested cases, which indicated
that the method is reliable and robust for HSI classification.

4.3. Experiments Using the UP Dataset

Images from Pavia University (UP) consist of evenly distributed surface materials of 9
urban land-cover classes with highly textured characteristics. In particular, the “Painted
metal sheets” and “Gravel” classes contain abundant texture information; it is difficult to
predict the complete boundaries of these classes with traditional methods. Furthermore,
in contrast to the IN dataset, UP images contain more uniform regions such as in the
“Meadows,” “Bare Soil,” and “Bitumen” classes. Again, the concept of a “different body
with the same spectrum” is observed in UP images like those belonging to the “Meadows”
and “Bare Soil” classes. Therefore, we compare the performance of different algorithms
with high-resolution images. Firstly, 350 samples were randomly selected as training
data, which is approximately 0.8% of the labeled pixels. Table 5 displays the quantitative
experimental evaluations with four metrics: the individual accuracy, overall accuracy,
average accuracy, and κ coefficient. Figure 9 shows the classification results.



Remote Sens. 2021, 13, 198 17 of 25

Table 3. The overall accuracy (OA), average accuracy (AA), kappa coefficient (κ), and individual class accuracies for the IN
dataset with 525 labeled and unlabeled samples for training. The best results are highlighted in bold typeface.

Class Train
(Test) SVM HS-GAN 3D-GAN SS-GAN AD-GAN

AWF2-GANs

F2-
Con.

F2-
Add.

AWF2-
Con.

AWF2-
Add.

1 5
(41)

64.49
± 0.81

20.39
± 7.35

58.48
± 0.26

93.04
± 0.99

100
± 0.00

100
± 0.00

100
± 0.00

100
± 0.00

100
± 0.00

2 72
(1356)

81.06
± 3.04

68.29
± 0.75

90.49
± 0.57

96.1
± 0.32

96.24
± 0.27

96.95
± 0.16

95.53
± 0.19

95.97
± 0.09

98.00
± 0.09

3 42
(788)

73.55
± 0.98

62.25
± 1.79

81.14
± 0.90

92.72
± 0.39

93.45
± 0.81

97.03
± 0.06

93.71
± 0.09

95.07
± 0.10

95.14
± 0.14

4 12
(225)

40.02
± 0.13

60.45
± 3.57

90.72
± 0.87

92.51
± 0.59

94.09
± 0.15

92.81
± 0.30

100
± 0.00

98.75
± 0.18

98.84
± 0.25

5 25
(458)

81.79
± 0.50

72.34
± 7.89

72.34
± 0.07

99.07
± 0.79

99.44
± 0.18

94.02
± 0.09

99.16
± 0.13

99.45
± 0.25

100
± 0.00

6 37
(693)

87.88
± 0.41

90.78
± 1.06

90.78
± 1.06

98.95
± 0.74

99.75
± 0.24

96.31
± 0.13

99.34
± 0.14

95.97
± 0.08

98.56
± 0.81

7 3
(25)

59.13
± 0.18

34.79
± 5.75

94.56
± 0.67

96.27
± 0.83

100
± 0.00

78.51
± 0.30

100
± 0.00

80.09
± 0.34

100
± 0.00

8 24
(454)

91.13
± 0.30

94.56
± 1.67

99.09
± 0.14

99.58
± 0.60

99.76
± 0.00

98.89
± 0.27

99.73
± 0.22

98.95
± 0.11

100
± 0.00

9 3
(18)

40.00
± 0.25

34.63
± 3.85

34.63
± 0.38

98.09
± 0.57

100
± 0.00

66.53
± 1.53

84.35
± 0.30

79.77
± 0.63

100
± 0.00

10 49
(923)

78.76
± 2.08

55.85
± 10.4

93.60
± 0.25

93.05
± 0.32

92.58
± 1.32

91.49
± 0.32

98.03
± 0.18

93.89
± 0.25

96.98
± 0.16

11 123
(2332)

93.59
± 1.91

75.99
± 1.46

91.30
± 0.21

94.68
± 0.43

96.52
± 0.26

94.46
± 0.21

97.89
± 0.56

96.07
± 0.29

97.71
± 0.27

12 30
(563)

72.61
± 0.76

50.89
± 1.46

75.99
± 0.14

91.41
± 0.88

97.80
± 0.62

89.94
± 0.34

95.85
± 0.15

96.40
± 0.37

98.65
± 0.20

13 11
(194)

78.34
± 0.13

82.27
± 1.06

82.27
± 1.06

98.80
± 1.53

100
± 0.00

97.32
± 0.22

100
± 0.00

98.94
± 0.16

100
± 0.00

14 64
(1201)

92.42
± 0.39

93.26
± 1.30

90.89
± 0.13

98.37
± 1.58

98.26
± 0.33

98.66
± 0.37

99.03
± 0.13

98.62
± 0.38

98.35
± 0.05

15 20
(366)

62.08
± 0.13

45.75
± 1.35

90.95
± 0.13

94.35
± 0.37

97.65
± 0.24

89.54
± 0.43

97.45
± 0.15

92.81
± 0.29

96.39
± 0.31

16 5
(88)

28.43
± 1.36

79.89
± 0.81

85.05
± 0.74

96.96
± 2.5

95.08
± 1.09

81.27
± 0.53

88.82
± 0.38

89.46
± 0.59

92.99
± 0.07

OA(%) 82.86
± 1.43

77.89
± 1.62

92.28
± 3.05

95.35
± 0.14

96.72
± 0.17

94.90
± 0.14

97.45
± 0.27

96.32
± 0.17

97.83
± 0.11

AA(%) 70.37
± 2.72

63.94
± 2.77

82.60
± 4.79

95.87
± 0.16

97.54
± 0.21

91.56
± 0.39

96.81
± 0.06

94.47
± 0.20

98.30
± 0.18

κ × 100 80.12
± 1.77

75.56
± 0.89

90.51
± 0.35

94.69
± 0.16

96.26
± 0.20

94.10
± 0.10

97.09
± 0.09

95.8
± 0.28

97.53
± 0.09
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Table 4. The overall accuracy (OA) of classification methods on the IN dataset using various percentages of training samples.
The best performances for each test case are in bold.

Sample Classification Method

(Per Class) SVM HS-GAN 3D-GAN SS-GAN AD-GAN
AWF2-GANs

F2-
Con.

F2-
Add.

AWF2-
Con.

AWF2-
Add.

110 (1%) 60.38
± 1.60

59.28
± 1.47

69.79
± 0.76

72.81
± 0.62

75.84
± 0.55

77.59
± 0.47

80.17
± 0.39

80.75
± 0.35

83.77
± 0.23

314 (3%) 72.59
± 1.33

71.87
± 1.35

83.40
± 0.57

85.57
± 0.67

87.67
± 0.53

92.47
± 0.64

95.73
± 0.42

93.85
± 0.44

95.32
± 0.17

520 (5%) 81.70
± 1.39

76.67
± 1.44

91.71
± 0.67

94.46
± 0.46

95.89
± 0.39

94.49
± 0.0.57

96.82
± 0.28

95.79
± 0.34

97.53
± 0.21

726 (7%) 84.77
± 1.28

78.89
± 1.16

93.24
± 0.44

95.77
± 0.52

96.77
± 0.48

96.30
± 0.31

97.83
± 0.33

97.21
± 0.30

98.16
± 0.25

1031 (10%) 88.90
± 1.01

83.40
± 1.20

95.79
± 0.21

97.79
± 0.13

97.56
± 0.18

97.33
± 0.14

98.70
± 0.12

98.57
± 0.22

99.07
± 0.04

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Classification maps for the UP dataset with 350 labeled training samples: (a) training
samples (b) SVM (EMAPs) (c) HS-GAN (d) 3D-GAN (e) SS-GAN (f) AD-GAN (g) F2-Concat. (h) F2-
Add. (i) AWF2-Concat. and (j) AWF2-Add.

Table 5 leads us to similar conclusions as the results of our quantitative experiments
on the IN dataset. AWF2-GANs with various feature fusion options all have a higher OA
compared with the other methods. In addition, AWF2-Add has the highest individual
classification accuracy for most classes. For instance, it achieved accurate classification
for the “Asphalt,” “Painted metal sheets,” and “Bitumen” classes. Moreover, 3D-GAN,
SS-GAN, AD-GAN, and AWF2-GANs provided more homogeneous classification maps
than the SVM and HS-GAN. Conversely, the HS-GAN classification map contained a large
amount of noisy pixels compared to other methods. This demonstrates that the HSI classi-
fier can be significantly improved by taking advantage of spectral–spatial characteristics.
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In contrast to the 3D-GAN, SS-GAN, and AD-GAN, the classification maps of AWF2-GANs
with various feature fusion options had the most clear boundaries and most uniform
regions. This illustrates that spectral–spatial characteristics extracted from spectral–spatial
combinations led to greater generalization efficiency than spectral–spatial filter banks.

Table 5. The overall accuracy (OA), average accuracy (AA), kappa coefficient (κ), and individual class accuracies for the UP
dataset with 350 labeled and unlabeled samples for training. The best results are highlighted in bold typeface.

Class Train
(Test) SVM HS-GAN 3D-GAN SS-GAN AD-GAN

AWF2-GANs

F2-
Con.

F2-
Add.

AWF2-
Con.

AWF2-
Add.

1 54
(6577)

84.53
± 2.38

75.46
± 1.53

96.73
± 0.49

98.97
± 0.14

98.65
± 0.15

96.75
± 0.29

96.80
± 0.01

97.70
± 0.19

100
± 0.00

2 150
(18499)

95.48
± 1.67

93.57
± 0.86

97.82
± 0.39

99.33
± 0.03

98.96
± 0.35

98.85
± 0.30

98.94
± 0.07

98.89
± 0.13

98.57
± 0.38

3 17
(2082)

67.50
± 0.83

82.24
± 4.23

95.00
± 0.64

86.40
± 0.15

98.69
± 0.03

93.82
± 0.19

97.68
± 0.18

90.89
± 0.25

99.37
± 0.61

4 25
(3039)

95.33
± 0.10

85.64
± 1.13

98.87
± 0.59

99.47
± 0.10

99.91
± 0.05

98.00
± 0.14

96.68
± 0.19

97.93
± 0.51

96.48
± 0.38

5 14
(1331)

51.86
± 0.14

78.98
± 5.26

1.00
± 0.00

99.54
± 0.08

99.92
± 0.02

98.81
± 0.24

99.68
± 0.37

99.73
± 0.30

100
± 0.00

6 41
(4988)

75.47
± 0.05

70.07
± 0.72

97.09
± 0.46

97.51
± 0.19

97.79
± 0.22

98.49
± 0.26

99.02
± 0.13

99.05
± 0.14

99.80
± 0.30

7 11
(1319)

80.90
± 0.61

77.67
± 2.99

95.95
± 0.64

95.96
± 0.45

95.63
± 0.06

100
± 0.00

100
± 0.00

97.10
± 0.38

100
± 0.00

8 30
(3652)

84.19
± 0.34

80.98
± 0.27

89.98
± 0.96

91.73
± 0.36

85.09
± 0.43

94.84
± 0.18

95.98
± 0.14

96.00
± 0.22

97.39
± 0.25

9 8
(939)

50.85
± 0.11

90.96
± 0.38

97.78
± 0.41

99.85
± 0.02

100
± 0.00

100
± 0.00

100
± 0.00

99.85
± 0.12

98.62
± 0.47

OA(%) 86.26
± 1.19

84.98
± 2.33

97.07
± 0.19

97.25
± 0.15

97.39
± 0.09

98.05
± 0.24

98.24
± 0.16

98.01
± 0.19

98.68
± 0.22

AA(%) 76.23
± 2.75

81.11
± 1.21

96.99
± 0.36

96.53
± 0.13

97.18
± 0.07

97.68
± 0.32

98.53
± 0.11

97.43
± 0.20

98.81
± 0.20

κ × 100 81.76
± 1.54

80.56
± 1.77

96.49
± 0.46

96.37
± 0.19

96.53
± 0.12

97.31
± 0.26

97.66
± 0.27

97.47
± 0.18

98.12
± 0.43

To further verify the robustness and practicability of the proposed AWF2-GANs, we
employed different training samples from the Pavia University dataset. The labeled training
set was generated by randomly selecting 0.1%, 0.2%, 0.4%, 0.8%, and 1% samples per class,
and the unlabeled training set was sampled equally to the labeled one. Table 6 presents
the OA(%) matrix for each test case. The proposed approach achieved higher classification
accuracies with a limited percentage of labeled samples than other methods. For instance,
AWF2-Add yielded a 97.31% overall accuracy when only using 0.4% of labeled training
samples per class. In contrast to other spectral–spatial classifiers, adaptive weighting fusion
features can capture discriminative spectral purity and spatial neighboring contexts, and
greatly improve classification accuracy.



Remote Sens. 2021, 13, 198 20 of 25

Table 6. The overall accuracy (OA) of classification methods on the UP dataset using various percentages of training
samples. The best performances for each test case are in bold.

Sample Classification Method

Per Class SVM HS-GAN 3D-GAN SS-GAN AD-GAN
AWF2-GANs

F2-
Con.

F2-
Add.

AWF2-
Con.

AWF2-
Add.

48 (0.1%) 67.75
± 1.54

66.96
± 1.23

80.12
± 0.98

81.73
± 1.01

83.38
± 0.95

85.75
± 1.12

87.00
± 0.97

89.76
± 0.89

90.74
± 0.92

91 (0.2%) 78.33
± 1.34

75.57
± 1.19

89.57
± 1.03

89.98
± 0.97

91.09
± 0.89

91.54
± 0.98

91.97
± 0.88

93.85
± 1.16

94.80
± 0.77

176 (0.4%) 82.69
± 1.11

78.87
± 1.36

93.13
± 0.88

94.57
± 0.82

95.38
± 1.06

95.35
± 0.61

96.20
± 0.45

96.54
± 0.54

97.31
± 0.37

347 (0.8%) 86.26
± 0.97

84.98
± 1.29

97.07
± 0.75

97.25
± 0.79

97.39
± 0.61

96.90
± 0.77

97.31
± 0.48

98.01
± 0.32

98.68
± 0.29

432 (1%) 88.74
± 1.26

86.99
± 0.97

97.26
± 0.65

97.47
± 0.16

97.64
± 0.22

97.97
± 0.13

98.09
± 0.21

98.26
± 0.16

98.73
± 0.09

5. Discussion
5.1. Investigation of Running Time

The training and testing times are investigated to assess the efficiency of the various
classification methods. In particular, the SVM with EMAPs, as the classical algorithm for
combining spectral–spatial features, was tuned with 10-fold cross validation to identify the
optimal parameters. For a fair comparison, we set the same maximum batch size to 16 in
each GAN-based method. SS-GAN and AD-GAN, as patch-based classification methods,
were trained on 9× 9 patches centered at the neighboring cuboids of chosen training pixels.
For AWF2-GANs, each feature extractor was constructed with 128 output channels; the
other parameters are the same as mentioned above. For testing, 5% of samples per class
were randomly selected from the IN dataset , and 1% of samples per class were randomly
selected from the UP dataset. Once the number of samples for one class was less than 50,
5 samples of that class were selected for training.

Table 7 lists the training and testing times of the studied algorithms. The training
times of AWF2-GANs were 5 to 7 times shorter than those of SS-GAN and AD-GAN. GAN-
based methods required more training time because adversarial learning needs to converge.
Despite this fact, F2-GANs and AWF2-GANs took approximately 1 s per batch for the IN
images. All remaining labeled samples were employed in the testing phase. The results
revealed the SS-GANs lasted 2 to 3 times longer than the AWF2-GANs. This could be
because the pixel-wise classification GANs with a set of spectral–spatial filter banks will
require more time when processing image patches. Although the adjacent patches contain
a lot of redundant information, and a large amount of computer calculations, the branch
extractors treat the spectral and spatial characteristics of HSIs separately. In contrast,
spectral–spatial combination based on the branch fusion strategy reduces the computational
complexity, and the processing of the testing phase is faster than that of spectral-spatial
filter banks.
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Table 7. Training and testing times of various classification methods on the Indian Pines and Pavia
University datasets.

Methods
Training Time (s) Testing Time (s)

IndianPines Pavia University IndianPines Pavia University

SVM 1.21 ± 1.05 1.05 ± 0.95 1.11 ± 0.19 1.2 ± 0.23
HS-GAN 465.35 ± 34.54 586.77 ± 25.35 0.37 ± 0.05 0.55 ± 0.11
3D-GAN 1047.62 ± 70.29 798.22 ± 34.46 0.97 ± 0.15 2.35 ± 0.23
SS-GAN 770.89 ± 75.55 535.79 ± 59.66 8.36 ± 0.19 16.44 ± 0.07
AD-GAN 574.24 ± 66.75 409.26 ± 50.99 5.79 ± 0.22 6.76 ± 0.12
F2-Con. 187.02 ± 10.16 165.56 ± 8.52 5.23 ± 0.10 4.83 ± 0.31
F2-Add. 112.53 ± 11.59 99.68 ± 7.93 2.16 ± 0.14 4.91 ± 0.07

AWF2-Con. 185.68 ± 32.67 138.59 ± 21.89 5.23 ± 0.09 10.58 ± 0.05
AWF2-Add. 140.99 ± 25.78 118.365 ± 17.87 3.31 ± 0.12 7.22 ± 0.08

5.2. Kernel Setting and Units Selection for Feature Extraction

The effectiveness of the kernel setting and selection of the number of neurons were
evaluated when using AWF2-Add. as the network backbone. For the kernel setting, the
kernel size and the number of kernels are important factors impacting the extraction of
local spatial features. To explore the discriminative spatially separable feature along the
channel dimension, the number of intermediate spatially separable convolutional kernels
is between 16 to 128 (where we set three intermediate layers in the spatially separable
feature extractor). For the sensitive neighboring area, we considered kernel sizes of 3× 3,
5× 5, and 7× 7. Furthermore, spectral purity analysis allows us to verify the spectral
feature utilization. To this end, seven combinations of the number of neurons used for the
dense spectrum feature extractor were selected: (128,128,128), (256,128,128), (256,256,256),
(512,256,256), (512,512,512), (1024,512,256), and (1024,512,512). Figure 10 illustrates the
overall accuracy with 150 training epochs and 500 samples on the IN dataset, and with 350
on the UP dataset.

In the kernel setting phase, the overall accuracy peaks when there are 64 and 128
spatial convolutional kernels for the IN and UP datasets, respectively. In addition, overall
accuracy does not improve upon increasing the number of kernels. Figure 10b shows
that the kernel size of 3× 3 results in the best classification performance on both datasets.
For the spectral purity analysis, it can be seen that best numbers of neurons in the three
intermediate layers is (1024, 512, 512). Since the neighboring HSI cuboid takes a size
of 9× 9, and the proposed extractors are dense connection structures, it is sufficient to
capture the discriminative feature mapping of HSIs. Therefore, the generalization ability of
AWF2-GANs can be effectively expressed regardless of using smaller convolutional kernel
size or less neural units during training. Furthermore, small kernel sizes for training could
mitigate overfitting.

5.3. Depths of the Feature Extractors

The generalization ability and stability of HSI classification networks are also subject
to the capacities of spectral and spatial feature extractors, i.e., their subcomponent depths.
In the feature extraction phase, the dense spectrum and the spatially separable feature
extractors play important roles, with various subcomponents FC-ReLU and Sep-Conv
blocks used to obtain valid features. For AWF2-GANs, the depths of both extractors were
validated from 3 to 5 subcomponents on both datasets, as shown in Figure 11. To maintain
the stability of the GAN framework, the depth of the generator was fixed to 4 FC-ReLU
blocks for training.
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(a) (b)

(c)

Figure 10. Overall accuracies of AWF2-Add.-GAN with various kernel settings and number of
neurons in their spectral and spatial feature extractors, sampled on two datasets for training. (a)
Effect of the number of kernels, (b) kernel sizes, and (c) number of neurons for spectral purity analysis.

As illustrated in Figure 11, setting the depths as “4 & 4” led to the best results on
both datasets. Furthermore, the overall accuracies obtained with shallow depths differed
little. Therefore, the branch feature fusion strategy yields high robustness and practicability
compared with the obvious spectral–spatial representation reviewed in [37].

(a) Indian Pines (b) Pavia University

Figure 11. Overall accuracies for different depths of the two feature extractors (3 & 3, 3 & 4, 4 & 4, 4 & 5,
and 5 & 5, respectively). (a) On the Indian Pines dataset, and (b) on the Pavia University dataset.

5.4. Influence of Unlabeled Real HSI Cuboids for AWF2-GANs

To evaluate the influence of unlabeled real HSI cuboids, we tested the proposed
AWF2-GANs with four feature fusion options using different numbers of unlabeled HSI
samples. We used both IN and UP datasets for this evaluation. We randomly selected 0,
300, 1000, and 5000 unlabeled samples, and 300 labeled samples for training. To verify the
influence by adding unlabeled samples, we also take semi-supervised GANs like HS-GAN
and SS-GAN into account. Table 8 shows that adding too many real unlabeled HSI cuboids
for training has less effect than that of little unlabeled sizes, and even jeopardizes HSI
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classification performance. This is caused by the sample distribution differences between
labeled and unlabeled HSI pixels.

Table 8. The overall accuracies (OA%) of comparison methods using different numbers of unlabeled
and 300 labeled HSI samples; experiments conducted on the Indian Pines and Pavia University datasets.

Dataset Models 0 300 1000 5000

Indian Pines

HS-GAN 65.89 65.38 60.16 59.86
SS-GAN 89.69 91.28 88.22 79.85
F2-Con. 94.79 93.07 89.73 67.49
F2-Add. 95.95 96.60 94.83 96.47

AWF2-Con. 93.86 94.83 95.32 79.82
AWF2-Add. 96.06 96.47 95.16 78.57

Pavia University

HS-GAN 83.42 83.69 80.87 78.89
SS-GAN 96.64 96.75 94.82 92.80
F2-Con. 98.02 97.99 95.66 84.35
F2-Add. 98.03 98.27 94.46 82.17

AWF2-Con. 97.91 98.01 93.39 90.59
AWF2-Add. 98.16 98.37 96.69 91.26

Furthermore, it can be seen that using 300 unlabeled samples equal to the labeled
samples resulted in improved accuracy compared to other methods, which is consistent with
the conclusion reported in [35]. Therefore, in contrast to the negative effects with unlableld
samples reported in [37], the consistent HSI classification performance of AWF2-GANs use
unlabeled samples equal to their labeled samples demonstrated that adding unlabeled samples
mitigate the small samples effects in other deep learning models. It is worth mentioning that,
F2-Con. (with basic concatenation feature fusion option) always yielded the highest accuracy
with no unlabeled samples, which is caused by its channel concatenation retains abundant
spectral radiation and detail characteristics, and improve its feature effectiveness. When the
equivocal neighboring distribution has been introduced, the detail characteristics would be
guided in a wrong direction, and result in a accuracy—decreasing.

6. Conclusions

Hyperspectral image classification faces challenges due to redundant spectral informa-
tion, weak spectral–spatial representation, and limited labeled samples. It has been demon-
strated that generative adversarial networks have a strong ability to expand sample sets
and generalize models for classification and feature representation. In this paper, we pro-
posed patch-based and semi-supervised GAN-based classification framework with various
feature fusion strategies for HSI classification and to overcome the above-mentioned issues.
Experimental results revealed that the feature fusion spectral–spatial combinations are
more effective than the fixed spectral–spatial extractions, which took three times longer in
testing. The feature fusion model contained four fusion options to adapt complementary
and interconnected information for classification. The AWF2-GANs were designed to
integrate the global spectral signatures and separable spatial contexts via various fusion
options, and provided generated data for small sample issues. Furthermore, the considered
joint loss function with the center loss captured the intra-class sensitivity from local neigh-
boring areas, and gave an efficient spatial regularization result. Quantitative experiments
on two hyperspectral image datasets demonstrated that the proposed AWF2-GANs can
achieve promising classification accuracy and robust performance.
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