
remote sensing  

Article

Maize Yield Prediction at an Early Developmental Stage Using
Multispectral Images and Genotype Data for Preliminary
Hybrid Selection

Monica F. Danilevicz 1 , Philipp E. Bayer 1, Farid Boussaid 2, Mohammed Bennamoun 2 and David Edwards 1,*

����������
�������

Citation: Danilevicz, M.F.;

Bayer, P.E.; Boussaid, F.;

Bennamoun, M.; Edwards, D. Maize

Yield Prediction at an Early

Developmental Stage Using

Multispectral Images and Genotype

Data for Preliminary Hybrid

Selection. Remote Sens. 2021, 13, 3976.

https://doi.org/10.3390/rs13193976

Academic Editors: Kuniaki Uto,

Nicola Falco and Mauro Dalla Mura

Received: 16 September 2021

Accepted: 2 October 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Biological Sciences and Institute of Agriculture, University of Western Australia,
Perth, WA 6009, Australia; monica.danilevicz@research.uwa.edu.au (M.F.D.);
philipp.bayer@uwa.edu.au (P.E.B.)

2 School of Computer Science and Software Engineering, University of Western Australia,
Perth, WA 6009, Australia; farid.boussaid@uwa.edu.au (F.B.); mohammed.bennamoun@uwa.edu.au (M.B.)

* Correspondence: dave.edwards@uwa.edu.au

Abstract: Assessing crop production in the field often requires breeders to wait until the end of the
season to collect yield-related measurements, limiting the pace of the breeding cycle. Early prediction
of crop performance can reduce this constraint by allowing breeders more time to focus on the
highest-performing varieties. Here, we present a multimodal deep learning model for predicting the
performance of maize (Zea mays) at an early developmental stage, offering the potential to accelerate
crop breeding. We employed multispectral images and eight vegetation indices, collected by an
uncrewed aerial vehicle approximately 60 days after sowing, over three consecutive growing cycles
(2017, 2018 and 2019). The multimodal deep learning approach was used to integrate field manage-
ment and genotype information with the multispectral data, providing context to the conditions
that the plants experienced during the trial. Model performance was assessed using holdout data,
in which the model accurately predicted the yield (RMSE 1.07 t/ha, a relative RMSE of 7.60% of
16 t/ha, and R2 score 0.73) and identified the majority of high-yielding varieties, outperforming
previously published models for early yield prediction. The inclusion of vegetation indices was
important for model performance, with a normalized difference vegetation index and green with
normalized difference vegetation index contributing the most to model performance. The model
provides a decision support tool, identifying promising lines early in the field trial.

Keywords: machine learning; crop breeding; multimodal learning; Zea mays; high-throughput
phenotyping; computer vision; vegetation indices; explainable artificial intelligence; uncrewed
aerial vehicles

1. Introduction

Breeding crop varieties for improved performance in the field is costly and can encom-
pass several years, as the individuals must be selected from large populations grown across
multiple environments and years [1]. The prediction of end-of-season traits in the field
can bypass the major time limitation imposed by the plant’s long life cycle, by allowing
preliminary selection of the most promising individuals based on the plant phenotype
at early developmental stages [2,3]. This would enable researchers to select a subset of
the varieties to focus on, allowing the resources to be employed on collecting additional
phenotyping measurements, sequencing the genome of selected individuals, or defining
crossing plans for seed production [4]. High-throughput phenotyping (HTP) allows the
monitoring of crop development and measuring plant traits under field or greenhouse
conditions, using a wide range of sensors deployed on ground platforms, uncrewed aerial
vehicles, or via satellite. The richness of HTP datasets enables breeders to explore fea-
tures at a scale that was not previously feasible. For example, canopy temperature and a
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normalized difference vegetation index (NDVI) were shown to increase the accuracy of
wheat (Triticum aestivum) genomic selection by 70%, using best linear unbiased prediction
models (BLUP) [5]. In addition, plant spectral features collected using thermal, RGB, and
multispectral sensors can be used to identify water-stressed individuals [6,7], for disease
identification and severity estimation [8–11], and for lodging quantification [12,13]. For
early yield prediction, studies using soybean (Glycine max) and wheat suggest that grain
yield, seed size and plant maturity date have a high correlation to spectral features from
crops at an early developmental stage [2,3]. In sorghum (Sorghum bicolor), it was observed
that dynamic changes in the spectral features throughout the plant’s early development
were better for differentiating plant performance than images collected at later stages. This
might be due to biomass accumulation and canopy density at later stages, which decrease
the sensitivity of vegetation indices [4]. However, defining hand-crafted feature descriptors
is a laborious process, and potentially leads to errors as the expert is required to make many
decisions as to which aspects of the data better describe the target feature. In addition, the
feature descriptors may not be robust enough to be applied to other datasets, restricting
their future use.

Deep learning models build multilevel hierarchical representations of the relationship
between features, allowing the model to automatically extract features and learn from
the datasets [14,15]. Convolutional neural networks (CNN) are the most widely used
deep learning architecture for crop yield prediction, followed by deep neural networks
(DNN) [16–20]. Recently, a study used MODIS satellite data for the large-scale prediction
of maize (Zea mays) and soybean yield. The proposed deep CNN outperformed six other
machine and deep learning models and predicted the yield across 2208 counties in the
USA with an error of 8.74% [21]. In another study, a deep CNN trained with growers’
field images (RGB and NDVI), was used for predicting wheat and barley (Hordeum vulgare)
yield one month after sowing, with an 8.8% of error [22]. Despite the successful application
of deep learning for yield prediction, it has not been effectively explored for early yield
prediction in a field-trial context where there are few replicate plots from the same hybrid,
providing reduced representations of the variety’s phenotypic plasticity in comparison to a
grower’s field, where the same variety is sown throughout.

Because plant performance is a result of the individual’s genetic and environmental
conditions, the addition of complementary data types, such as weather, soil, genotype, and
field management, can enrich the features that will represent the plant varieties for the
model, potentially generating more accurate yield predictions within the field-trial context.
Several studies have used multiple data types as input for machine learning models for
crop yield prediction in the field [23,24]; however, using hand-crafted features may prevent
the model from capturing inter- and cross-modality. In most multimodal deep learning
models, each deep learning module specializes in a single data type depicting one aspect
of the phenomenon, which are then concatenated and used to inform the prediction [25,26].
Multimodal deep learning models have been used for crop yield prediction, incorporating
historical yield to weather and genotype data [27], multi-layer soil data and satellite images
for yield variation prediction within a wheat field, with around 80% accuracy [28], and
fusing canopy structure, temperature and texture for the yield prediction of soybean lines,
with an error of 15.9% and R2 of 0.72 [29]. Multimodal deep learning can assist in the
difficult task of early yield prediction as it accounts for the interaction of many factors that
can dramatically influence plant performance.

The objective of this study is to assess the effectiveness of using multimodal deep
learning models for early yield prediction of maize hybrids grown under field trial con-
ditions for three consecutive years, using genotype, field management and spectral data
collected by UAV. Specifically, the main goals of this study are: (1) to assess if a deep
learning model based on tabular features can outperform established machine learning
methods for yield prediction; (2) evaluate the impact of using multimodal deep learning for
early yield prediction in comparison to unimodal models, based on single-data type (i.e.,
genotype and field management data); (3) measure the potential contribution of vegetation
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indices to model performance. As a result, we present a decision support tool for breeders
that can assist the selection of maize hybrids at an early developmental stage.

2. Materials and Methods
2.1. Experimental Conditions and Dataset Preparation

Data was collected and made available by the Genomes to Fields (G2F) initiative
(www.genomes2fields.org, accessed 25 March 2021) [30], and comprises three consecutive
field trials conducted in 2017, 2018 and 2019 in College Station, TX, USA (doi: 10.25739/4ext-
5e97, 10.25739/96zv-7164 and 10.25739/d9gt-hv94, accessed on 25 March 2021). The trials
were designed using randomized complete blocks with at least two replicates per condition;
the plants were sown in two-row plots, with 0.76 m row spacing and 7 m plot length.
Commercial check varieties were sown around the trial to form the border. Grain yield
was collected from the two-row plots using a plot combine harvester; the harvested yield is
used as a ground-truth for model training. Approximately 1500 plots were sown per year,
using 1113 maize hybrid lines obtained from the combination of 1040 parental lines. In
2017, maize hybrids were grown with different sowing dates, with individuals sown at
the optimal dryland period on 3 March, and others sown at delayed planting on 6 April,
referred to as P1 and P2, respectively. The plants grown in 2017 were also subjected to
two fertilizer treatments: F1 being the optimal fertilization (using 70–75 gallons per acre
of 32:0:0) and F2, reduced fertilization (43 gallons per acre of 32:0:0), whereas, in 2018–19,
the plants were managed at uniform optimal conditions. The treatments were named P1F1
(optimal planting and fertilization), P1F2 (optimal planting and reduced fertilization), and
P2F1 (delayed planting with optimal fertilization).

Multispectral images were collected using a Micasense RedEdge sensor (Blue: 460–480 nm,
Green: 550–560 nm, Red: 660–670 nm, Red Edge: 710–720 nm, and NIR: 840–860 nm)
deployed on a UAV platform. The images were collected at 110 m height, around midday;
a minimum of twelve ground control points were used to increase GPS accuracy.

2.2. Multispectral Image Processing and Preparation as Model Input

Orthomosaics were assembled using Metashape (v1.6, Agisoft); the reflectance was
calibrated for the datasets 2017–18 using the reflectance panel provided by the sensor
manufacturer and DLS, the orthomosaics presented an average ground resolution of
7.4 cm/pix. The shapefiles were drawn using the plotshpcreate R library [31] and, using a
custom cut_plots_using_shapefile.sh script, ran within a singularity container [32] with
Gdal (v3.2). The GeoTiff plots were converted to NumPy arrays, straightened to a vertical
position in the frame, and normalized to 0–1 range by dividing the pixel value by 32768,
which corresponds to 100% of the reflectance in 16-bit integer files, using a custom python
script (msi_processing.ipynb). To prepare the images as input for the deep learning model,
the plots were cut in half and stacked horizontally to fit the expected input in the deep
learning model architecture, generating a square image of 40 × 40 pixels. The halved
plots were randomly rotated and flipped, before being stacked using msi_utils.py. Eight
vegetation indices (VIs) were calculated into separate image bands and added to the
multispectral image (described in Table 1) using msi_utils.py (Figure 1); these VIs were
selected based on their reported capacity to estimate plant traits. The code used in this
study is publicly available through Github, along with the singularity containers to run the
scripts; links can be found in the data availability statement.

www.genomes2fields.org
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Figure 1. Scheme of the data processing steps employed for preparing the tabular and spectral datasets as input for the
machine learning models. (a) Tabular data processing; categorical feature columns were subjected to the steps listed, they
were then normalized, one-hot encoded, or used in embedding layers for testing. (b) Multispectral image processing. The
images collected by the UAV were used to build the orthomosaic, the individual maize plots were then extracted, the pixel
values were normalized and, finally, the plot was cut and stacked in random order. The vegetation indices were calculated
as new spectral bands, and are shown in the image in the following order: blue, green, red, red edge, NIR, NDVI, NDVI-RE,
NDRE, ENVI, CCCI, GNDVI, GLI and OSAVI.
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Table 1. Vegetation indices, included in the plot images; the band number refers to the order in which the VI appears after
the original five spectral bands (red, green, blue, NIR and red edge).

Band Number Identification Equation

6 Normalized Difference Vegetation Index (NDVI) R840 −R668
R840+R668

7 Normalized Difference Vegetation Index Red Edge (NDVI-RE) R840−R717
R840+R717

8 Normalised Difference Red Edge Red (NDRE-R) R717−R668
R717+R668

9 Enhanced Normalized Difference Vegetation Index (ENDVI) ((R840+R560)−(2×R475))
((R840−R560)+(2×R475))

10 Canopy Chlorophyll Content Index (CCCI)

(
R840−R717
R840+R717

)
(

R840−R668
R840 +R668

)
11 Green Normalized Difference Vegetation Index (GNDVI) R840−R560

R840 +R560

12 Green Leaf Index (GLI) (2×R560)−R475−R668
(2×R560)+R475+R668

13 Optimized Soil-Adjusted Vegetation Index (OSAVI) R840 −R717
R840+R717+0.16 × (1 + 0.16)

The experimental field data included parental lines, seed source (stock), fertilizer
application, planting date, and days after sowing, and were processed to be used as
training data for the tabular machine learning models. The categorical features were
encoded using tab_processing.ipynb that employs the scikit-learn (0.23.2) label encoder for
turning categorical features into numerical vectors and one-hot encoders, and the fastai
library (v2.1.5) was used for constructing the embedding layer for each feature [33]. The
categorical columns, mapped to numerical values, were normalized to fit the range 0–1.
There were 5.41% maize plots with missing values from a total of 4487 plots; the majority
were filled using the value from their replicate, and 1.18% plots were deleted as the replicate
values were also missing. The datasets from 2017, 2018 and 2019 were combined and split
into training and holdout sets (90:10). The training dataset was further split into training
and validation sets (70:30). The holdout dataset contained data from the three years that
were not used during model development but were subject to the same technical and
environmental conditions. Results in the holdout dataset in this case indicate the model’s
performance for predicting early yield under different environmental conditions.

2.3. Machine Learning Models
2.3.1. Machine Learning Module for Tabular Data

The machine learning modules for yield prediction, based on tabular data, were
trained using parental lines, seed source (stock), fertilizer application (optimal or reduced),
planting (optimal or late), and the number of days after sowing. Due to the impact of
hyperparameters on the performance of machine learning models, the hyperparameters
for the random forest, XGBoost, and tabular deep neural network (tab-DNN) were defined
after conducting one thousand trials with different hyperparameter combinations, using
the Optuna (v2.3) framework. Optuna searches the user-defined hyperparameter space
and efficiently discards values with low performance, returning the best hyperparameter
set encountered across the trials [34]. For random forest, we searched the minimum sample
leaf, the number of estimators and minimal sample split values; XGBoost searched for
the optimal learning rate, the number of estimators, maximum depth and minimum child
weight; and the DNN searched for the learning rate, optimization function, and the number
of layers. Two encoding methods were tested for random forest and XGBoost: ordinal
encoding and one-hot-encoding using scikit-learn (0.23.2). The DNN was implemented
using fastai v2.1.5 [33] and PyTorch v1.7 [35]. Categorical features were encoded using
entity embeddings [36]. Embedding layers learn from the feature distribution in the whole
dataset, clustering categorical variables with higher similarity and exposing the intrinsic
relationship between them; they are an effective way to map features in an embedding
space [36]. The output from the embedding layers was concatenated to the continuous
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features and was used as input for the DNN (Figure 2). The implementation of the machine
learning models for tabular data used tabular_models.ipynb.

Figure 2. Schematic representation of the deep learning model architectures; ŷ indicates the yield prediction output by
the model. In (a) and (b), some layer blocks are repeated, as indicated by the dotted line. (a) Tab-DNN architecture with
embedding layers. The tab-DNN is trained based on genotype and crop management data, as indicated in the image.
(b) The sp-DNN architecture is based on a modified resnet18 with a self-attention layer. The sp-DNN was trained with the
spectral images plus vegetation indices bands, calculated per pixel. The self-attention layer is present once in the first block
repetition, whereas the average pooling layer is not present in the first block iteration.

2.3.2. Deep Learning Module for Multispectral Imagery

The spectral deep neural network (sp-DNN) for yield prediction was trained using the
processed multispectral images, plus the calculated vegetation indices bands, resulting in
input images with 13 spectral bands. The sp-DNN uses a modified version of the residual
neural network architecture with 18 layers (ResNet18) to process the multispectral images.
The ResNet architecture employed comprises optimized convolutional layers, and a self-
attention layer [37,38]. The self-attention mechanism helps model the relationship between
distant regions of the input image, computing an attention weight matrix that indicates
the most relevant regions for the prediction [39]. The hyperparameter search library
Optuna (v2.3) [34] was used to determine the sp-DNN architecture: the number of layers,
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activation function, learning rate, and if attention layers were applied. The general model
architecture is shown in Figure 2, and the model script is available at msi_model.ipynb.

2.3.3. Multimodal Deep Learning Framework

The multimodal deep learning model was composed of the tab-DNN and sp-DNN
modules described in Sections 2.3.1 and 2.3.2, followed by a fusion module with two linear
layers and ReLU as an activation function. The weights from the last layer from tab-DNN
and sp-DNN are concatenated and fed as input for the fusion module. Gradient blending
was employed to address the calibration of multiple loss functions for the modules [40],
with scaling weights depending on how long each module takes to converge (tabular
module 0.1, spectral module 0.55, and fusion module 0.35). Scaling the modules helps
to prevent overfitting when the modules are trained simultaneously, as different input
data and module architectures are likely to converge at different times [40]. Each module
outputs its yield prediction, allowing a comparison of performance against the fusion
module prediction (Figure 3). Multimodal model performance was compared, using
pre-trained modules against training the architecture from scratch with co-learning. The
pre-trained multimodal architecture employed previously trained tab-DNN and sp-DNN
as modules, with a further 60 epochs of co-training to fine-tune the fusion module, whereas
the multimodal architecture was trained from scratch using initialized tab-DNN and sp-
DNN modules, and they were trained along with the fusion module. Scripts used for
the implementation of this model are multimodal_model.py, multimodal_utils.py, and
multimodal_model.ipynb.

Figure 3. Scheme showing the multimodal model architecture. The tab-DNN and sp-DNN models output an independent
yield prediction value (ŷ) based on their respective input datasets. The weights from the last layer of the tab-DNN and
sp-DNN are combined to feed the fusion module, which outputs the multimodal yield prediction (ŷ).
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2.4. Evaluation Metrics

Model performance was evaluated using fivefold stratified cross-validation (scikit-
learn, 0.23.2). The stratification was performed by year, to ensure that the training and
validations datasets were balanced. In stratified cross-validation, the dataset is split be-
tween training and validation sets for N consecutive folds, each fold having an equal
proportion of samples from the three years. One fold is used once as validation, while the
remaining four folds are used for training; this step is repeated until each fold was used
as validation once. The metrics employed to measure performance were R2 (coefficient of
determination), root mean squared error (RMSE) and relative RMSE (RMSE %), using the
following equations:

RMSE =

√
∑n

i=1

(yi − y î)2

n − 1
(1)

RMSE% =
RMSE

ymax − ymin
× 100 (2)

R2 = 1 − ∑i(yi − ŷi)2

∑i(yi − y)̂2
(3)

where y and ŷ are the observed and predicted yield, respectively, for each sample i, and the
total number of samples is indicated by n, whereas ymax–ymin are used to indicate the
range of observed yield, and ȳ represents the mean of the observed data. The contribution
of the VIs to the multimodal prediction performance was assessed using permutation
importance, in which the position of the pixels are randomized in the selected VI, breaking
the structured association between the feature and prediction [41–43]. To measure the VI
importance, we compared the difference in performance on RMSE and R2, between the
prediction with the randomized VI and the intact VI. A custom python script was used to
perform feature assessment: permutation_nb.ipynb.

3. Results
3.1. Maize Grain Yield Distribution

Harvested yield distribution varied across years due to the different seasonal growing
conditions. The impact of environmental conditions in each year can be estimated by
comparing the performance of nineteen check varieties grown across the three years, under
optimal fertilization and planting date conditions (Figure 4a), where the plants grown in
2017 have a higher overall performance than plants grown in the other years. The 2017
trial presents two discernible groups with mean yield values of 10 and 6 t/ha−1, composed
of hybrids subjected to P1F1 and P2F1 treatments (Figure 4b). In the 2019 trial, all hybrids
were subjected to P1F1 and displayed a consistently low yield compared to previous years,
with values ranging from 2 to 11 t/ha−1 although the majority of the plots yielded between
6 to 9 t/ha−1 (Supplementary File S1). In total, 1113 maize hybrid lines were sown from
a combination of 1040 unique parent lines (Figure 4c). The under-representation of some
parental lines may decrease the accuracy of yield prediction for these hybrids, as there will
be a smaller dataset to learn from.
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Figure 4. (a) Comparison of the yield distribution of the same maize hybrids grown each year of the field trial; (b) maize
yield distribution per year; (c) number of novel and overlapping maize lines grown each year.

3.2. Machine Learning Hyperparameter Optimization

For the random forest model, the minimum sample leaf was the most important
hyperparameter, with 0.91 importance, followed by the number of estimators that define the
size of the estimator forest. The optimal number of estimators can vary widely depending
on the dataset employed, usually achieving a threshold beyond which there is no increase
in accuracy that can justify the computational cost [44]. For XGBoost, the learning rate had
the most impact on model performance, with 0.75 importance, followed by the number of
estimators. Random forest and XGBoost-optimized model hyperparameters are available in
the script tabular_models.ipynb. The tab-DNN and sp-DNN had the same hyperparameter
importance order, with the learning rate as the most influential hyperparameter, followed
by the optimization function, the number of layers, and the attention layer. The optimized
tab-DNN model was composed of a 100-layer network, with ReLU as the activation
function, RMSE as the loss function, ranger as the optimization function, a learning rate of
1e-3, batch normalization, dropout (0.5), and an embeddings dropout (0.5). The selection
of the optimization function and the number of layers was more relevant to the sp-DNN.
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The sp-DNN was composed of a ResNet with 18 layers, a self-attention layer, a learning
rate of 1e-3, and using Adam as the optimizer [45]. A hyperparameter importance plot is
available in Supplementary File S2.

3.3. Prediction of Yield Based on Crop Metadata

Random forest demonstrated the best overall performance for predicting grain yield
based on the genotype and crop management data, followed by the tab-DNN (Table 2).
The machine learning models presented between 0.11–0.27% of relative RMSE variation
when predicting yield in the validation and holdout datasets, suggesting that the models
were not overfitting the training dataset and performed similarly on unseen data. The
three models presented a lower R2 score when predicting the yield from the 2019 hybrids.
The categorical feature-encoding method had little effect on the prediction accuracy of
the validation and holdout sets, with one-hot encoding causing no improvement in the
random forest or XGBoost performance. In addition, training the models with one-hot
encoded data took longer, as was also observed in a previous study [46]. The range of
the predicted grain yield is often more narrow than the actual yield distribution (Figure 5;
Supplementary File S3). Although the year feature was hidden from the models, we can
observe that random forest and the tab-DNN presented higher error rates for predicting
the 2018 and 2019 yields. XGBoost performed worse than other models, grouping hybrids
into clusters and providing a single yield value per group, as shown in Figure 5. To assess
the capacity of the models to identify high-performance hybrids, each plot was placed
into categories based on their performance and labeled as high- (above 10 t/ha), medium-
(between 6 and 9.99 t/ha), and low-yield plots (below 6 t/ha). Sorting the hybrids into
categories showed that random forest and tab-DNN were able to identify approximately
76% of the high-performance hybrids, but were incapable to identify more than 38% of the
low-performance plots (Figure 5G–I).

3.4. Spectral Feature Deep Learning Model Performance

The sp-DNN was trained using thirteen spectral bands, including the eight calculated
VIs. The trained model predicted grain yield with 8.99% relative RMSE in the holdout
dataset, as shown in Table 3. The model predictions accurately reflect the treatment
groupings P1F2 and P2F1, with no changes in the image capture and reflectance calibration.
The capacity of the model to group P1F2 and P2F1 predictions shows that the spectral
features were indicative of the plant conditions. In addition, the bimodal tendency observed
in the ground-truth yield is accentuated in the predicted yield (Figure 6). The model R2

score was higher for the prediction of 2017 and 2018 hybrids, although 2017 presented a
significantly higher error rate than other years (p-value > 0.05), but no significant difference
in prediction error was observed between most treatments except for P1F1, compared to
P1F2. The sp-DNN model successfully identified the majority of high-yielding varieties
(above 10 t/ha), surpassing the tabular machine learning models and tab-DNN (Figure 6E).

Table 2. Performance comparison of different machine learning models, using fivefold cross-validation. Values are presented
with their standard variation. The best model’s result is highlighted in bold.

Model Feature Encoding
Validation Dataset Holdout Dataset

RMSE RMSE % R2 RMSE RMSE % R2

Random
Forests

Ordinal encoding 1.48 ± 0.05 10.46 ± 0.37 0.53 ± 0.04 1.48 10.59 0.49
One-hot encoding 1.46 ± 0.08 10.35 ± 0.54 0.55 ± 0.05 1.43 10.11 0.53

XGBoost
Ordinal encoding 2.17 ± 0.05 15.40 ± 0.38 0.00 ± 0.06 2.28 15.77 −0.14
One-hot encoding 2.21 ± 0.08 15.67 ± 0.57 −0.04 ± 0.05 2.12 15.02 −0.03

DNN Embeddings 1.67 ± 0.04 11.87 ± 0.33 0.41 ± 0.02 1.77 12.57 0.27
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Figure 5. Machine learning model predictions of hybrid yield on the holdout dataset (2017—2019) based on genotype and
crop management data. (a–c) show the predicted yield (t/ha) in the y-axis in comparison to the ground-truth yield (t/ha) in
the x-axis for each sample in the holdout dataset. (d–f) present the model prediction error per treatment, the error value
was obtained by subtracting the predicted yield from harvested yield. (g–i) show the percentage of hybrid plots classified as
high, medium and low yield. The x-axis shows the predicted labels, and the y-axis is the ground-truth label.

Table 3. Yield prediction performance of sp-DNN using multispectral features. The validation dataset
values were obtained through fivefold cross-validation and presented with standard deviation.

RMSE RMSE % R2

Validation dataset 1.46 ± 0.14 10.35 ± 1.01 0.55 ± 0.08
Holdout dataset 1.27 8.99 0.63
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Figure 6. Sp-DNN yield predictions for the holdout dataset. (a) Comparison of the predicted yield (t/ha) to ground-truth
yield (t/ha); (b) visualization of the model predictions, colored by treatment; (c) distribution of maize hybrids by predicted
and ground-truth yield (t/ha); (d) prediction error (t/ha) of each treatment colored by year; (e) percentage of high, medium
and low-yielding plots, classified as such by the model; the ground-truth plot label is indicated in the y-axis and predicted
labels in the x-axis.

3.5. Multimodal Deep Learning Model Performance

Multimodal co-learning enables sharing complementary information from different
modalities, influencing model performance even if one of the modalities is absent during
test and validation [25]. In our case, we used co-learning to train the modules and used the
weights to feed the fusion module. In this framework, each module outputs an individual
prediction, based solely on its data type, being completely independent of the sister
modality used during training. Co-learning improved the performance of both modules,
as shown in Table 4. The tab-DNN module benefitted substantially and increased the
correlation of the prediction in the holdout dataset from 0.27 R2 when trained independently
to 0.47 R2 under the co-learning scheme. The greatest prediction performance was obtained
by scaling the predictions of the tabular, spectral and fusion modules, using the weights
defined during training (0.5, 0.35, 0.6), achieving 7.60% of relative RMSE (equivalent to
1.22 t/ha−1 RMSE) in the holdout dataset, and around 8% of relative RMSE in the validation
dataset. No significant difference in performance was observed using pre-trained modules
or training them from scratch, there was also no significant difference in the error rate of
predictions for plots grown under any treatment or year (p > 0.05).
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Table 4. Performance comparison of multimodal models with late feature fusion. Validation dataset results were obtained
with fivefold cross-validation and presented with standard deviation. The weighted prediction was obtained by scaling
each module’s prediction and summing the predicted yield. The best-performing models are highlighted in bold.

Multimodal Framework
Validation Dataset Holdout Dataset

RMSE RMSE % R2 RMSE RMSE % R2

Feature
Fusion

Tabular module 1.29 ± 0.20 9.15 ± 1.40 0.64 ± 0.11 1.53 10.84 0.47
Spectral module 1.27 ± 0.17 9.02 ± 1.22 0.65 ± 0.10 1.14 8.06 0.71
Fusion module 1.16 ±0.05 8.24 ± 0.38 0.71 ± 0.02 1.17 8.27 0.69

Weighted prediction 1.13 ± 0.04 8.00 ± 0.31 0.73 ± 0.016 1.07 7.60 0.73

Feature
Fusion with

pre-trained modules

Tabular module 1.29 ± 0.21 9.10 ± 1.50 0.64 ± 0.12 2.16 15.31 −0.07
Spectral module 1.27 ± 0.18 8.96 ± 1.31 0.65 ± 0.11 1.19 8.44 0.67
Fusion module 1.14 ± 0.04 8.09 ± 0.25 0.72 ± 0.02 1.22 8.63 0.66

Weighted prediction 1.12 ± 0.02 7.90 ± 0.16 0.74 ± 0.01 1.21 8.55 0.66

The maize plots were placed into categories based on their performance, labeled as high-
(above 10 t/ha), medium- (between 6 and 9.99 t/ha), and low-yield plots (below 6 t/ha).
Sorting the hybrids into categories showed that the multimodal model was able to identify
around 75–86% of the high- and medium-performance hybrid plots and 36% of the low-
performance plots, which is expected due to the low RMSE (Figure 7). Further investigation
suggests that the majority of underestimated plots were from 2017, whereas 2019 had the
most plots expected to perform better than they did. Comparing the prediction error
of hybrids sown on multiple years or their replicates shows a small prediction error
(Supplementary File S3).

3.6. Effect of Spectral Features on the Prediction of End-of-Season Traits

The impact of different VIs in the multimodal model predictions was measured using
feature permutation. The performance of the multimodal model was negatively affected
by removing the VI bands as shown in Figure 8. Removing all proposed VIs increased the
relative RMSE from 7.60%, obtained with the complete dataset, to 10.84%. The correlation
between spectral features and grain yield also decreased substantially from 0.72 to 0.45 R2.
GNDVI and NDVI were the most influential VIs, with the randomization of the values
causing the most impact on the model performance and feature correlation to grain yield
prediction. The other VIs had a minor effect on the performance, and the absence of either
of them decreased the accuracy of prediction. There was little difference between the
prediction performance using RGB- or MSI-only images; however, the majority of VIs
used the red edge or near-infrared bands, which may influence the decision to employ a
multispectral sensor instead of RGB.
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Figure 7. Images (a–d) shows the multimodal fusion model prediction of grain yield (t/ha) from each module and the
weighted prediction. Each module prediction is based on their specific data modality, whereas the weighted prediction is
obtained by scaling each module’s prediction and summing the predicted yield. Image (e) shows the model prediction of
each maize plot as high-, medium- and low-yield plots (in the y axis), comparing their ground-truth yield in the x-axis. The
values within the square indicate the percentage of each category that were predicted to be high-, medium- and low-yield
plots. Image (f) shows the optimization error of maize plots that presented a high yield but were predicted as medium
(in light purple), and plots with a low yield that were predicted to have medium performance (mustard). The plots are
separated by year.

Figure 8. Prediction results from the permutation analysis. Image (a) shows the impact of random-
ization on model performance, the x-axis indicates if all VIs were randomized (MSI or RGB) or if
only one VI was randomized (minus VI); the y-axis indicates the relative RMSE obtained. Image
(b) shows the impact of feature randomization on the correlation between features and grain yield.
MSI refers to the original multispectral bands (red, green, blue, near-infrared and red edge).
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4. Discussion

Plant selection at an early stage is challenging due to the impact of weather variability
and the time needed for the plant to show discernible traits; however, studies in maize
and soybean crops have shown that early phenotypic traits, collected with HTP platforms,
can be used as an indicator of yield under optimal conditions [47,48]. In maize, a previous
study using the 2017 G2F dataset identified loci associated with controlling plant height
at early development, which showed a significant impact on yield prediction [48]. In our
study, the use of early phenotypic data and genotype showed varied results, depending on
the machine learning model employed, with the multimodal model presenting a higher
prediction accuracy. Assessing the tabular machine learning models independently, Ran-
dom forest outperformed XGBoost and tab-DNN in this dataset, indicating its effectiveness
for crop yield prediction using a single type of data. The random forest method has been
extensively applied for crop yield prediction [4,49–53], with previous studies showing it to
outperform other machine learning algorithms in selected datasets [50,53]. XGBoost had
the worst performance among the machine learning models tested, placing the samples into
yield groups. This behavior suggests that the tabular dataset had an insufficient number
of features for XGBoost to separate low and high-yielding hybrids, as previous studies
showed XGBoost as competent when dealing with larger datasets [54,55]. Tab-DNN was
selected as a module for the multimodal architecture, due to its potential for improvement
within the co-learning framework. When independently trained using the tabular dataset,
tab-DNN showed a higher error rate for the P1F1 treatment, which included samples
grown in the three years without the data year being indicted in any feature, which may
have caused the seasonal variability to impact prediction accuracy. In P2F1, the yield
was consistently lower than other treatments because the hybrids were sown later in the
season and experienced heat stress. A study using the same dataset hypothesized that
delayed planting in that region of Texas, US, may increase photosynthetic activity, leading
to increased plant height and lower yield [48].

Regarding the sp-DNN module, the bimodal tendency observed in the ground-truth
yield data is accentuated in the predicted yield (Figure 6), with a larger number of plots
being predicted to have a higher yield. The sp-DNN module trained with spectral data
from the crop’s early stages presented a higher prediction accuracy with R2 0.63 than
the machine learning algorithms based on genotype and crop management (R2 0.53).
Several factors may have contributed to this result, as the spectral features are capable
of indicating the plant’s health status and biomass coverage [56,57]. Both tab-DNN and
sp-DNN modules showed a tendency for more conservative predictions toward the mean,
predicting a narrower yield range than ground-truth data.

The multimodal model was able to predict yield across three consecutive years, with a
relative RMSE of 7.6% and R2 of 0.73. The modules consistently presented a low R2 score for
the early yield prediction of 2019 hybrids; this may be due to the parental lines presenting
a different performance in previous years, which may introduce a bias to the model. It
outperformed previous models based on spectral features for early yield prediction, for
both soybean (an RMSE of 9.82 and R2 of 0.68) [3] and maize subjected to phosphorus
treatments (R2 between 0.15~0.82) [58]. The higher accuracy may be due to the capacity of
multimodal deep learning to incorporate different data into the prediction. Multimodal
deep learning models have been used for crop yield prediction using spectral features from
later development stages, where plant growth has a higher correlation with the final yield.
Nonetheless, our model had comparable performance, with two multimodal models for
soybean yield prediction using images from plant reproductive stages (a relative RMSE of
15.9% and R2 of 0.72) [29], and for cotton-yield prediction using images from flowering and
shortly before harvest (a relative RMSE of 6.8% and R2 of 0.94) [59]. Multimodality deep
learning models can support early yield prediction, due to the complementary information
shared within the model [25]. Training the spectral and tabular features together has
improved both module predictions, increasing tab-DNN performance on the holdout
from R2 0.27 to 0.47, and the sp-DNN R2 from 0.63 to 0.71 in the holdout dataset. The
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improvement in accuracy caused by multimodal data is corroborated by previous studies; it
was reported that adding spectral features improved the prediction of grain yield in wheat
by 70% [5], and in maize, it increased by 0.1 in R2 [60]. Here, we demonstrate that a model
using two types of input data shows higher accuracy compared to single-data models, one
that is valuable when trained using data from young plants with few measurements to
inform the model. The multimodal model presented here showed high accuracy (relative
RMSE 7.6%) for early yield prediction, being suitable as a decision support tool that can
inform breeders of the most productive hybrids. However, it is important to notice that
using the model for early yield prediction of another species or under different treatment
may require fine-tuning, using the current model as a base for transfer learning [61].
Further training of the model can be achieved by using private or other publicly available
datasets [62]. In addition, the multimodal framework can be expanded with the inclusion
of new specialized modules for weather, soil and other sensor data, as previous studies
show their impact on model accuracy [17,63,64].

Identifying the components that lead to deep learning model prediction is a useful
step in verifying model coherence, reducing noise, and improving the overall model [65].
The contribution of the spectral components for the model prediction can be used to extract
insights, as the spectral features can capture different aspects of the plant phenotype. In
this study, VIs had a high impact on the prediction, causing a substantial decrease in model
performance when using RGB or multispectral images alone. RGB images performed
better than using multispectral images alone, which was also observed in another study
assessing the early growth of maize hybrids under phosphorus treatments [58]. However,
the majority of VIs employed the red edge or near-infrared bands, which may influence
the decision toward collecting the raw data, using a multispectral sensor instead of RGB.
Our observation of the importance of NDVI and GNDVI to predict crop traits is similar to
previous studies using VIs. For example, a study using 33 different VIs reported that NDVI,
NDRE and GNDVI had the strongest correlation with maize yield [49]. Other studies
also demonstrate NDVI correlation with grain yield and moisture, suggesting its use as
a secondary trait for plant selection during trials [58,66,67]. For wheat, NDVI provided
spatial separation between the high- and low-yielding regions within a plot during the
anthesis, tillering, and seedling stages [68]. NDVI and GNDVI are usually related to
biomass and tend to saturate at later growth stages [57]. However, since the aim was to
predict yield at an early stage, including NDVI and GNDVI was advantageous. Contrary
to previous studies, OSAVI only had a minor contribution to yield prediction at an early
stage, even though this index is commonly employed for prediction in sparse vegetation as
it corrects soil interference in the reflectance [69,70]. The minor effect of OSAVI and other
VIs may be explained due to redundancy in the information provided by the other indices,
which may partially compensate for the absence of one or another VI. Nonetheless, even
OSAVI and other low-contributing VIs increased the model performance to some extent,
and it is advantageous to include them in the training data.

5. Conclusions

Early selection of the highest performing crop plants in a field trial can accelerate
breeding, reducing the cost and duration of the breeding cycle. Here, we demonstrate a
clear advantage of using multiple data types for early yield prediction, and how training
specialized modules together can help improve prediction accuracy. Although previous
studies have shown that adding extracted spectral features can improve genotype selection
accuracy, using a multimodal deep learning algorithm was not previously explored. The
multimodal model developed in this study achieved high performance for early yield
prediction and could provide a decision support tool for breeders. However, it is important
to notice that it was trained using single-location data, and it would require further training
with new datasets to be applicable to different locations. In addition, the model accuracy
can be improved by regularly updating the model after each season, as the new data can
show variation in the hybrids’ performance or integrate new hybrids into the training set.
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This approach is commonly used in machine learning to ensure that the training dataset
does not deviate much from the target dataset we are trying to predict. Further research
could explore whether the inclusion of other data types such as weather, soil and genetic
information can contribute to improving model accuracy, as they play an important role in
plant performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/rs13193976/s1: Supplementary file S1: Maize distribution of observed yield separated per year.
Supplementary file S2: Hyperparameter importance analysis from each of the machine and deep
learning models optimized; Supplementary file S3: Distribution of the yield prediction from tabular
machine learning models in comparison to the actual yield distribution, indicating how the model
predictions fit the actual yield data; Supplementary file S4: Prediction error (t/ha) of each hybrid and
its replicate across different years and treatments in the holdout dataset.
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