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Abstract: Global navigation satellite systems (GNSS) provide globally distributed station coordinate
time series that can be used for a variety of applications such as the definition of a terrestrial reference
frame. A reliable estimation of the coordinate time series trends gives valuable information about
station movements during the measured time period. Detecting discontinuities of various origins
in such time series is crucial for accurate and robust velocity estimation. At present, there is no
fully automated standard method for detecting discontinuities. Instead, discontinuity-catalogues
are frequently used, which provide information about when a device was changed or an earthquake
occurred. However, it is known that these catalogues suffer from incompleteness. This study
investigates the suitability of machine learning classification algorithms that are fully data-driven
to detect discontinuities caused by earthquakes in station coordinate time series without the need
for external information. For this study, Japan was selected as a testing area. Ten different machine
learning algorithms have been tested. It is found that Random Forest achieves the best performance
with an F1 score of 0.77, a recall of 0.78, and a precision of 0.76. Overall, 525 of 565 recorded
earthquakes in the test data were correctly classified. It is further highlighted that splitting the time
series into chunks of 21 days leads to the best performance. Furthermore, it is beneficial to combine
the three (normalized) components of the GNSS solution into one sample, and that adding the value
range as an additional feature improves the result. Thus, this work demonstrates how it is possible
to use machine learning algorithms to detect discontinuities in GNSS time series.

Keywords: GNSS; discontinuities; earthquakes; machine learning

1. Introduction

Global navigation satellite systems (GNSS) enable positioning and navigation all
around the globe. There exist four fully operational GNSS systems, the American Global Po-
sitioning System (GPS) [1], the Russian Global Navigation Satellite System (GLONASS) [2],
the European Global Navigation Satellite System Galileo [3], and the Chinese BeiDou Navi-
gation Satellite System [4,5], that all follow the same measurement principle. Given enough
simultaneous measurements, the exact position of the receiver can be determined [6]. Due
to the strong increase in the number of geodetic satellites in space and the number of GNSS
stations on Earth in the last decades, it is now possible to perform geospatial positioning
and navigation with a high accuracy of just a few centimeters or even millimeters.

This high accuracy is not only necessary and relevant for many Earth science appli-
cations but also for modern society which heavily relies on navigation in daily life [7].
However, in order to put the position information into context, a well-defined reference
frame is essential. The ITRF2014 [8] is today’s official international terrestrial reference
frame that fulfills the high demands of having high accuracy and long-term stability. The
ITRF comprises a set of globally distributed stations, defined via their 3D coordinates, 3D
velocities, and the corresponding accuracy information, as well as post-seismic deformation
models, which are estimated by combining solutions of all four space geodetic techniques,
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namely, very long baseline interferometry (VLBI), satellite laser ranging (SLR), global navi-
gation satellite systems (GNSS), and Doppler orbitography and radiopositioning integrated
by satellite (DORIS). To generate an accurate and stable terrestrial reference frame many
stations and long time series are necessary. In addition, these time series should be of
high quality with no or only a minimal number of discontinuities. It is worth noting that
in the literature, the terms structural breaks, discontinuities and offsets are often used
interchangeably. Within the context of this work, we mean a “jump” in the coordinate time
series of a station.

One major problem when generating geodetic products such as terrestrial reference
frames are discontinuities within the time series. There are two main reasons why dis-
continuities are present. One being equipment changes at the GNSS station and the other
being rapid crustal movements or deformations caused by earthquakes. Both lead to
nonlinear station motions that, if ignored, result in a biased estimation of the station veloci-
ties [9]. Thus, it is critical to identify and correct discontinuities for a reliable and accurate
velocity estimation.

For the generation of the ITRF2014, the handling of discontinuities is a major process-
ing step. In order to identify discontinuities external information sources, such as station
log files providing information about equipment change and registered earthquakes in
the Global Centroid Moment Tensor Project [10] are used [8]. To achieve highest accuracy,
it is crucial that these external data sources are complete and without errors. However,
human inspection and correction of the provided information are still often necessary due
to missing or incorrect information.

Several studies investigate discontinuities in GNSS time series, address their impact
on velocity estimation and suggest different methods and strategies to cope with them.
Gazeaux et al. (2013) [11] examined different offset detection methods on simulated time
series that mimicked realistic GPS data containing offsets and compared them by their per-
formance and success rate. The methods were split into manual and (semi-)automated de-
tection methods. Their results showed that manual methods, where the offsets were hand-
picked by experts, almost always gave better results than automated or semi-automated
methods. Moreover, they state that the high rate of falsely detected offsets is the weak point
of most of the (semi-)automated methods. Bruni et al. (2014) [12] presented a procedure
based on sequential t-test analysis of regime shifts [13,14] to identify both the epoch of
occurrence and the magnitude of jumps corrupting GNSS data sets without any a priori
information. The method was tested against a synthetic data set and achieved 48% true
positives, 28% false positives and 24% false negatives with 100% representing the sum of
all the possible events. A work by Borghi et al. (2012) [15] showed the use of advanced
analysis techniques, namely, the wavelets, the Bayesian and the variational methods to
detect discontinuities in GNSS time series. All techniques produced consistent results. Re-
cently, Baselga and Najder (2021) [16] presented an automated detection of discontinuities
in station coordinate time series due to earthquake events. However, the tool relies on
an earthquake catalogue to characterise the event. A study by Griffiths et al. (2015) [9]
evaluates the consequences of offsets on the overall stability of the global terrestrial refer-
ence frame. While discontinuities are not serious obstacles to the ITRF datum, the velocity
estimates are much more affected, especially the vertical component. They conclude that if
the number of discontinuities doubles, the velocity errors for the vertical component would
increase by around 40 percent. Williams et al. (2003) [17] investigated the effect of offsets on
estimated velocities and their uncertainties and found that the effect depends on the noise
characteristics in the time series. Blewitt et al. (2016) [18] suggest a robust trend estimator
called MIDAS that estimates station velocities accurately without discontinuity detection to
overcome the common problems. A work by Heflin et al. (2020) [19] describes methods to
estimate positions, velocities, breaks and seasonal terms from daily GNSS measurements.
The break detection is fully automated and no knowledge from earthquake catalogues or
site logs are used. However, no information about the performance is mentioned.



Remote Sens. 2021, 13, 3906 3 of 23

Due to the increasing number of continuously measuring GNSS stations, e.g., more
than 19,000 stations are provided by the Nevada Geodetic Laboratory, it is no longer
possible to visually inspect all time series and manually flag discontinuities. Therefore,
automated algorithms are crucial to exploit the full potential and availability of these big
data sets.

When it comes to big data processing, machine learning is a technique that has more
and more proven to be a suitable candidate for this task [20]. Machine learning is a
subfield of Artificial Intelligence that learns from data and can, for example, recognize
spatio-temporal patterns. Typically, it is completely data-driven, independent of any model
and able to model, classify, or even predict the behaviour of data. The great advances in
computing power and the wealth of data together with the effort and money invested in
this field make machine learning a very promising technique to solve geodetic problems.

This motivated us to study the application of machine learning algorithms for the
detection of discontinuities in GNSS time series as a classification task. The completely data-
driven approach could help to properly detect discontinuities independent of potentially
incomplete external data sources. This would automate and facilitate the handling of
discontinuities in GNSS data.

The objective of our study is to investigate if and how machine learning algorithms
are suitable to find discontinuities in GNSS time series. In this study, we are focusing on
discontinuities caused by earthquakes since earthquakes frequently occur, and thus are visible
in GNSS data and need to be corrected. Therefore, different machine learning algorithms
have been applied and several considerations regarding the setup have been made. A large
number of experiments are carried out to find the best performing model. Several aspects,
such as the optimal structure of the feature matrix, data pre-processing, feature selection as
well as different model constellations are investigated and their impact on the performance
is analysed and presented. Section 2 gives an overview of the used data as well as the
study region. In Section 3, the investigated machine learning methods are presented in
detail. First, the setup of the machine learning classification and its validation is discussed,
followed by explanations of the pre-processing of the training data. In Section 4 , the results
of the individual experiments are presented, interpreted and discussed. Finally, Section 5
summarizes the main findings of all results and the best performing setup for a well
working model and gives further outlook about potential further improvements.

2. Data
2.1. GPS Station Positions and Discontinuities

The GPS station coordinate time series are taken from the Nevada Geodetic Laboratory
(NGL) [21]. NGL provides open access to geodetic GPS solutions from more than 19,000
stations around the globe. The solutions are updated daily and are available as simple text
files. The processing strategy of the GPS data with all its details can be found on the NGL
website (http://geodesy.unr.edu/ (accessed on 30 August 2021)). Besides estimated station
positions, other products are available as well, such as troposphere products, velocity
fields, and a database of potential discontinuities. For our analysis, we use the provided
daily station coordinate time series as well as the database of the potential discontinuities.
It is distinguished between two types of discontinuities: equipment changes taken from
the International GNSS Service (IGS) log files (antenna, receiver or firmware change) and
potential discontinuities caused by earthquakes. Figure 1 shows an example of the station
coordinate time series of a GPS station. All potential discontinuities caused by earthquakes
from the NGL discontinuity database are represented by vertical lines. The colour of the
lines serves to differentiate between earthquakes that cause a displacement above and
below a threshold of ten millimeters.

http://geodesy.unr.edu/
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Earthquake discontinuities are listed if their epicenter is within a threshold distance d
of the station. The threshold distance d is calculated using a simple formula based on the
magnitude M of the earthquake:

d = 10(M/2−0.8) (1)

The information about when an earthquake happened is provided by the United States
Geological Survey (USGS). Further information like the USGS event ID, the threshold
distance for the event, the distance from station to epicenter and the event magnitude can
also be found in the database.

Figure 1. GPS station coordinate time series of the station G016 for the east, north and up component.
The vertical dashed lines mark potential earthquake discontinuities from the NGL discontinuity
database. Light red lines mark discontinuities causing a station coordinate displacement smaller than
ten millimeters in one of the components, while dark red lines mark discontinuities causing a station
coordinate displacement equal to or larger than ten millimeters in one of the components.

2.2. Study Region

In this study, Japan was selected as the test area. Its geographical location along
the Pacific Ring of Fire makes it an earthquake-prone region. The whole country is in a
very active seismic area and thus experiences a lot of earthquakes of different magnitudes.
Since 1996, 239 severe earthquakes (https://www.kyoshin.bosai.go.jp/cgi-bin/kyoshin/
bigeqs/index.cgi?E (accessed on 30 August 2021)) have been recorded by two high-motion
seismograph networks, K-NET (Kyoshin Network) and KiK-net (Kiban Kyoshin Network),
that were established by the National Research Institute for Earth Science and Disaster
Resilience (NIED).

For our study, all GPS stations of Japan available on the NGL website are selected. At
the time of acquisition, there have been 1449 stations available. From all these Japanese
stations, a subset of suitable stations is selected based on two criteria. First, only stations
recording a structural break caused by an earthquake that is equal to or larger than ten
millimeters, are selected to make sure that significant displacements are present in the data.
Second, only stations with less than 0.5% of missing values are selected. These criteria
ensure that only stations are used that have at least one structural break that should be
detected and very few missing values. It results in a total of 665 stations. Figure 2 in
Section 3 depicts a map containing the station locations.

https://www.kyoshin.bosai.go.jp/cgi-bin/kyoshin/bigeqs/index.cgi?E
https://www.kyoshin.bosai.go.jp/cgi-bin/kyoshin/bigeqs/index.cgi?E
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Figure 2. Map of Japan showing the majority of all available GPS stations in Japan as well as the
training and testing stations of the suitable station subset that are used in the classification.

3. Methods

The aim of this study is to detect structural breaks caused by earthquakes in GPS
station coordinate time series. To achieve this goal, a classification problem is formulated
and solved using machine learning. It is classified whether an earthquake has happened
within a certain time span, and therefore, a structural break has occurred within this
time span or not. Since a database of potential discontinuities is available from the NGL,
supervised machine learning algorithms are used.

The classification is carried out for the selected subset of suitable stations (described
in Section 2). First, the data are randomly split into 80% training and 20% testing stations.
This results in 532 training stations and 133 testing stations as depicted in Figure 2. A
machine learning model is trained based on the coordinate time series of the training
stations. The station coordinate time series are split into individual chunks as described
in Section 3.1. Based on the NGL discontinuity database, chunks containing earthquakes
are flagged. While fitting the model, a three fold cross-validation is carried out to tune the
hyperparameters of the algorithm, see Section 4.2. Based on the fitted model, predictions of
whether and when a structural break happened, are made and compared with the entries
of the NGL discontinuity database for the training and testing stations. The predictions re-
garding the training stations are done to know if the fitted model is overfitting. Overfitting
shows that the model is not generalising well and, therefore, is not able to perform well on
unseen data [22]. The predictions of the testing stations serve to validate the model as they
are not used to train the model. Thus, the performance of the testing stations is a measure
of how well the model performs on unseen data.

As a primary step, the analysis is limited to earthquakes causing a significant station
coordinate displacement since detecting these earthquakes is most important for potential
applications. Therefore, only structural breaks causing a station coordinate displacement
equal to or larger than ten millimeters are flagged, i.e., as an example, only the vertical dark
red lines shown in Figure 1. Typically, this is sufficient for many applications, including
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a velocity estimation from GPS station coordinate time series as will be demonstrated in
Section 4.10. The noise floor in the data is defined as the median of a rolling standard
deviation over 30 days. It is 1.71 mm for the east, 1.59 mm for the north, and 5.19 mm
for the up component. In Section 4.4, the impact of a threshold of ten millimeters as well
as other values is further discussed. The displacement size itself is calculated based on
the difference of the median of the time series seven days before and seven days after the
reported structural break.

The classification is formulated as a multi-class classification problem where the time
within the chunk when the structural break is reported represents the class label as further
described in Section 3.2. The advantage of multi-class classification compared to binary
classification is that additionally to the information of whether a discontinuity happened
or not, the time of the discontinuity can be detected, which is important information.
Furthermore, previous internal investigations concluded that multi-class classification
works better. It achieves comparable recall but significantly better precision and F1 score
than binary classification.

3.1. Structure of Feature Matrix

The features used in the machine learning algorithm are the GPS station coordinate
time series of the selected stations. All stations provide three time series for the individual
coordinate components, namely, east, north, and up. The time series are split into n chunks
of m days.

The splitting is done in an overlapping manner, so that the first chunk contains day
one until day m, while the second chunk contains day 2 until day m + 1. This means that a
365 day long time series with a chunk size of m = 21 leads to n = 365 − m = 344 chunks of
21 days.

In Section 4.7, different feature matrix layouts are tested. For illustration purposes,
one option that was investigated is depicted in Figure 3. It works by combining the
individual chunks per component to one sample (row of the feature matrix, respectively).
This constellation leads to 3m features used in the machine learning model. Thus, the
resulting feature matrix of one station has dimension n × 3m. All stations are used together
to form the feature matrix and to train one common model.

Figure 3. Example structure of target vector and feature matrix in case that all components are
combined to one sample (respectively row) of the feature matrix for a chunk size m = 21 days. The
target vector corresponds to the index where the discontinuity happens inside the chunk or 0 in case
no discontinuity is present. Days with earthquakes causing discontinuities are highlighted in red.
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The used machine learning methods are not able to deal with missing values. Since
there is enough training data available and missing data do not occur that frequently,
chunks including missing values and outliers (see Section 3.4) are simply discarded to
avoid inserting noise.

Additionally, all chunks are removed that contain a day of when an equipment
change is recorded in the discontinuity database since the focus in this study is to train a
model to classify structural breaks caused by earthquakes and not for equipment changes.
Equipment change cause structural breaks in GPS time series that would distort the training
of the machine learning classification. It is worth noting that the machine learning model
suffers if discontinuities are missing in the database, i.e., inaccurate labeling. However, if
the number of missing discontinuities is not very pronounced, the machine learning model
should be robust enough and not be distorted.

3.2. Structure of Target Vector

The target vector contains the information of whether a structural break occurred in
the corresponding chunk or not. Since multi-class classification is used, the target vector
does not only contain binary information but represents the time at which a structural
break is happening inside this chunk (starting at zero), or zero if no structural break occurs.
It is worth noting that this method is not able to distinguish between no structural break
inside the chunk (class 0) and a structural break happening on the first day of the chunk
(also class 0). This is intentional and the reason for this is that if a break happens on the
first day, then no information before the break is available. Thus, also visually, no break or
jump in the time series would be detectable. The structure of the target vector is shown in
Figure 3.

3.3. Validation

A common metric to validate a classification model is the confusion matrix. It evaluates
the classification accuracy and reports the number of false negatives (FNs), false positives
(FPs), true negatives (TNs), and true positives (TPs). The TPs indicate how many structural
breaks are correctly classified as structural breaks, whereas the TNs indicate how many
chunks containing no structural breaks are correctly classified as having no structural
breaks. The errors done by the classification are indicated by FNs and FPs. The FNs
indicate structural breaks that are wrongly classified as no structural breaks, whereas
the FPs indicate chunks without a structural break which are still classified as having a
structural break. For our analysis, the FNs are the most critical errors, since we do not want
to miss any structural break.

Out of the confusion matrix common performance measures that can be calculated,
like precision, recall, and F1 score.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(4)

The precision indicates the percentage of true structural breaks among all structural
breaks detected by the machine learning algorithm. The recall shows the percentage of
correctly detected structural breaks among all existing structural breaks. Typically, recall
and precision have an inverse relationship. The F1 score is the harmonic mean between
precision and recall. It ranges between 0 and 1, with 0 being the worst score, indicating
precision or recall to be zero and 1 being the best score, indicating perfect precision and
recall. In the case of multi-class classification, the confusion matrix is expanded for each
individual class, therefore, leading to the dimension of m × m, as illustrated in Figure 4.
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Thereby, class 0 represents no structural break happening, while the other classes represent
cases where a structural break happens (see Section 3.2). Thus, the classes can be grouped
into two overall classes, 0 for no structural break and 1 to m − 1 for classes with structural
breaks. Therefore, we do not look at the FNs, FPs, TNs, TPs of each individual class, but we
summarise the predictions made for class 1 to m − 1 and calculate the precision, recall, and
F1 score based on these summarized measures. Additionally, we extract the information of
whether the time of the structural break is detected correctly. Thus, we have two types of
true positives: TP that are representing correctly classified samples where, additionally,
the time of the discontinuities is correctly classified and TP* that are representing correctly
classified samples but the time of the earthquake is incorrectly classified.

Another often used measure for classification is the receiver operating characteristic
(ROC) curve [23]. It plots the true positive rate (TPR) against the false positive rate (FPR) at
various discrimination thresholds. The TPR is another term for recall or sensitivity, whereas
the FPR is also known as fall-out and indicates the percentage of falsely detected structural
breaks among all non-existing structural breaks.

FPR =
FP

FP + TN
(5)

When plotting the ROC curve, the so-called area under the curve (AUC) can be
computed as its integral, which summarizes the curve characteristics in one number. The
highest possible AUC is one, while the lowest possible value is zero. The higher the number,
the better the classifier. Random classification leads to an AUC of 0.5.

Figure 4. Confusion matrix for multi-class classification. Class 0 represents chunks with no dis-
continuities. Class 1 until m − 1 represents chunks with discontinuities at the corresponding index.

3.4. Pre-Processing of Training Data

To train the classification model, the time series used for training are pre-processed.
This is necessary to have a good quality of the time series to train a good model. In
particular, one of the main challenges is the highly imbalanced class distribution with a
majority of class 0 (chunks with no earthquake), see Section 4.8. Therefore, it is necessary to
get a clean representation of this class without loosing information about the other classes.

The pre-processing of the training data is divided into several parts. First, an outlier
detection is applied; then, an exclusion of noisy areas within the time series is done.

To detect outliers, first the noise floor of the time series is determined. This is done by
taking the median of a rolling standard deviation of the time series. Then, a rolling median
of the time series is subtracted from the original time series. All data points are excluded
where the absolute difference is bigger than five times the noise floor. Using a value of
five times the noise floor for the outlier detection was selected based on empirical tests. In
many geodetic applications, an outlier threshold of three times the standard deviation is
used. Here, it was found that using a value of three leads to more false-positive outlier
removals. Thus, for the sake of this application, using five times the standard deviation
works better.

The exclusion of noisy areas within the time series is done in a similar way. It is applied
to the time series where the outliers are already removed. First, again, the median of the
rolling standard deviation of the time series is taken as a measure for the noise floor. Then
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all data points are excluded, where the rolling standard deviation is bigger than two times
the noise floor. Again, the threshold of two times the noise floor is defined empirically.

However, in both of these steps, it is ensured that the m days before and after a
structural break are never removed from the time series. This is done because otherwise,
earthquakes or post-seismic deformation will simply be labeled as outliers or noisy areas
and thus removed from the time series. However, this should not happen, since in particular
the data before and after an earthquake is needed in order to be able to detect it.

For reference, after these data pre-processing procedures with m = 21, about 84% of
the data remains. These pre-processed time series are then used to build the feature matrix
as described in Section 3.1.

Finally, two more processing steps are necessary. First, all chunks containing earth-
quakes causing a structural break smaller than ten millimeters are removed from the
training data. This is, again, done to get a clearer representation for class 0 with respect
to the highly imbalanced dataset. Tests revealed, that it is better, that these small jumps,
that are below our selection criteria, are not part of the training for class 0 to not confuse
the machine learning algorithm. Second, all chunks up to 14 days after the earthquake
are removed. This is done because the time series after an earthquake is oftentimes not
very stable due to post-seismic deformation or aftershocks. Tests did reveal that this could
disturb the training of the machine learning model and, therefore, it is better to remove
these chunks during training.

It is worth noting that all the pre-processing steps are only done for the training data
and not for the testing data because these steps partly rely on the information of whether
an earthquake happened or not, which in turn, should be detected by the machine learning
algorithm itself. The idea of the pre-processing is to get a clearer representation of the
individual classes during training. Thus, for applying the derived machine learning model
on new datasets, no pre-processing is necessary.

4. Results

To exploit the full potential of the machine learning algorithms and to make the
algorithm learn whether a structural break occurred or not, several considerations and a
lot of experiments have been performed, among which the most important findings are
presented in this section.

To give the reader an overview about our findings while keeping the number of
investigations and results small, the tests are grouped into different topics or tasks, e.g.,
finding a proper chunk size, testing different feature setups, or investigating different
model designs. Each topic is presented in one subsection.

It is worth noting that the results of the individual experiments that are presented in
the following subsections cannot be viewed independently. Instead, they all interact with
each other and it is necessary that their investigation is carried out simultaneously and
iteratively. Thus, some of the presented investigations are already making use of findings
based on results from previous investigations that will be discussed in a later subsection.

4.1. Different Machine Learning Algorithms

As a very first step, ten different machine learning algorithms are tested to find out
which one might work well for our study. The tested algorithms are:

• Random Forest (RF) [24]
• Multilayer Perceptron (MLP) [25,26]
• Extreme Gradient Boosting (XGBoost) [27]
• Linear Support Vector Classification (LSVC) [28]
• Perceptron (P) [29]
• K-Nearest Neighbor (KNN) [30,31]
• Decision Trees (DT) [32]
• Stochastic Gradient Decent (SGD) [33,34],
• Ridge Classification (RC) [35,36]
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• Gaussian Naive Bayes (GNB) [37]

For this investigation, the feature selection, the model constellation, and the chunk size
have been used as discussed in the upcoming Sections 4.5–4.7. The results are summarized
in Figure 5.

Random Forest stands out because it has the highest F1 score (0.77) and its precision
and recall are equally high. Additionally, MLP and XGBoost also work reasonably well.
The F1 scores are a bit lower compared to Random Forest (0.73 for MLP and 0.72 for
XGBoost) as well as the precision; however, the recall is slightly higher. The algorithms
LSVC and P perform a bit worse with an F1 score of 0.68 and 0.62, respectively. For these
two algorithms, the precision is higher than the recall. The F1 score drops further for KNN
(0.60), DT (0.53), and SGD (0.50), and the precision and recall diverge even more. These
methods achieve a higher recall at the cost of lower precision. The methods that did not
work at all are RC and GNB. RC, which is a linear classification algorithm, has a recall of
only 0.05 and an F1 score of 0.09. GNB achieves a high recall of 0.95, at the cost of a very
low precision of 0.02, leading to an F1 score of 0.04.

Figure 5. Classification result for testing stations of different machine learning algorithms. Besides the
precision, recall and F1 score, two bars per method indicate ratios from the corresponding confusion
matrix elements. The left bar covers the performance w.r.t. classifying chunks containing discontinu-
ities, while the right bar covers the performance w.r.t classifying chunks without discontinuities. For
a description of the individual acronyms and colors, have a look at Figure 4.

Additionally to the results shown in Figure 5, the ROC curve and the AUC for the
different machine learning algorithms are depicted in Figure 6. Using these performance
metrics, it can be seen that three methods reach high AUC values, namely, XGBoost (0.98),
MLP (0.97) and RF (0.96). Interestingly, RC and GNB, which show the poorest performance
in regards to F1 score, achieve a very high AUC of 0.92 and 0.93, respectively. On the
contrary, the lowest AUC have SGD (0.23) and P (0.06), which both have a moderate
F1 score.

In summary, three methods provide high F1 scores while having a high AUC, namely,
RF, MLP, and XGBoost. Although XGBoost has the best recall, it also has the lowest
precision. MLP has a problem of correctly classifying the correct earthquake epoch within
a chunk, as can be seen based on its low number of TPs compared to TPs*. Therefore, RF
is selected as the primary method for further analysis. It achieves the highest F1 score
while also providing the best compromise between precision and recall. Furthermore, its
ratio between TPs compared to TPs* is also very high, indicating that the correct epoch of
earthquakes can also be derived very well.
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Figure 6. Receiver operating characteristic (ROC) curve for different machine learning algorithms.
The black dashed line shows the performance of a random classifier. In the legend the area under the
curve (AUC) is listed.

4.2. Hyperparameter Tuning

After identifying Random Forest as a suitable algorithm for our purposes (see Section 4.1),
a more extensive hyperparameter optimization is carried out. The purpose of the hy-
perparameter tuning is to determine optimal properties of the models to gain highest
performance. Examples for hyperparameters for Random Forest are the number of trees
that should be trained, the maximum depth of the trees, the minimum number of samples
required to be at a leaf node, and the minimum number of samples required to split a node.

To choose ideal hyperparameter values, a grid search is conducted, which is an
exhaustive search over a subset of manually selected values. The performance of all
hyperparameter value combinations is evaluated based on a three-fold cross-validation.
This means that only two thirds of the training data are used for training directly, while
one third is used for validation. This is repeated three times until every sample is once
picked for validation purposes. The average performances of the validation sets of these
three runs per hyperparameter value combination are compared to identify the best set of
hyperparameter values. The tested hyperparameter values, as well as the best performing
hyperparameter value combination, are summarized in Table 1. In total, 4× 4× 3× 3 = 144
hyperparameter value combinations are investigated.

Table 1. Best set of hyperparameters and its tested values used for grid search. n_estimators is the
number of trees in the forest. max_depth is the maximum depth of the tree. min_samples_leaf is
the minimum number of samples required to be at a leaf node. min_samples_split is the minimum
number of samples required to split an internal node. If max_depth is None, then nodes are expanded
until all leaves are pure or until all leaves contain less than min_samples_split samples.

Hyperparameter Best Value Tested Values Default Value

n_estimators 50 [20, 50, 80, 100] 100
max_depth 30 [None, 10, 30, 50] None
min_samples_leaf 1 [1, 10, 50] 1
min_samples_split 2 [2, 10, 30] 2

After the hyperparameter tuning the F1 score stays 0.77. The recall increased from
0.77 to 0.78 while the precision changed from 0.77 to 0.76. Thus, it can be concluded that
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the hyperparameter tuning did not significantly improve the prediction performance and
the default parameters also worked reasonable well in our case.

4.3. Error Analysis

The confusion matrix (see Figure 4) reports the errors obtained by the classification
algorithm. These errors are further analysed in this section.

In total, there are 5613 samples among the testing data containing an earthquake.
In 22% of the cases, the earthquake could not be detected (FN) and in 78% of the cases,
the occurrence of an earthquake was correctly classified (TP+TP*). Additionally, in 54%
of all cases, the epoch of the earthquake was correctly classified as well (TP) while it
was not possible for the remaining 24% of the cases (TP*). In most of these cases, the
deviation between the true and classified earthquake time is only one to two days with a
root mean squared error of 3.7 days. Figure 7 depicts a histogram of the error in time of
classified earthquakes.

Figure 7. Deviation of correct earthquake position of TP* of the testing data.

Furthermore, there are 537,499 samples among the testing data containing no disconti-
nuity caused by an earthquake. In 99.7%, it was possible to correctly classify those samples
(TN), whereas only 0.03% of the samples were wrongly classified (FP).

Figure 8 shows how the FNs and FPs are distributed regarding the earthquake position
within the chunk using a chunk size of 21. The FNs mostly occur if the earthquake
is located at the beginning or at the end of the chunks. This is reasonable since for
displacements happening at the beginning or at the end of the chunk there is fewer data
showing the displacement.

The FPs seem to occur mostly at the beginning of the chunk, meaning that if the
machine learning algorithm wrongly detects an earthquake, it is most of the time located
at the beginning of the chunk. Surprisingly, there are not significantly more FPs for
earthquakes reported at the end of the chunk.
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Figure 8. Earthquake position in chunk for wrongly classified samples (left: FN, right: FP) of the
testing data.

So far, the presented results have always been focusing on the performance based on
the provided samples. Due to the nature of the presented algorithm, an actual earthquake
will show up in up to m samples with m being the chunk size. In case the result is viewed
based on actual earthquakes instead of samples, the NGL discontinuity database includes
a total of 565 earthquakes causing a displacement equal to or larger than ten millimeters
for the 133 investigated testing station. Random Forest was able to correctly classify 524 of
these earthquakes. In 438 cases, the time of the earthquake was correct as well (TP), while
in 86 cases, the exact time of the earthquake could not be classified (TP*). The remaining
41 earthquakes could not be detected by the machine learning algorithm (FN).

Furthermore, we have investigated whether there is a pattern between the classifica-
tion accuracy and the earthquake displacement size. Figure 9 depicts histograms of the FNs,
TPs and TPs* in relation to the earthquake displacement size. The sum of FNs, TPs and
TPs* corresponds to the total number of earthquakes. It is worth noting that earthquakes
causing a displacement larger than ten centimeters are combined in the last bin.

Almost all FNs occur for earthquakes causing a displacement smaller than 20 mm.
This means that earthquakes causing a bigger displacement are always detected correctly,
which can be seen when looking at the TP + TP* in the histogram. The number above
each bin displays the percentage of TPs* of all earthquakes in this bin. On average there
are 17% TPs* in each bin. For bigger earthquakes causing a displacement larger than
five centimeters, the number of TPs* tends to increase, which means that the method has
troubles to correctly classify the time for the earthquake. This might be explained by the
more infrequent occurrence of these earthquakes leading to less training data or also the
non-linear post-seismic deformation or gaps in the data of big earthquakes.

Figure 9. Earthquake displacement size for detected earthquakes (TP + TP*) and undetected earth-
quakes (FN).



Remote Sens. 2021, 13, 3906 14 of 23

Figure 10 serves to give the reader an impression of how the result of the machine
learning algorithm looks like for a single GPS station. For this station, Random Forest
detects in total four discontinuities. Two detected discontinuities are TPs, while the other
two detected discontinuities are FPs, since the catalogue does not list them. However, it
seems, especially when looking at the first FP, that a discontinuity is still in the Up and
North component of the time series. Thus, it might be that Random Forest is correct and
the discontinuity is missing in the catalogue.

Figure 10. GPS station coordinate time series of the station G068 for the east, north and up component.
The vertical light red and dark red lines mark potential earthquake discontinuities from the NGL
discontinuity database, while the green lines mark discontinuities detected by Random Forest.

4.4. Different Thresholds for Displacement Size

As already mentioned in Section 3, the machine learning algorithm is trained to only
detect structural breaks causing a station coordinate displacement equal to or larger than
ten millimeters. This threshold needs to be chosen to build a well performing model. To
decide which threshold is appropriate, different thresholds between 5 and 15 mm have
been tested. Figure 11 summarizes the results. In general, it can be concluded that the lower
the threshold, the lower the performance. This makes sense since smaller displacements are
more difficult to detect. When looking at the F1 score, it can be seen that it is almost constant
for thresholds between nine and fifteen millimeters. However, when using thresholds
from five to eight millimeters it is significantly lower. The result when using a threshold
of ten millimeters shows equally high recall and precision. All results using a threshold
bigger than ten millimeters have a higher recall than precision, whereas all results using a
threshold smaller than ten millimeters have a higher precision than recall.

Due to this analysis, a threshold of ten millimeters is found to be optimal since a high
F1 score is achieved and, at the same time, a threshold of ten millimeters is more sensitive
to smaller earthquakes than larger thresholds.
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Figure 11. Classification result for testing stations for different displacement size thresholds. A detailed
description of the figure content and acronyms are presented in the captions of Figures 4 and 5.

4.5. Feature Selection

As discussed in Section 3.1, chunks of GPS station coordinate time series are used as
features to classify whether and where a structural break happened. Therefore, different
features are generated and tested to try to improve the performance of the classifier. Several
options for features exist:

• use chunks of pre-processed data directly (O)
• normalize the chunks (N)
• add the value range as additional feature (R)
• combine individual components into 3D displacement and add it as additional com-

ponent (3D)
• add first derivative as additional feature (FD)
• add second derivative as additional feature (SD)

The results of the different investigations can be found in Figure 12.
In a first test, it is investigated if a normalization of the individual chunks helps to

gain a better performing model. A normalization is typically conducted for numerical
reasons [38,39]. By comparing the performance with and without normalization, it can
be seen that the F1 score improves from 0.45 to 0.72 by normalizing the chunks. This
significant performance increase leads to the conclusion, that a normalization of the chunks
is beneficial.

Next, it is investigated if the inclusion of additional features increases the performance
of the model. Since the main task in this study is to identify structural breaks featured as
jumps in the time series, one obvious feature to add is the value range within each chunk,
which is defined as the maximum value minus the minimum value before normalization.
The idea is that the value range of chunks with a structural break is significantly larger
compared to the value range of chunks without a structural break since in cases without
structural breaks, it is only mainly driven by measurement noise, while in cases with a
structural break, the resulting jump in the coordinate value is depicted as well. Using the
ranges leads to a slight drop in the precision; however, the recall improves significantly
leading to an improvement of the F1 score from 0.72 to 0.77.

A similar effect is achieved by including the 3D displacement of the chunks instead of
the ranges. To compute the 3D displacement, the square root of the squared sum of the
east, north and up components is taken as a new, fourth component. By adding this new
component into the feature matrix, the F1 score can be improved from 0.72 to 0.76. Adding
both, the value range and the 3D displacements simultaneously does not improve the F1
score any further, it stays at 0.77. Therefore, it is concluded that it is best to only include
the value range as an additional feature.
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Another idea is to include the first and second derivatives of the chunks. In the
case of the first derivative, additional m − 1 new features are added, while for the second
derivative, m − 2 new features are added. However, adding these new features does not
lead to any improvements as can be seen in Figure 12.

Figure 12. Classification result for testing stations for different feature constellations. O stands
for original using the unmodified time series, N stands for applying normalization of chunks, R
stands for adding value range as additional feature, 3D stands for adding the 3D displacements as
additional component, FD stands for adding the first derivative as additional features, and SD stands
for adding the second derivative as additional features. A detailed description of the figure content
and acronyms are presented in the captions of Figures 4 and 5.

In summary, it can be said that a normalization of the chunks is beneficial, and either
the range of the values should be added as an additional feature per chunk, or the 3D
displacements should be added as a fourth component. Using both, the range and the 3D
displacement together did not improve the result. Neither did the addition of the first and
or second derivative.

Within the other sections of this study, the presented results are all calculated based
on normalized chunks and by adding the range as an additional feature.

4.6. Impact of Chunk Size

To choose the optimal chunk size, chunk sizes between seven and seventy days are
tested. The classification results are shown in Figure 13. It can be seen that the F1 score
increases until using a chunk size of 28 days and remains relatively flat thereafter. The
recall, in turn, increases until using a chunk size of 21 days and decreases again from a
chunk size of 28 days. However, from using 35 days onwards, the gap between precision
and recall becomes larger and larger. Thus, either 21 days or 28 days are good candidates
for appropriate chunk sizes. The performance of the two is very similar, with an F1 score of
0.77 for a 21 day chunk size and 0.78 for a 28 day chunk size. For the remaining part of this
study, a chunk size of 21 days is used for the following reasons: First, the recall is slightly
higher with 0.78 for 21 days compared to 0.77 for 28 days. Next, a smaller chunk size leads
to fewer chunks with multiple earthquakes—something that is not properly accounted for
in this work and will be further investigated in upcoming studies. Applying a chunk size
of 21 yields to a total of 1,863,250 chunks from the 532 training stations and 543,112 chunks
from the 133 testing stations.
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Figure 13. Classification result for testing stations for different chunk sizes m. A detailed description
of the figure content and acronyms are presented in the captions of Figures 4 and 5.

4.7. Different Model Constellations

In Section 3.1, we already visualized how the structure of the feature matrix looks like
if the chunks from the individual components (east, north, up) of one station are combined
into one sample. As already shown in the last sections, the resulting performance based
on this approach is 0.77 for the F1 score. For comparison reasons it is again visualized in
Figure 14a. However, other options exist and are worth being investigated.

One alternative is the straightforward approach of assigning every chunk from each
individual component to one sample. Therefore, one would get three times more samples
with only one third of the features. However, this constellation does not lead to an overall
improvement as can be seen in Figure 14b. Although the precision gets higher, the recall
and F1 score are lower.

Another alternative constellation is to train one model for each individual component and
then combine the results. The individual models for the east (Figure 14c) and North component
(Figure 14d) perform well, whereas the model for the Up component (Figure 14e) achieves only
low performance, as expected, since earthquakes are mainly causing horizontal and not
vertical motions. For the final prediction of whether an earthquake happened at a station,
one way is to simply look if any of the predictions from the individual component-wise
models classified an earthquake, equivalent to a logical “or” operation (Figure 14f). This
approach works well achieving an F1 score of 0.73; however, combining all components
into one sample still outperforms it.

A last investigated alternative is to calculate the class probabilities from each individ-
ual model and train a second layer of machine learning model based on these probabilities,
to derive the final prediction result (Figure 14g). However, this nested machine learning
approach does not lead to a better classification performance and is only providing an F1
score of 0.65.
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Figure 14. Classification result for testing stations for different model constellations. Every pair of
brackets visualizes a machine learning model. The content between the brackets visually represents
the feature matrix design. Thereby, E stands for the east, N for north and U for the up component. (a):
chunks from the individual components are combined to one sample. (b): every chunk represents its
own sample. (c–e): model trained only on one component. (f): The results of (c–e) are combined for
making a final prediction. (g): The class probabilities from case (c–e) are used as features for a second
layer of machine learning model. A more detailed description of the figure content and acronyms are
presented in the captions of Figures 4 and 5.

Within the other sections of this study, the presented results are all calculated based
on combining the chunks of the individual components (east, north, up) of one station to
one sample as already visualized in Figure 3.

4.8. Dealing with an Imbalanced Dataset

One of the difficulties in detecting discontinuities caused by earthquakes from chunks
of GPS coordinate time series is the imbalance in the data. Most of the time (luckily) no
earthquake happens and thus the majority of the chunks do not contain any discontinuities.
Therefore, the classes are not represented equally, which poses a challenge to build a well
working model. The imbalance can lead to poor predictive performance, specifically for
the minority classes [40,41]. In our case, the minority classes are the discontinuities caused
by earthquakes. The training data contains approximately 87 times more chunks without
discontinuity than chunks with discontinuity given a chunk size of 21 days.

There are several commonly used approaches for dealing with imbalanced datasets
such as oversampling the minority class or undersampling the majority class [42,43].
Additionally, for Random Forest, it is possible to assign class weights with respect to the
class occurrence.

First, the class weights are adjusted inversely proportional to the class frequency in
the input data. However, this did not lead to an improvement, the F1 score decreases from
0.77 to 0.68. As discussed in Section 3.3, there are two main groups of classes. One without
discontinuities (class 0) and one with discontinuities (classes 1 – m), thus it was tested if
class weights that are inversely proportional to the class group frequency would yield
better results. However, the F1 score still did slightly decrease, from 0.77 to 0.76.

Next, it is investigated if random undersampling of the majority class helps in im-
proving the prediction performance. This means that chunks containing no discontinuity
are deleted randomly. In this way, the majority class is reduced and the class distribution
is changed.

The amount of chunks that are removed is varied to understand its effect on the classi-
fication performance. The tested ratios between chunks with and without discontinuities
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ranges from 87 times more chunks without discontinuity than with discontinuity (full
dataset) up to four times more chunks with discontinuities than without discontinuities.
Figure 15 summarizes the classification results. While the recall is extremely high when
having more chunks with than without discontinuities, the precision and thus the F1 score
are extremely low. The higher the ratio gets, the lower the recall becomes. In contrast, the
precision significantly increases with higher ratios, especially after a ratio of five. Therefore,
the F1 score increases with a higher ratio.

Figure 15. Classification result for testing stations for different class distributions. The x-label shows the
ratio between chunks without discontinuities and with discontinuities. Thus, a value of ten indicates
that there are ten times more chunks without discontinuities than with discontinuities. A more detailed
description of the figure content and acronyms are presented in the captions of Figures 4 and 5.

Thus, based on this investigation, it was concluded that both approaches of accounting
for the imbalance of the dataset did not yield an improvement in the performance. The best
results could be achieved by simply using all the available data. Therefore, within the other
sections of this study, the presented results are all calculated without special treatment of
the imbalanced dataset.

4.9. Apply Model to All Available Japanese Stations

In Section 2, the selection of suitable stations for our study is presented. Based on two
criteria, 665 of 1449 stations are selected. As discussed, the classification model is trained
on 80% of the 665 stations and tested on the remaining 20% of the stations.

To investigate how well the trained model performs on all available Japanese stations,
the same model is applied to all stations except the 532 training stations. The classification
result shows only a slightly decreased performance. The recall, as well as the precision
decrease, leading to an F1 score of 0.68 compared to an F1 score of 0.77 that was achieved
for the selected suitable stations. The precision changed from 0.76 when using the selected
suitable stations to 0.65 and the recall changed from 0.78 to 0.72. Therefore, one can
conclude that the model is also able to make reasonable predictions for stations with lower
data quality.

4.10. Validation Based on Uncertainties of Velocities Estimation

For an accurate station velocity estimation from GPS coordinate time series, a robust
and discontinuity-free time series is necessary. One practical application to verify the
quality of our machine learning based discontinuity classification is to compare the esti-
mated station velocity uncertainties using the discontinuity information provided by our
method with the estimated station velocity uncertainties based on alternative discontinu-
ity information. For comparison, the discontinuities provided in the NGL discontinuity
database, described in Section 2.1, are used. To calculate velocities and their uncertainties,
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the software package Hector [44] is used to properly account for seasonal and sub-seasonal
signals within the time series. Figure 16 depicts the estimated velocity uncertainty based
on both datasets.

Figure 16. Estimated station coordinate velocity uncertainties. (Left): absolute uncertainty values
based on the proposed machine learning based discontinuity classification results (blue) and the
NGL discontinuity database (orange). The blue and dashed orange line mark the corresponding
median values. (Right): difference between estimated machine learning and NGL station coordinate
velocity uncertainty.

In the left plot, the absolute values of the estimated velocity uncertainty are visualized.
In blue, the result is calculated by using the discontinuities based on the proposed method
while in orange, the result is calculated based on the NGL database. It can be seen that
the two histograms match well, indicating that the performance of both approaches is
equal. Furthermore, the median value is highlighted as a vertical blue line for the machine
learning result while it is displayed as a vertical dashed orange line for the NGL database
result. Both median values are nearly identical.

In the right plot of Figure 16, the difference between the estimated velocity uncertainty
of each station component is visualized. It can also be seen that the majority of the
differences are relatively small and below 0.1 mm per year. Values to the left of the red line
(negative values) represent a better velocity uncertainty of the machine learning approach
compared to the NGL database.

Thus, it can be concluded that the machine learning based discontinuity classification
manages to work on a similar performance than discontinuity databases for the application
of station velocity estimation without the need for external information.

5. Conclusions

In this study, it is demonstrated that it is possible to use machine learning algorithms
to detect discontinuities in GPS time series that are caused by earthquakes by formulat-
ing the problem as a supervised classification task. Therefore, the GPS coordinate time
series are split into individual chunks that are labeled and then fed into the machine
learning algorithm.

Japan was chosen as a study area because of the high amount of GPS stations located
there and due to the occurrence of many earthquakes.

It is demonstrated that the best result could be achieved by using a Random Forest clas-
sifier (see Section 4.1) with a chunk size of 21 days (see Section 4.6). The best performance is
achieved by normalizing the chunks and by adding the value range as an additional feature
(see Section 4.5). A combination of the chunks from the individual coordinate components
to one common sample further improved the results (see Section 4.7). No improvement
could be seen by trying to account for the imbalanced class representation (see Section 4.8).

Our final model was trained based on 1,863,250 and tested based on 543,112 samples.
With our final model, the overall performance w.r.t the testing data can be expressed
through an F1 score of 0.77 with a recall of 0.78 and a precision of 0.76. This means that
among the testing samples, 4359 of 5613 (78%) can be correctly classified to contain a
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discontinuity caused by an earthquake (TP + TP*). Additionally, in 3020 (54%) of these
cases, the time of the earthquake is correctly classified as well (TP), while it is not possible
for the remaining 1339 (24%) of the cases (TP*). However, most of the time, the deviation
of the correct earthquake position is only one to two days with a root mean squared
error of 3.7 days. Furthermore, 536,108 of 537,499 (99.7%) of the testing samples could be
correctly classified containing no discontinuity caused by an earthquake (TN). The number
of wrongly classified chunks as containing no discontinuity caused by an earthquake (FN)
is 1254 (22%) while the number of wrongly classified chunks as containing a discontinuity
caused by an earthquake (FP) is 1391 (0.03%), which is remarkable since a high false positive
rate was described as a major weak-point in current (semi-)automated algorithms [11].

The main benefit of the proposed method is that, once it is trained on a subset of
stations, it can operate solely on the coordinate time series directly without the need for an
external discontinuity catalogue. In Section 4.10, it is demonstrated that a station velocity
estimation using the discontinuities found by the proposed algorithm performs equally
well compared to a velocity estimation based on a dedicated discontinuity catalogue.

Finally, it is to say that based on the findings of this work, additional studies can be
conducted. First of all, it can be tested if it is possible to train a global model. Therefore,
not only the stations of Japan would be used for training, but all available stations. Next, it
is possible to train the method not only on discontinuities caused by earthquakes but also
caused by equipment change. So far, the occurrence of multiple earthquakes within one
chunk is not properly accounted for. For simplicity reasons, only the strongest earthquake
within a chunk is used. In a further study, this could also be accounted for.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the Curve
DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite
DT Decision Trees
FN False Negatives
FP False Positives
FPR False Positive Rate
GLONASS Russian Global Navigation Satellite System
GNB Gaussian Naive Bayes
GNSS Global Navigation Satellite System
GPS Global Positioning System
IGS International GNSS Service
ITRF International Terrestrial Reference Frame
KiK-net Kiban Kyoshin Network
K-NET Kyoshin Network
KNN K-Nearest Neighbor

http://geodesy.unr.edu/


Remote Sens. 2021, 13, 3906 22 of 23

LSVC Linear Support Vector Classification
MLP Multilayer Perceptron
NIED National Research Institute for Earth Science and Disaster Resilience
NGL Nevada Geodetic Laboratory
P Perceptron
RC Ridge Classification
ROC Receiver Operating Characteristic
RF Random Forest
SGD Stochastic Gradient Decent
SLR Satellite Laser Ranging
TN True Positives
TP True Negatives
TPR True Positive Rate
USGS United States Geological Survey
VLBI Very Long Baseline Interferometry
XGBoost Extreme Gradient Boosting
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10. Ekström, G.; Nettles, M.; Dziewoński, A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes.

Phys. Earth Planet. Inter. 2012, 200, 1–9. [CrossRef]
11. Gazeaux, J.; Williams, S.; King, M.; Bos, M.; Dach, R.; Deo, M.; Moore, A.W.; Ostini, L.; Petrie, E.; Roggero, M.; et al. Detecting

offsets in GPS time series: First results from the detection of offsets in GPS experiment. J. Geophys. Res. Solid Earth 2013,
118, 2397–2407. [CrossRef]

12. Bruni, S.; Zerbini, S.; Raicich, F.; Errico, M.; Santi, E. Detecting discontinuities in GNSS coordinate time series with STARS: Case
study, the Bologna and Medicina GPS sites. J. Geod. 2014, 88, 1203–1214. [CrossRef]

13. Rodionov, S.; Overland, J.E. Application of a sequential regime shift detection method to the Bering Seaecosystem. ICES J. Mar.
Sci. 2005, 62, 328–332. [CrossRef]

14. Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31. doi: 10.1029/2004GL019448.
[CrossRef]

15. Borghi, A.; Cannizzaro, L.; Vitti, A. Advanced Techniques for Discontinuity Detection in GNSS Coordinate Time-Series. An
Italian Case Study. In Geodesy for Planet Earth; Kenyon, S., Pacino, M.C., Marti, U., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 627–634.

16. Baselga, S.; Najder, J. Automated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake
events. Surv. Rev. 2021, 1–9. [CrossRef]

17. Williams, S.D.P. Offsets in Global Positioning System time series. J. Geophys. Res. Solid Earth 2003, 108. [CrossRef]
18. Blewitt, G.; Kreemer, C.; Hammond, W.C.; Gazeaux, J. MIDAS robust trend estimator for accurate GPS station velocities without

step detection. J. Geophys. Res. Solid Earth 2016, 121, 2054–2068. [CrossRef] [PubMed]
19. Heflin, M.; Donnellan, A.; Parker, J.; Lyzenga, G.; Moore, A.; Ludwig, L.G.; Rundle, J.; Wang, J.; Pierce, M. Automated Estimation

and Tools to Extract Positions, Velocities, Breaks, and Seasonal Terms From Daily GNSS Measurements: Illuminating Nonlinear
Salton Trough Deformation. Earth Space Sci. 2020, 7. [CrossRef]

20. Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017,
237, 350–361. [CrossRef]

http://doi.org/10.1007/978-3-319-42928-1_7
http://dx.doi.org/10.1007/978-3-319-42928-1_8
http://dx.doi.org/10.1007/978-3-319-42928-1_9
http://dx.doi.org/10.1007/978-3-319-42928-1_10
doi: 10.1186/s43020-020-00025-9
doi: 10.1186/s43020-020-00025-9
http://dx.doi.org/10.1186/s43020-020-00025-9
http://dx.doi.org/10.1007/978-3-319-42928-1_1
http://dx.doi.org/10.1142/9789812836182_0008
http://dx.doi.org/10.1002/2016JB013098
http://dx.doi.org/10.1093/gji/ggv455
http://dx.doi.org/10.1016/j.pepi.2012.04.002
http://dx.doi.org/10.1002/jgrb.50152
http://dx.doi.org/10.1007/s00190-014-0754-4
http://dx.doi.org/10.1016/j.icesjms.2005.01.013
doi: doi: 10.1029/2004GL019448
http://dx.doi.org/10.1029/2004GL019448
http://dx.doi.org/10.1080/00396265.2021.1964230
http://dx.doi.org/10.1029/2002JB002156
http://dx.doi.org/10.1002/2015JB012552
http://www.ncbi.nlm.nih.gov/pubmed/27668140
http://dx.doi.org/10.1029/2019EA000644
http://dx.doi.org/10.1016/j.neucom.2017.01.026


Remote Sens. 2021, 13, 3906 23 of 23

21. Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99. [CrossRef]
22. Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
23. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. doi: 10.1016/j.patrec.2005.10.010. [CrossRef]
24. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
25. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
26. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient BackProp. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 9–48. [CrossRef]
27. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

28. Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 1995. [CrossRef]
29. Rosenblatt, F. The Perceptron—A Perceiving and Recognizing Automaton; Technical Report; Cornell Aeronautical Laboratory: Buffalo,

NY, USA, 1957.
30. Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. Rev. Int. Stat.

1989, 57, 238–247. [CrossRef]
31. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
32. Breiman, L.; Friedman, J.H.; Olshen, R.; Stone, C. Classification and Regression Trees, 1st ed.; Routledge: Boca Raton, FL, USA, 1984.

[CrossRef]
33. Ketkar, N. Stochastic Gradient Descent. In Deep Learning with Python: A Hands-On Introduction; Apress: Berkeley, CA, USA, 2017;

pp. 113–132. [CrossRef]
34. Gardner, W. Learning characteristics of stochastic-gradient-descent algorithms: A general study, analysis, and critique. Signal

Process. 1984, 6, 113–133. [CrossRef]
35. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [CrossRef]
36. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67.

[CrossRef]
37. Zhang, H. The Optimality of Naive Bayes. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research

Society Conference, Miami Beach, FL, USA, 12–14 May 2004; Barr, V., Markov, Z., Eds.; AAAI Press: Menlo Park, CA, USA, 2004;
pp. 562–567.

38. García, S.; Luengo, J.; Herrera, F. Introduction. In Data Preprocessing in Data Mining; Springer International Publishing: Cham,
Switzerland, 2015; pp. 1–17. [CrossRef]

39. Dougherty, G. Feature Extraction and Selection. In Pattern Recognition and Classification: An Introduction; Springer: New York, NY,
USA, 2013; pp. 123–141. [CrossRef]

40. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Foundations on Imbalanced Classification. In Learning from
Imbalanced Data Sets; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–46. [CrossRef]

41. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.
[CrossRef]

42. Japkowicz, N. Learning from Imbalanced Data Sets: A Comparison of Various Strategies; AAAI Technical Report WS-00-05; AAAI
Press: Menlo Park, CA, USA, 2000; pp. 10–15.

43. Tyagi, S.; Mittal, S. Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning. In Proceedings of the
ICRIC, Jammu, India, 8–9 March 2019; Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 209–221.

44. Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data.
J. Geod. 2013, 87, 351–360. [CrossRef]

http://dx.doi.org/10.1029/2018EO104623
http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
doi: doi: 10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/978-1-4757-2440-0
http://dx.doi.org/10.2307/1403797
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1007/978-1-4842-2766-4_8
http://dx.doi.org/10.1016/0165-1684(84)90013-6
http://dx.doi.org/10.1080/00401706.1970.10488635
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1007/978-3-319-10247-4_1
http://dx.doi.org/10.1007/978-1-4614-5323-9_7
http://dx.doi.org/10.1007/978-3-319-98074-4_2
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1007/s00190-012-0605-0

	Introduction
	Data
	GPS Station Positions and Discontinuities
	Study Region

	Methods
	Structure of Feature Matrix
	Structure of Target Vector
	Validation
	Pre-Processing of Training Data

	Results
	Different Machine Learning Algorithms
	Hyperparameter Tuning
	Error Analysis
	Different Thresholds for Displacement Size
	Feature Selection
	Impact of Chunk Size
	Different Model Constellations
	Dealing with an Imbalanced Dataset
	Apply Model to All Available Japanese Stations
	Validation Based on Uncertainties of Velocities Estimation

	Conclusions
	References

