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Abstract: Evapotranspiration (ET) is a variable of the climatic system and hydrological cycle that
plays an important role in biosphere–atmosphere–hydrosphere interactions. In this paper, remote
sensing-based ET estimates with the simplified surface energy balance index (S-SEBI) model using
Landsat 8 data were compared with in situ lysimeter measurements for different land covers (Grass,
Wheat, Barley, and Vineyard) at the Barrax site, Spain, for the period 2014–2018. Daily estimates
produced superior performance than hourly estimates in all the land covers, with an average
difference of 12% and 15% for daily and hourly ET estimates, respectively. Grass and Vineyard
showed the best performance, with an RMSE of 0.10 mm/h and 0.09 mm/h and 1.11 mm/day and
0.63 mm/day, respectively. Thus, the S-SEBI model is able to retrieve ET from Landsat 8 data with an
average RMSE for daily ET of 0.86 mm/day. Some model uncertainties were also analyzed, and we
concluded that the overpass of the Landsat missions represents neither the maximum daily ET nor
the average daily ET, which contributes to an increase in errors in the estimated ET. However, the
S-SEBI model can be used to operationally retrieve ET from agriculture sites with good accuracy and
sufficient variation between pixels, thus being a suitable option to be adopted into operational ET
remote sensing programs for irrigation scheduling or other purposes.

Keywords: energy balance; evapotranspiration; remote sensing; lysimeter

1. Introduction

Evapotranspiration (ET) represents the loss of water from the Earth’s surface to the at-
mosphere through the combined process of evaporation and transpiration. In general terms,
the evaporation process occurs via open water bodies, bare soil, and plant surfaces, whereas
the transpiration process occurs through vegetation or any other moisture-containing living
surface [1]. Within the land–atmosphere interface, ET regulates the Earth’s energy and
water cycles [1–6]. As a result, its estimation is critical to the ideal design and management
of irrigation systems, efficient irrigation scheduling, and a wide variety of water resource
management efforts [7]. Although ET represents an essential component of the hydrologi-
cal cycle, it is one of the least understood. It is estimated that 60% of the precipitated water
returns to the atmosphere through ET [8]. Nonetheless, because of the complex physical
and biological controls on evaporation and transpiration in addition to different land cover
properties, ET estimates may diverge substantially [9].

Conventional measurements of ET (i.e., sap flow, weighing lysimeter, pan measure-
ment, Bowen ratio system, eddy covariance system) have a limited use because they
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are not spatially representative and also because of the dynamic nature of heat transfer
processes [10–12]. Additionally, their employment is often expensive, time consuming,
laborious, and sometimes subject to instrument failure [13]. Satellite remote sensing allows
one to obtain large-scale ET, which can accordingly characterize the surface heterogene-
ity, ranging from individual pixels to an entire raster image. Hence, the combination of
process-based models with remote sensing observations is a valuable strategy to quantify
the spatio-temporal variations of ET. Accurate estimates of ET depend on the land surface
temperature (Ts), solar radiation, albedo (α), and atmospheric conditions (e.g., transmis-
sivity, downward radiation, cloud presence, etc.). In this context, various algorithms have
been developed utilizing information from various types of remote sensing sensors. These
approaches generally vary from purely empirical to physically based techniques derived
from the surface energy balance (SEB) equation with different degrees of complexity, such
as the Surface Energy Balance Algorithm over Land (SEBAL), the Mapping Evapotranspi-
ration with Internalized Calibration (METRIC) model, the Surface Energy Balance System
(SEBS), the Simple Algorithm for Evapotranspiration Retrieving (SAFER), the Simplified
Surface Energy Balance Index (S-SEBI), the two-source model (TSM), and the two-source
time-integrated model (TSTIM) [5,13,14].

Although many advances have been achieved in recent decades to accurately retrieve
ET from satellite data, the validation of the final ET remains a troublesome issue, mainly due
to both scaling effects (i.e., comparisons between remote sensing ET and ground-based ET
measurements) and advection effects [15]. Discrepancies between modeled and observed
components of ET indicate that the models may not be estimating the right values of total
ET for the right physical reasons [16]. In addition, the conversion from instantaneous
values (in watts) to daily or hourly values (in millimeters) is challenging, as it adds possible
estimation errors. The S-SEBI method was originally proposed by Roerink et al. [6] to
solve the SEB and retrieve ET from remote sensing. Afterward, Gómez et al. [17] and
Sobrino et al. [4] extended the concept to map daily ET so that the sensible and latent heat
flux (H and LE) are not calculated separately but through the evaporative fraction [17,18].
Unlike other methods that try to fix the temperature for wet and dry conditions for the
whole image and/or for each land use class, the S-SEBI can estimate the SEB by considering
the wet and dry conditions of the land surface. Furthermore, no additional meteorological
inputs are required to run the model. Therefore, the S-SEBI is considered relatively simple
to apply, which makes it appropriate for regions that lack in situ data and may guide the
operational generation of continuous products for monitoring ET over agricultural areas.

The increasing pressure on water use is globally well known; at the same time, ir-
rigation intensification is required to be increased for food production for a growing
population [19]. Improving efficiency in techniques for monitoring water use, as well as
regarding the validation of remote sensing-based models, is an immediate and current
issue to be solved. It is fundamental to keep in mind that any empirical models should
not be used indiscriminately without any modification or improvement to estimate ET
from satellite data [15]. The S-SEBI has been already tested in different sites around the
world by several researchers [17,18,20–25] and is reported as a simple and moderately
accurate method to partition the SEB terms [4,6]. However, in most cases, the method
has been evaluated with in situ flux data, such as eddy covariance (EC) measurements,
which have energy balance closure errors that may reach 30% [26,27]. Therefore, differently
from other in situ measurements that have known discrepancies, lysimeters are considered
the ultimate standard for the measurement of ET, considering they are properly installed
and managed [28]. In this paper, we explored the application of the S-SEBI model with
Landsat 8 imagery against three different in situ lysimeters for the period of 2014–2018
at the Barrax site, Spain. We assessed the performance of the model under different land
covers (Grass, Wheat, Barley, and Vineyard) and established a trusted validation for proper
comprehension of the method potentialities in generating novel ET products for future
satellite missions.
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2. Methodology

In this section, the application and validation of the S-SEBI model using Landsat
8 images to an agricultural region in Spain (Barrax) are presented. Figure 1 shows the
flowchart of the methodology applied.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 18 
 

 

Wheat, Barley, and Vineyard) and established a trusted validation for proper comprehen-
sion of the method potentialities in generating novel ET products for future satellite mis-
sions. 

2. Methodology 
In this section, the application and validation of the S-SEBI model using Landsat 8 

images to an agricultural region in Spain (Barrax) are presented. Figure 1 shows the 
flowchart of the methodology applied. 

 
Figure 1. Flowchart of the main steps of the proposed methodology for ET retrieval and validation from Landsat 8 data. 

The variables of the flowchart are presented in the next sections. In Figure 1, NDVI 
is the Normalized Difference Vegetation Index; T is the brightness temperature; SW is the 
split-window method; Ts is the land surface temperature; ε is the emissivity; Rn is the 
surface net radiation; G is the soil heat flux; TH and TLE are the temperatures corresponding 
to dry and wet conditions; LET is the latent heat flux; Λ is the evaporative fraction; Cdi is 
the ratio between daily (Rd) and instantaneous (Rni) net radiation flux; and Chi is the ratio 
between hourly (Rhd) and instantaneous (Rni) net radiation flux. 

A disaggregation algorithm for Ts data was included because of a high spatial varia-
bility of the Barrax agricultural area and because we consider pixels of 100 m not repre-
sentative of some small plots, such as Vineyard or Barley and Wheat, areas of which are 
less than 100 × 100 m. Disaggregation is recommended in order to retrieve a finer Ts pixel 
and more plot representation than a coarse Ts pixel, which can contain a mixture of dif-
ferent plots. 

Figure 1. Flowchart of the main steps of the proposed methodology for ET retrieval and validation
from Landsat 8 data.

The variables of the flowchart are presented in the next sections. In Figure 1, NDVI is
the Normalized Difference Vegetation Index; T is the brightness temperature; SW is the
split-window method; Ts is the land surface temperature; ε is the emissivity; Rn is the
surface net radiation; G is the soil heat flux; TH and TLE are the temperatures corresponding
to dry and wet conditions; LET is the latent heat flux; Λ is the evaporative fraction; Cdi is
the ratio between daily (Rd) and instantaneous (Rni) net radiation flux; and Chi is the ratio
between hourly (Rhd) and instantaneous (Rni) net radiation flux.

A disaggregation algorithm for Ts data was included because of a high spatial variabil-
ity of the Barrax agricultural area and because we consider pixels of 100 m not representa-
tive of some small plots, such as Vineyard or Barley and Wheat, areas of which are less than
100 × 100 m. Disaggregation is recommended in order to retrieve a finer Ts pixel and more
plot representation than a coarse Ts pixel, which can contain a mixture of different plots.

As the spatial resolution of thermal infrared pixels (100 m) is lower than visible/near-
infrared (VNIR) data (30 m), a disaggregation method was applied to Ts in order to meet the
spatial resolutions of albedo and NDVI variables. To do so, a linear relationship between Ts
and NDVI in a sliding 5 × 5 pixel window was performed to retrieve the Ts pixel at 30 m,
following the methodology proposed by Jeganathan et al. [29].
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2.1. Study Area Description

This study was performed at the Barrax site located in the west of Albacete province,
Spain. The site is a Mediterranean climate test area with the heaviest rainfalls in spring
and autumn and the lowest in summer (Figure 2). The rainfall statistics show that the
average annual rainfall is little more than 400 mm in most of the area, making La Mancha
one of the driest regions in Europe [4,6,17,18,30–33]. The Barrax area has been selected in
many field campaigns for calibration/validation activities because of its flat terrain and the
presence of large, uniform land-use units (approximately 100 ha), suitable for validating
moderate-resolution satellite image products.
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2.2. In Situ Data

Barrax has a fixed station over a grass field with continuous land surface temperature
(Ts) measurements taken by a radiometer that covers a footprint of 3 m2 [34]. Besides Ts, this
station provides other variables, such as wind direction and speed, soil flux, moisture and
temperature, air temperature, and humidity, as well as net radiation. The net radiometer
(model NR01) carries out separate measurements of solar (direct and reflected) and far
infra-red (direct and reflected) radiations. A pyranometer measures the solar radiation
flux from a field of view of 180◦ and has a spectral response from 0.3 µm to 2.8 µm. A
pyrgeometer measures the far infra-red radiation flux from a field of view of 180◦ and has
a spectral response from 4.5 µm to 50 µm.

The study area also has three continuous weighing lysimeters (see Figure 2) with
electronic data readings: one lysimeter for Grass crops, one for rotating herbaceous crops
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(Wheat and Barley), and a permanent one for Vineyard. Each lysimeter is surrounded by a
square protection plot of one hectare; the dimensions of the Grass and herbaceous crop
lysimeter samples are 2.3 m 2.7 m to a side and 1.7 m depth with approximately 14.5 t total
mass, and the Vineyard lysimeter sample is 3 m × 3 m to a side and 1.7m depth with 18.5 t
total mass. The lysimeters have the necessary equipment to make a complete and accurate
hydric balance as explained and tested by many authors [32,35]. The data are available
in hourly measurements, which were used to validate the estimated ET calculated by the
S-SEBI model between March 2014 and April 2018.

2.3. Satellite Data

We selected 62 Landsat 8 OLI/TIRS images to assess the efficiency of the S-SEBI model
in estimating ET over different crops. Table 1 shows the days of years (DOYs) of the scenes
used for each land cover and year evaluated. Grass has the largest amount of available in
situ data for validation, thus being the land cover with more images selected.

Table 1. Days of the year of the images used in this work for each land use.

Land Use
Day of the Year (DOY)

2014 2015 2016 2017 2018

Grass

66; 75; 82; 98; 107; 123;
130; 146; 155; 162; 178;
194; 203; 219; 235; 251;

299; 306; 322

5; 14; 37; 69; 110; 126;
133; 158; 190; 213; 238;
270; 318; 334; 341; 357

8; 17; 24; 33; 65; 72;
273; 312; 337

83; 99; 122; 147;
163; 179; 218; 250;

282; 298; 314;
323; 330

22; 29; 54; 86; 109

Wheat 66; 75; 82; 98; 107; 123;
130; 146; 155; 162; 178

Barley 99; 122; 163; 170;
179

Vineyard
123; 130; 146; 155; 162;
178; 194; 203; 219; 226;

235; 251;

126; 133; 158; 190; 197;
222; 238; 245; 254; 270; 248; 273; 122; 163; 170; 179;

218; 250;

2.4. Operational Equations

In order to apply the S-SEBI from remote sensing-based models, some variables are
required. Table 2 exhibits the mathematical expressions used to estimate the Normalized
Difference Vegetation Index (NDVI), albedo (α), land surface temperature (Ts), and land
surface emissivity (ε). The equations were employed for all the Landsat scenes (Table 1) to
obtain instantaneous LE in watts, which was subsequently converted to ET.

Table 2. Equations applied to Landsat 8 data.

Variable Equation Description

NDVI (ρNIR − ρRED)/(ρNIR + ρRED)
ρ NIR is the near-infrared reflectance of Landsat 8 (0.86 µm), and ρ

RED refers to the red band reflectance of Landsat 8 OLI (0.65 µm) [32];

α
0.130ρ1 + 0.115ρ2 + 0.143ρ3 + 0.180ρ4 +

0.281ρ5 + 0.108ρ6 + 0.042ρ7. ρ is the reflectance at each Landsat 8 OLI channel; [36]

Ts Ti – 0.268(Ti − Tj) + 1.378(Ti − Tj)2 + 16.4 +
(0.183 + 54.3w) (1 − ε) + (-2.238 − 129.2w) ∆ε

Ti and Tj are the at-sensor brightness temperatures at the bands i (10)
and j (11) in Kelvins; εi and εj are the emissivities for bands 10 and 11,

respectively; ε is the mean emissivity, ε = 0.5 (εi + εj); ∆ε is the
emissivity difference, ∆ε = (εi − εj); w is the total atmospheric water

vapor content (in g/cm−2) [37,38]

ε
a + bρRED; (FVC = 0)εs(1 − FVC) +

εvFVC ; (0 < FVC < 1)ε = 0.99; FVC = 1)

FVC is the fractional vegetation cover and is given by
= NDVI − NDVIs/NDVIv − NDVIs ; εs and εv are the soil and

vegetation emissivity values, respectively. [39]
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2.5. Evapotranspiration Estimation by the S-SEBI Model

The estimation of ET from remote sensing data is based on assessing the SEB through
several surface properties, such as albedo, vegetation cover, and Ts [5]. When considering
instantaneous conditions, the SEB is written as

LET = Rn − G − H (1)

where Rn, H, and G are the surface net radiation, the sensible heat flux, and the soil heat
flux, respectively, all are expressed in energy units (W/m2), and LET is the latent heat flux
and can be obtained according to

LET = Λ (Rn - G) (2)

where (Λ) is the evaporative fraction [6], adapted and tested [4,31], and it is described by

Λ =
TH − Ts

TH − TLE
(3)

where Ts is the land surface temperature, and TH and TLE are the temperatures correspond-
ing to dry and wet conditions, all in Kelvin. Dry and wet temperatures are retrieved
in function of the albedo value by plotting a scatterplot between surface temperature
and albedo [6].

Once Λ is obtained, LET (see Equation (2)) requires the knowledge of Rn and G, which
can be obtained according to

Rn = (1 − α) Rg + ε Ra − ε σ Ts4, (4)

Rg and Ra being the incident solar radiation and the longwave radiation, respectively,
are both measured in W m−2; α is the surface albedo; ε is the surface emissivity; Ts is the land
surface temperature; and σ is the Stefan–Boltzmann constant (= 5.67 × 10−8 W m−2 K−4).

To obtain G, we considered the approach given by the authors [15,30], i.e.,

G = 0.3 ×
(

1 − 0.98 × NDVI4
)

× Rn (5)

where NDVI is the Normalized Difference Vegetation Index [32].

2.6. Daily and Hourly ET

The comparison between ET obtained by the S-SEBI model on different crops and
in situ lysimeter data was carried out considering both hourly (in mm/h) and daily
(in mm/day) values. While lysimeter data are given as hourly and daily values, S-SEBI
values are only instantaneous at the moment of the satellite overpass and are given in
W/m2. Therefore, in order to match the time scales, it was necessary to convert the
instantaneous values acquired through the images to hourly and daily values. The daily
ET (ETdaily) is defined as the temporal integration of ET instantaneous values during a day
and can be obtained using the Cdi [17,31], which consists of the ratio between daily (Rnd)
and instantaneous (Rni) net radiation flux, respectively, according to

ETdaily = 24 × 3600
Cdi × Λ × Rni

λ
(6)

where λ is the latent heat of vaporization (2.45 MJ/kg); the soil heat flux (G) is considered
equal to zero and not included in the equation [40] assuming that much of the energy
that enters and reaches the soil during the day returns to the atmosphere at night through
terrestrial longwave radiation; Λ is the evaporative fraction and can be considered constant
during the day.
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Analogously, hourly ET (EThourly ) in mm/h is obtained as

EThourly = 3600
(Chi × Rni − Gi)× Λ

λ
(7)

where Chi is the ratio between hourly (Rhd) and instantaneous (Rni) net radiation flux, and
Gi is the instantaneous soil heat flux (considering it constant and assuming that the impact
on results is minimal and that Λ during the hour is also constant). For both conversions Rn,
Rnh, and Rnd have been retrieved from a tower flux located in the study area (Figure 2) in
order to reduce the uncertainties of hourly and daily estimations.

2.7. Statistical Metrics

The development of the algorithms and image processing was carried out in inter-
active data language (IDL). The operational application of the S-SEBI model requires the
identification of the percentile boundary limits to be automatized. These limits are used
to obtain the evaporative fraction, which is the basis of the method. We tested different
percentile values (0.01; 0.1; 0.2) and selected 0.1% for the entire dataset because it demon-
strated the best estimates all over the land cover types. Finally, to assess the performance of
the S-SEBI, we used the root mean square error (RMSE), which allows one to quantify the
difference between simulated and observed data. In addition, the mean standard deviation
(MSD) and bias were also used to complement the statistical analyses.

3. Results and Discussion
3.1. Comparison of S-SEBI Estimated and Measured ET

The comparison of the S-SEBI hourly and daily ET against lysimeter data for each
land cover type is shown in Figure 3a,b, respectively. Generally, the daily estimates had
moderately superior performance relative to the hourly estimates in all the land covers
assessed. Grass produced the best linear relationship with the in situ ET data. This may
indicate that the relation is better when the land cover is more homogeneous. The biases
of the hourly and daily ET estimated by the S-SEBI in comparison to the lysimeter data
were also plotted and are exhibited in Figure 3c, d. When the bias is positive, the model
overestimates the ET, which was observed mostly for dates with low values of ET. The
hourly bias of the S-SEBI varied between -0.4 mm/h and 0.4 mm/h (Figure 3c), and the ET
overestimation of the in situ values occurred essentially between 0.05 mm/h and 0.6 mm/h.
On the other hand, when the in situ ET is higher (between 0.6 mm/h and 0.9 mm/h), the
model tends to underestimate the ET. A similar random pattern was seen in the daily bias,
which varied between −3.2 mm/day and 5.3 mm/day, producing values closer to zero
(Figure 3d).

A difference of 12% (0.45 mm/day) was found between the S-SEBI model and
the lysimeters, with an average daily ET for all the land covers of 3.55 mm/day and
4.01 mm/day, respectively. In contrast, the average hourly ET is 0.44 mm/h for the S-SEBI
and 0.36 mm/h for the lysimeters, with a difference of 15% (−0.07mm/h). Different accu-
racy situations have been reported in the literature for remote sensing-based ET models in
comparison to lysimeter data. Using the METRIC model, Chavez et al. [41] found similar
but slightly larger errors for hourly ET in comparison to the daily values. An evaluation
carried out in Tanjung Karang, China, used the SEBAL model and meteorological and
lysimeter data over cultivated rice and found that the determination of ET by satellite data
overestimates the values obtained from lysimeters by 10% [42]. In a semiarid climate in Las
Tiesas, Spain, different models overestimated the lysimeter measurements between 3% and
70% depending on the method applied [43]. Mkhwanazi et al. [44] developed a modified
SEBAL model that requires daily averages of limited weather data and validated it against
lysimeter data over an Alfalfa field. The authors reported average underestimates with
values up to 24% for the modified model and up to 38% for the original SEBAL algorithm.
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Table 3 summarizes the statistical metrics of the hourly and daily ET between the S-
SEBI and lysimeter data. Good agreements were obtained from the satellite-based estimates,
with RMSE varying from 0.1 mm/h to 0.19 mm/h for hourly and from 0.63 to 1.71 for daily
ET, respectively. These results are in accordance with other validation exercises reported
for the S-SEBI model worldwide [4,6,20,22,23,31,45].

Table 3. Statistical analyses of the S-SEBI model performance with daily (mm/day) and hourly
(mm/h) lysimetric data.

Grass Wheat (2014) Barley (2016) Vineyard

Hour Daily Hour Daily Hour Daily Hour Daily

Bias a −0.04 0.52 −0.10 −0.50 0.08 1.24 −0.00 −0.43
MSD b ±0.09 ±0.98 ±0.16 ±1.45 ±0.09 ±1.18 ±0.09 ±0.46
RMSE c 0.10 1.11 0.19 1.53 0.16 1.71 0.09 0.63

a Bias = Σ (Oi − Pi)/n; where Oi is the observed ET, and Pi is the ET modeled. b Mean standard deviation. c Root
mean square error.

The performance of the hourly ET produced superior estimates for Grass and Vineyard,
with an RMSE and MSD of 0.10 and ±0.09 for Grass and 0.09 and ±0.09 for Vineyard,
respectively. Wheat and Barley had the worst hourly ET estimates, with an RMSE and MSD
of 0.19 and ±0.16 for Wheat and 0.16 and ±0.09 for Barley, respectively. Knowledge of
the hourly ET has several advantages, and its accuracy evaluation plays an important role
in quantifying estimation errors with irrigation water management practices. However,
the hourly satellite calibration is a typical source of uncertainty in satellite SEB models.
Hashem et al. [46] compared the hourly ET with lysimeter data in Texas. By using the
METRIC model, the authors found average RMSEs of 0.14 mm/h and 0.16 mm/h for
dry and irrigated agriculture lands, respectively. Despite the fact that the METRIC model
was developed with a focus on agriculture areas and is proven to perform very well for
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these land covers, its computation requires one to determine roughness length, which
is a complicated variable to retrieve with enough accuracy from classic remote sensing
methods [17]. Moreover, over crops in Texas, Gowda et al. [27] compared the performance
of the hourly ET from the SEBS model with data from four lysimeters using a dataset
of 16 Landsat 5 images. The authors reported high accuracy with an average RMSE
of 0.11 mm/h. Nevertheless, they pointed out that a locally derived surface albedo-
based G model improved the G component estimates. The limitations of the empirical
formulation used to derive G from remote sensing have already been emphasized in other
works [23,24]. Furthermore, roughness length is also required in SEBS model computation,
in addition to other meteorological inputs, such as air temperature, humidity, and wind
speed measured at a reference height, which sustains the superiority hypothesis of the
S-SEBI in terms of simplicity. The hourly biases of the land covers assessed were mostly
negative except for Barley, which produced 0.08. This indicates that the hourly ET was
predominantly underestimated.

The performance of the daily ET estimates, such as the hourly estimates, produced
the best metrics for Grass and Vineyard, with an RMSE and MSD of 1.11 and ±0.98 for
Grass and ±0.46 and 0.63 for Vineyard, respectively. The daily bias exhibited negative
results for Wheat and Vineyard, with values of -0.50 and -0.43, respectively. Unlike the
hourly metrics, the daily ET results of Wheat are notably better in comparison to Barley.
However, it is worth mentioning that the amount of available data for Barley is reduced
relative to the other land cover types, and, consequently, it may not have properly included
the annual and pluriannual variability of ET. In order to evaluate the influence of weather
conditions (particularly cloud cover impacts) on the S-SEBI model’s accuracy, we calculated
the statistical metrics and excluded the days with clouds, which are discussed in the
next section.

3.2. Uncertainties in the S-SEBI Estimates

The concept of evaporative fraction is the basis of the S-SEBI model. However, its
diurnal constancy may not be satisfied under cloudy circumstances [47]. Therefore, we
selected 55 entirely cloud-free scenes to evaluate the performance of the algorithm under
ideal conditions. Table 4 shows the statistical metrics obtained in the daily analysis. The
results found demonstrate a considerable improvement in the ET estimates when the
atmospheric conditions do not vary much during the day. In general, the average RMSE
decreases from 1.25 mm/day to 0.86 mm/day when only ideal scenes are used. The low
errors suggest that the model works very well for the estimation of ET in all the land covers.
The RMSE was found to be 0.85 mm/day for Grass, 0.81 mm/day for Wheat, 1.32 mm/day
for Barley, and 0.46 mm/day for Vineyard. The MSD indicates that the differences between
model results and lysimeter data are less than 1 mm/day, which is in agreement with
Sobrino et al. [31].

Table 4. Statistical analyses of the S-SEBI model performance with daily (mm/day) lysimetric data,
excluding partial cloudy days (n = 55).

Grass Wheat (2014) Barley (2016) Vineyard

Bias 0.28 0.09 0.73 −0.27
MSD ±0.80 ±0.8 ±1.10 ±0.37

RMSE 0.85 0.81 1.32 0.46

Typically, in the S-SEBI model, errors in the determination of TH and TLET lines
(and consequently in the evaporative fraction) impact the obtention of the instantaneous
LET, which directly affects the ET estimates. Afterward, the daily ET is extrapolated
from instantaneous to daily ET by using the Cdi (Equation (6)). According to Singh
and Senay [48], different methods of upscaling have their own bias. Yang et al. [49]
demonstrated that in most of their dataset, variation of the evaporative fraction during
daylight tended to be stable within the time window of 10:00 and 15:00 UTC. However, after
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this window, it is not constant and can affect the Cdi. According to some authors [14,50],
there are many difficulties to convert instantaneous ET into daily ET, mostly due to the non-
stable conditions of the evaporative fraction during a daylight period, which vary with the
available energy, surface resistance, and other environmental variables. However, because
in the S-SEBI model the daily ET is calculated using the available net flux radiation during
the day, the daily ET estimates produced are reliable [21,31], which can be considered a
strength of the methodology applied. Figure 4 illustrates the behavior of the solar radiation
during different DOYs. The solar radiation data from the flux tower were analyzed on
the DOY of greatest errors (11 June 2014—DOY 162 and 27 June 2014—DOY 178) and
compared with a DOY with good linear relationship (17 April 2014—DOY 107).
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The “noises” observed in the solar radiation curve clearly reflect the differences
between the observed and estimated daily ET. In a clear-sky day when the solar radiation
does not show noises caused by clouds or large amounts of water vapor, the S-SEBI-based
estimates exhibit an accuracy much lower than 1 mm/day. On 17 April 2014 (DOY 107),
the difference between the in situ ET and calculated ET is 0.23 mm/day. In contrast, when
the daily solar radiation curve presents some noises and the weather conditions vary
widely during the day, the difference between the in situ ET and the model estimates is
2.92 mm/day for 6 November, 2014 (DOY 162), and 1.89 mm/day for 27 November 2014
(DOY 178). In addition to the solar radiation, seasonal drivers from the land surface can
strongly affect the ET, making the estimates differ substantially. Yang et al. [49] examined
remote sensing-based ET estimates from high-resolution data over Wheat in different
months and reported an overall RMSE of 0.67 mm/day. The authors pointed out that in
months with low coverage and row pattern at the turning green stage, the satellite-based ET
accuracy is impacted. In contrast, when the crop is at the harvest stage, better estimates are
produced. This occurs particularly because at the time that the normal crop physiological
and ecological processes are gradually ending, the soil evaporation is over again, the main
contributor to ET.

3.3. Variation of ET during the Daytime

At the Barrax site, the lysimeters are located in the center of 100 × 100 m plots, and
the data are available hourly. As some in situ ET data were missing for Vineyard, they
were not included. The average daily ET measured for the entire period was 5.4 mm/day
for Wheat, 4.6 mm/day for Barley, and 3.7 mm/day for Grass. Given that differences in
the thermal, wind, and weather conditions and the radiation regime between a lysimeter
device and its surroundings can affect the measurements [51], we investigated the hourly
average for each land cover type. Figure 5 displays the hourly averages of ET and the
maximum values obtained from the lysimeters.
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Overall, the ET exhibits typical fluctuations in shape during the day, varying between
7:00 and 20:00 UTC. The hourly ET for Grass ranged from 0.03 mm/h to 0.43 mm/h, with an
hourly average of 0.24 mm/h and its maximum value at 13:00 UTC. For Wheat, the hourly
ET ranged from 0.04 mm/h to 0.66 mm/h, with an hourly average of 0.36 mm/h and its
maximum value at 14:00 UTC. Finally, for Barley, the hourly ET ranged from 0.05 mm/h to
0.52 mm/h, with an hourly average of 0.30 mm/h and its maximum value at 14:00 UTC.
Yang et al. [52] reported noticeable daytime ET variations between 7:00 and 18:00, with a
peak typically occurring at approximately 14:00 UTC.

Although between 13:00 and 15:00 UTC the ET measurements for each land cover
are relatively constant, the maximum differences between curves are more significant in
this period. However, at the time of the Landsat 8 overpass (10:42 UTC), the in situ ET
values increased notably quicker. This behavior was observed for all the land cover types.
In the S-SEBI model application, the conversion from instantaneous to daily ET through
the Cdi assumes that at the time of the satellite overpass, the highest value of ET is being
measured; nevertheless, the maximum ET values are seen after the Landsat 8 overpass,
around 13:00–14:00 UTC. Consequently, the discrepancy between the hourly ET in situ
and the instantaneous ET from Landsat 8 can be a potential source of uncertainty for
ET validation.

3.4. Seasonally Distributed ET

Figure 6 shows the distribution of the hourly and daily ET from the S-SEBI compared
to lysimeter ET in situ values for the whole period. Similar patterns were found in daily
ET for Grass, Wheat, and Barley fields between seasons, which demonstrates a clear
seasonal pattern, with higher values in summer and lower values in winter due to the cold
weather conditions [53]. Figure 6a,c illustrate the hourly and daily ET in the Grass field,
respectively. The hourly ET ranged between 0.06 mm/h during the winter season and
0.8 mm/h in summer and spring seasons. In most cases, the modeled ET underestimates
the values measured by the lysimeter, as while the average lysimeter ET is 0.39 mm/h, the
predicted is 0.34 mm/h. The largest differences between predicted and observed daily ET
were noted also in the summer season (DOY 170/2017), in which the lysimeter ET was
8.94 mm/day and the predicted ET was 5.3 mm/day. These results are in agreement with
López-Urrea et al. [43], where FAO Penman–Monteith was applied and compared with
lysimeter data. The authors pointed out that the model underestimated ET values mainly
during periods of greater evaporative demand.
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In Figure 6b,d, we depict the hourly and daily ET results in the Wheat and Barley
fields. When the satellite-based hourly ET exceeds the lysimeters’ observations, the daily
ET tends to exhibit the same behavior. As a crop field is irrigated according to its water
need to prevent stress, the only important factor that affects the ET results is the growing
and harvesting season. As it was pointed at the end of Section 3.2, when low crop coverage
is present (DOYs 82–123), the model shows more uncertainties in comparison to the late
stages of the crop. The S-SEBI model also outperforms when very high and low ET values
are achieved. This overtaking was already reported in other studies for the S-SEBI model.
Käfer et al. [23] compared ET estimates derived from the S-SEBI with a neural network-
based model in Southern Brazil, which suggested that the S-SEBI values tend to decrease
accuracy in estimating extreme ET values, commonly in the transition seasons between
winter and summer.

The overestimates from the S-SEBI model, which were more pronounced in the
summer–spring season, were already reported [12]. The authors claimed that, partic-
ularly during severe drought conditions, the parameterization will overestimate ET. The
biggest difference between hourly ET occurred in the spring season (DOY 123/2014), in
which the standard deviation was 0.39 mm/h and the highest rate of water loss occurred.
These findings are in accordance with Liu et al. [53], who observed the highest ET in
May after the over-wintering period. The differences between estimated ET and lysimeter
data can be explained by the evaporative fraction calculation in the S-SEBI model. Sum-
marily, on DOY 123, for higher albedo values, the Ts does not increase significantly as
expected; consequently, it generates a greater error in the Ts determination to dry and wet
conditions. On DOY 163/2017 over the Barley field, a similar behavior was seen. This
evidences the limitation of the S-SEBI model when operationally applied. The relationship
between higher albedos and Ts is well documented in the literature. Sobrino et al. [31]
and Gómez et al. [17] demonstrated that identifying the boundary limits to obtain the
evaporative fraction is the critical point of this method and reported that in some cases
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it reached 1.4 mm/day. In addition, differences between in situ and estimated ET can be
related to the extension of the area evaluated, especially given the contrast influence in
the landscape that may result in pixel mixing in the albedo and Ts determination. The fact
that the cultivated area is smaller than the 30 meter pixel size presents scale issue to the
Ts estimated and, therefore, the validation results. In this study, although we used a fixed
percentile value for the whole dataset, the ET estimates produced a very high accuracy,
and the cloudy effect clearly compromises the albedo–Ts relationship more significantly
than the other factors mentioned.

3.5. Spatially Distributed ET

Remote sensing techniques have provided an efficient way to retrieve multi-year,
spatially consistent, and temporally continuous ET products on the regional to global
scale [5,23,25,31,54]. One of their main advantages is to provide estimates from the whole
territory, capturing small spatial variations between pixels that allows one to assess the
efficiency of the water use and irrigation and groundwater recharge projects or return
flows [41]. Figure 7 exhibits the spatial pattern of daily and hourly ET obtained from the
S-SEBI method by using a Landsat 8 image over Barrax in the spring season, 17 April 2014
(DOY 107). Overall, the S-SEBI model can capture the spatial variability of evaporative
demand of the atmosphere over the whole study area. Specifically in the daily ET map
(Figure 7a), the bare areas with lower ET (blue color) and crop areas with higher ET (red
color) can be well distinguished. There were no differences between in situ measurements
(lysimeter data) and from the S-SEBI model in Grass land cover. In contrast, over the
Wheat field, a difference of 0.24 mm/day was found. In the hourly ET map (Figure 7b), the
bare areas with lower ET are less prominent and discriminated from the other fields and
irrigated areas. The hourly ET average was 0.6 mm/h, which is close to the hourly average
ET of April (0.64 mm/h). The difference between in situ data and the S-SEBI model was
0.16 mm/h in Grass and 0.23 mm/h in the Wheat area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 7. Spatial distribution of (a) daily (mm/day) and (b) hourly (mm/h) ET obtained by the S-SEBI model over Barrax 
site on 17 April 2014. 

In addition to the smaller error obtained in the daily analysis discussed in Section 3.2, 
spatially, the daily analysis has more contrast in areas with higher ET and potential water 
deficit. These findings are important with regard to the water planning of agricultural 
areas, considering that effective water resource management requires an accurate estima-
tion of the water use and availability to face challenges of water scarcity [55]. 

4. Conclusions 
The ET is a key component of water balance, and despite the significant advances in 

the last decades, remote sensing-based models are not free from uncertainties, especially 
when applied over different conditions for which they have not been originally developed 
or calibrated for. Therefore, assessing efficiency in techniques for monitoring water use is 
a constant research topic. In this paper, we investigated the ET obtained operationally by 
the S-SEBI model from Landsat 8 data between 2014 and 2018 at the Barrax Site, Spain. 
Four different land cover types were evaluated (Grass, Wheat, Barley, and Vineyard) and 
validated against lysimeter observations. 

In general, the daily estimates produced slightly superior performance relative to the 
hourly estimates in all the land covers, with an average difference of 12% and 15% for 
daily and hourly ET estimates, respectively. Grass and Vineyard showed the best perfor-
mance, with an RMSE of 0.10 mm/h and 0.09 mm/h and 1.11 mm/day and 0.63 mm/day, 
respectively. Nonetheless, when only ideal scenes (without any cloud cover) are consid-
ered, the accuracy expressly improves, indicating that the model works very well for all 
the land covers in suitable conditions. Thus, the S-SEBI model is able to retrieve ET from 
Landsat 8 data with an average RMSE for daily ET of 0.86 mm/day. 

In the operational application of the S-SEBI, identifying operationally the boundary 
limits of percentiles to obtain the evaporative fraction is challenging. Our findings have 

Figure 7. Spatial distribution of (a) daily (mm/day) and (b) hourly (mm/h) ET obtained by the S-SEBI model over Barrax
site on 17 April 2014.



Remote Sens. 2021, 13, 3686 14 of 17

In addition to the smaller error obtained in the daily analysis discussed in Section 3.2,
spatially, the daily analysis has more contrast in areas with higher ET and potential water
deficit. These findings are important with regard to the water planning of agricultural areas,
considering that effective water resource management requires an accurate estimation of
the water use and availability to face challenges of water scarcity [55].

4. Conclusions

The ET is a key component of water balance, and despite the significant advances in
the last decades, remote sensing-based models are not free from uncertainties, especially
when applied over different conditions for which they have not been originally developed
or calibrated for. Therefore, assessing efficiency in techniques for monitoring water use
is a constant research topic. In this paper, we investigated the ET obtained operationally
by the S-SEBI model from Landsat 8 data between 2014 and 2018 at the Barrax Site, Spain.
Four different land cover types were evaluated (Grass, Wheat, Barley, and Vineyard) and
validated against lysimeter observations.

In general, the daily estimates produced slightly superior performance relative to the
hourly estimates in all the land covers, with an average difference of 12% and 15% for daily
and hourly ET estimates, respectively. Grass and Vineyard showed the best performance,
with an RMSE of 0.10 mm/h and 0.09 mm/h and 1.11 mm/day and 0.63 mm/day, respec-
tively. Nonetheless, when only ideal scenes (without any cloud cover) are considered, the
accuracy expressly improves, indicating that the model works very well for all the land
covers in suitable conditions. Thus, the S-SEBI model is able to retrieve ET from Landsat 8
data with an average RMSE for daily ET of 0.86 mm/day.

In the operational application of the S-SEBI, identifying operationally the boundary
limits of percentiles to obtain the evaporative fraction is challenging. Our findings have
shown that assuming a fixed percentile value (0.1%) for different crops can produce enough
ET accuracy. In addition, although the conversion from instantaneous to daily ET is
frequently cited as a limitation of the remote sensing-based ET models, the mechanism
used to extrapolate instantaneous ET to daily values resulted in improved ET estimates;
therefore, we strongly encourage the application of the Cdi concept. In fact, the high
accuracy of the in situ flux data used contributed to the good performance of the daily
estimates. However, it is important to highlight that this is not a restriction, because hourly
radiation data are available for the whole globe and can be easily obtained from several
reanalysis products and used to generate trustable and continuous daily ET series [56].

The hourly ET obtained from the lysimeters provided a detailed analysis of the ET
pattern during the day. Between 13:00 and 15:00 UTC, the ET measurements for all the
land covers are relatively constant, and the maximum values occurred at 13:00–14:00 UTC.
At the time of the Landsat 8 overpass (10:42 UTC), the in situ ET values showed a rapid
increase. Because the Cdi assumes that at the time of the satellite overpass the highest value
of ET is being measured, which it clearly is not, the discrepancy between the hourly ET in
situ and the instantaneous ET from Landsat 8 can be a source of uncertainty. The overpass
of the Landsat missions represents neither the maximum daily ET nor the average daily
ET. Differently, more significant variations are seen 10:00–11:00 UTC, which contribute to
increase errors in the estimated ET. In addition, it is worth mentioning that the Landsat
pixel size also does not appropriately represent the test sites to validate ET; i.e., the spatial
resolution of the TIR sensor of the Landsat satellite is not fully adequate for ET estimates.
However, it is expected that with the new Sentinel projects and the improved resolution,
these issues will be minimized.

The S-SEBI is a model of simple application and low dependence of complex inputs
that can well capture the spatial variability of evaporative demand and produce robust daily
ET maps over different crops without much effort. Hence, it can be used to operationally
retrieve ET from agriculture sites with good accuracy and sufficient variation between
pixels, thus being a suitable option to be adopted into operational ET remote sensing
programs for irrigation scheduling or other purposes.
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