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Abstract: Building change detection is a critical field for monitoring artificial structures using
high-resolution multitemporal images. However, relief displacement depending on the azimuth
and elevation angles of the sensor causes numerous false alarms and misdetections of building
changes. Therefore, this study proposes an effective object-based building change detection method
that considers azimuth and elevation angles of sensors in high-resolution images. To this end,
segmentation images were generated using a multiresolution technique from high-resolution images
after which object-based building detection was performed. For detecting building candidates, we
calculated feature information that could describe building objects, such as rectangular fit, gray-level
co-occurrence matrix (GLCM) homogeneity, and area. Final building detection was then performed
considering the location relationship between building objects and their shadows using the Sun’s
azimuth angle. Subsequently, building change detection of final building objects was performed
based on three methods considering the relationship of the building object properties between the
images. First, only overlaying objects between images were considered to detect changes. Second, the
size difference between objects according to the sensor’s elevation angle was considered to detect the
building changes. Third, the direction between objects according to the sensor’s azimuth angle was
analyzed to identify the building changes. To confirm the effectiveness of the proposed object-based
building change detection performance, two building density areas were selected as study sites. Site 1
was constructed using a single sensor of KOMPSAT-3 bitemporal images, whereas Site 2 consisted of
multi-sensor images of KOMPSAT-3 and unmanned aerial vehicle (UAV). The results from both sites
revealed that considering additional shadow information showed more accurate building detection
than using feature information only. Furthermore, the results of the three object-based change
detections were compared and analyzed according to the characteristics of the study area and the
sensors. Accuracy of the proposed object-based change detection results was achieved over the
existing building detection methods.

Keywords: relief displacement; azimuth and elevation angles; object-based building change detection;
feature information

1. Introduction

High-resolution satellite images provide high value-added information in a wide
range of fields such as land management, management of marine water resources, disas-
ter monitoring, agricultural applications, and national security [1]. Therefore, satellites
equipped with high-resolution sensors, such as WorldView, GeoEye, QuickBird, and
KOMPSAT, are operating worldwide. High-resolution big data are used in various public
services. By using the high-resolution satellite images, more information can be extracted
effectively in spatial information fields, e.g., image fusion, object extraction, and change
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detection. Specifically, object change detection for national territory monitoring are ex-
panding in the scope of use because it is easier to acquire high-resolution images from
multitemporal sensors [2,3]. Among them, focusing on buildings to extract and further
to detect their changes in urban areas is one of the active researches. Especially, in areas
where high-rise buildings are concentrated, such as in South Korea, they become more
important [4].

Building detection and building change detection in high-resolution images have
been performed in several ways. One of the methods is to use light detection and ranging
(LiDAR) data with high-resolution images [5]. Research was conducted to perform mor-
phological analysis of the terrain using LiDAR data to classify the land and buildings [6].
Studies have automatically extracted buildings using LiDAR data fusion in point and
grid-based features, and have generated multitemporal LiDAR digital surface models
(DSMs) to perform building analysis [3,7]. Studies have also been actively conducted to
detect building changes using synthetic aperture radar (SAR) images [8,9].

However, using LiDAR, DSM, and SAR data for building change analysis has a disad-
vantage regarding the additional acquisitions of them in addition to multispectral images,
which can be a weakness in conducting the study. Alternatively, spectral characteristics
transformed from spectral bands of multispectral images have been used for building de-
tection. The typical building index using spectral properties includes the urban index, the
normalized difference built-up index [10], index-based built-up index [11], and enhanced
built-up and bareness index [12]. However, most building detection indices use wavelength
bands above shortwave infrared (SWIR) (3–8 µm); therefore, they are unavailable in the
latest high-resolution satellites, such as KOMPSAT-3, RapidEye, and QuickBird, which
provide only red, green, blue, and near-infrared (NIR) wavelength bands (0.75–3 µm).
Moreover, pixel-based building detection methods, including index-based approaches,
cause severe falsely detected building pixels, such as salt-and-pepper noise.

Building detections have been conducted using the shape and morphological char-
acteristics without using SWIR band. For example, stereotyped builds were detected
using shape properties [2,13]. Liu et al. [14] proposed a building change detection method
using a line-constrained shape feature. An automated building change detection method
based on a morphological attribute profile was proposed by Li et al. [15]. Moreover, a
morphological building index (MBI) was introduced to allow for extracting buildings
and thus analyzing their changes [1]. For example, a building change detection method
based on MBI, spectral, and shape conditions was proposed [16]. In [17], MBI and slow
feature analysis were combined to carry out the building change detection. A multi-level
approach for building change detection was proposed by utilizing the MBI and mutual
information together [18]. MBI-based multiple building change detection results were
combined with an object unit through the Dempster–Shafer theory [19]. Studies have also
detected building changes through various methods. For example, a novel patch-based
matching approach using densely connected conditional random field (CRF) optimization
was introduced [20]. Cross-sharpened images were used to reduce change detection errors
due to undulating displacement [4,21].

Unlike pixel-based analysis, an object-based approach creates meaningful segments
using a group of pixels showing similar spectral properties. Consequently, object-based
change detection is compatible to analyze the changes in an object unit [22]. The object-
based change detection method can be performed by fusing the spatial features (e.g.,
texture, shape, and topology) of an object during the change detection process [22–24]. Im
et al. [25] proposed an object-based change detection method based on image segmentation
and correlation analysis. An unsupervised change detection approach focusing on indi-
vidual building objects in an urban environment was proposed in [26]. Zhang et al. [27]
carried out change detection with separate segmentation of multitemporal high-resolution
imagery focusing on building changes in an urban area. They individually conducted
segmentation for each multitemporal imagery and extracted change features for generating
changed objects.
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Other methods extracted buildings using additional information that might exist
around buildings, e.g., shadows. A common fact in most building detection approaches
used shadow information is that shadows can be used efficiently to determine the ex-
istence of building structures because they are strong evidence of objects beyond the
surface [28–31]. Using shadow information from high-rise buildings can reduce the false
detection of buildings and even estimates the height of buildings [32–34].

However, it is challenging to detect accurate building boundaries because they are
overlapped with other objects, e.g., trees or adjacent shadows, and have similar spectral
characteristics with objects, e.g., roads or parking lots [35]. Furthermore, high-rise buildings
cause the severe influence of relief displacement according to the sensor’s azimuth and
elevation angles of the multitemporal satellite images; therefore, the same building can
be photographed with different sizes and shapes in the images. This results in reducing
the change detection performance by misdetecting the same building object as different
objects, and vice versa [4,36].

This study proposes an object-based building detection and building change detec-
tion approach between high-resolution images while considering the Sun and sensor’s
elevation and azimuth angles. Previous studies conducted on a single study site confirmed
the possibility that the acquisition angles could improve the building change detection
result [37]. In this study, we aim to demonstrate and to further generalize the proposed
method by applying it to sites constructed with single-sensor and multi-sensor images
acquired from different elevation and azimuth angles of both the Sun and sensors. To
conduct the proposed method, the multiresolution segmentation method was exploited to
extract object features related to the building’s shape and size. Additionally, the location
relationship between buildings and their shadows, according to the azimuth angle of the
Sun, was used for accurate building detection. After detecting the buildings in each image,
object-based building change detection was performed by considering the spatial char-
acteristics of the object associated with the sensor’s azimuth and elevation angles. Here,
we conduct three independent building change detection methods: overlaying simply
between objects, considering the size of objects according to the sensor’s elevation angle,
and considering the direction of the object according to the sensor’s azimuth angle. To
verify the effectiveness of the proposed building change detection method, two study sites
mainly covered with high-rise buildings were selected; one site was constructed using the
same sensor of KOMPSAT-3 satellite images, whereas another site was constructed using
different sensors of KOMPSAT-3 and unmanned aerial vehicle (UAV) images. The results
were compared with ones from pixel-based and MBI-based building change detection
methods [19] to confirm the superiority of the proposed method.

2. Study Site and Evaluation Criteria
2.1. Study Site

In this study, two regions were selected as study sites for applying the proposed
method. In the case of the first study site, Sejong-si in South Korea (Site 1), all bitemporal
images were acquired from the high-resolution single sensor mounted on the KOMPSAT-3
satellite. For the second study site (Site 2), images were acquired over Sangju-si in South
Korea from multi-sensors, the KOMPSAT-3 satellite and the Inspire 2 UAV, equipped with
Zenmuse X4S optical sensor. The KOMPSAT-3 images have red, green, blue, and NIR
bands, and a radiometric resolution of 14 bits. The UAV images have red, green, and blue
bands and have a radiometric resolution of 8 bits. Tables 1 and 2 show the specifications of
the KOMPSAT-3 satellite and UAV used in the study.
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Table 1. Specification of KOMPSAT-3.

Sensor KOMPSAT-3

Spatial resolution Pan: 0.7 m
MS: 2.8 m

Spectral bands

Pan: 450–900 nm
Blue: 450–520 nm

Green: 520–600 nm
Red: 630–690 nm
NIR: 760–900 nm

Swath width ≥15 km (at nadir)
Radiometric resolution 14 bits

Table 2. Specification of UAV and mounted camera.

UAV: Inspire 2 Camera: Zenmuse X4S
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Weight 3400 g Weight 253 g
Speed Max: 94 km/h FOV 84◦

Flight altitude ≤5000 m Focal length 8.8 mm
Flight time ≤27 min Image size 4864 × 3648 pixels

Hovering accuracy Vertical: 0.5 m
Horizontal: 1.5 m IOS 100

Site 1 mainly consists of a residential area with high-rise buildings in Sejong-si, South
Korea. Each image was acquired from a KOMPSAT-3 satellite collected on 16 November
2013 and 26 February 2019. Multispectral images with a spatial resolution of 2.8 m were
used. The image sizes after performing co-registration were 936 × 1076 pixels (Figure 1).
Table 3 shows the azimuth and elevation angles of the Sun and sensor when the images
were taken. As shown in Figure 1, high-rise buildings lay in different directions in an image
depending on the sensor’s azimuth and elevation angles. Moreover, shadow size of the
buildings in the 2013 image were due to its lower elevation angle of the Sun.

Figure 1. KOMPSAT-3 images used for constructing Site 1 (a) acquired on 16 November 2013 and (b) acquired on 26
February 2019.
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Table 3. Specifications of images used for constructing Site 1.

Sensor KOMPSAT-3

Acquisition date 16 November 2013 26 February 2019
Resolution 2.8 m (MS)
Image size 936 × 1076 pixels
Location Sejong-si, South Korea

Sensor
angle

Azimuth 261.369◦ 207.623◦

Elevation 79.760◦ 62.328◦

Incidence 10.240◦ 27.672◦

Sun
angle

Azimuth 204.811◦ 198.504◦

Elevation 33.608◦ 47.451◦

Site 2 is presented in Figure 2. Figure 2a is a pre-changed image acquired from the
KOMPSAT-3 sensor, and Figure 2b is a post-changed image acquired from UAV. For UAV
images, an orthoimage was generated using 153 overlapping images acquired from a
condition of overlap and side lap set at 80% and an altitude at 100 m processed using Pix4D
software. Table 4 shows the azimuth and elevation angles of the Sun and sensor when
the images were taken. The azimuth (155.893◦) and elevation (66.136◦) angles of the Sun
when the UAV image was taken were provided by the Korea Astronomy and Space Science
Institute (KASI).

Figure 2. KOMPSAT-3 and UAV images used for constructing Site 2 (a) KOMPSAT-3 image acquired on 18 May 2016 and
(b) UAV image acquired on 26 April 2019.

Table 4. Specifications of images used for constructing Site 2.

Sensor KOMPSAT-3 UAV

Acquisition date 18 May 2016 28 April 2020

Resolution 0.7 m
(pan-sharpened) 0.7 m

Image size 437 × 460 (pixels)
Location Sangju-si, South Korea

Sensor
angle

Azimuth 81.429◦ -
Elevation 57.892◦ 90◦ (nadir)
Incidence 32.108◦ 0◦ (nadir)

Sun
angle

Azimuth 225.153◦ 155.893◦

Elevation 69.085◦ 66.136◦

2.2. Evaluation Creteria

An accuracy assessment for building extraction results was performed using a confu-
sion matrix, a model performance evaluation indicator, and the Kappa coefficient, identify-
ing the consistency between the binary images. In the confusion matrix, building objects
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and non-building objects in the reference data are defined as condition positive (CP) and
condition negative (CN), respectively. Similarly, building and non-building objects in the
detection results are defined as prediction positive (PP) and prediction negative (PN), re-
spectively. Furthermore, buildings in both the reference data and results are labeled as true
positive (TP). Buildings in the reference data but non-buildings in the results are labeled
as false negative (FN). In the reference data, non-building classes that are not classified
as buildings in the results are labeled as true negative (TN). Non-building objects in the
reference data that are categorized with building objects by the method are labeled as false
positive (FP) (Table 5).

Table 5. Confusion matrix.

Reference Data
Condition Positive (CP) Condition Negative (CN)

Results
Prediction Positive (PP) True Positive (TP) False Positive (FP)

Prediction Negative (PN) False Negative (FN) True Negative (TN)

From the confusion matrix, we identified false alarm, miss rate, and F1-score. The
false alarm calculates the proportion that is misdetected into a building although it is not
a building (Equation (1)), and the miss rate calculates the proportion that a building is
detected as a non-building (Equation (2)). Precision refers to the percentage of buildings in
the classification results that are also buildings in the reference data. Recall refers to the
percentage of buildings in the reference data that are also buildings in the classification
results (Equation (3)). The F1-score is calculated as the harmonic mean of the precision and
the recall. Additionally, the Kappa coefficient, which determines how similar the findings
are to the reference data (Equation (4)), was calculated to assess the accuracy.

False alarm =
FP
CN

(1)

Miss rate =
FN
CP

(2)

Precision = TP
PP

Recall = TP
CP

F1− score = 2×Precision×Recall
Precision+Recall

(3)

P0 = TP+TN
TP+FN+TN+FP

Pe =
PP×CP+CN×PN
TP+FN+TN+FP

Kappa = P0−Pe
1−Pe

(4)

3. Methods

In this study, we used the KOMPSAT-3 bitemporal images acquired in Sejong-si, South
Korea (Site 1), and KOMPSAT-3 and UAV images acquired in Sangju-si, South Korea
(Site 2), for object-based building detection and change detection. The proposed method
consists of four steps: preprocessing, multi-resolution-based segmentation, object-based
building detection, and object-based building change detection. Figure 3 shows a flowchart
of the proposed approach.
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Figure 3. Flowchart of the proposed object-based building change detection approach.

3.1. Preprocessing

For preprocessing the images in Site 1, image registration by manually selected tie-
points was carried out, followed by a histogram matching. In the case of Site 2, the spatial
resolution of the KOMPSAT-3 multispectral images was improved from 2.8 m to 0.7 m
by performing Gram–Schmidt pansharpening with the panchromatic image to reduce
the spatial resolution difference between the KOMPSAT-3 and UAV images. Through
the image registration process, the spatial resolution of the UAV-based orthophoto image,
which was around 3 cm, was downsampled to 0.7 m, the same as the spatial resolution of
the KOMPSAT-3 image.

3.2. Multiresolution Segmentation

The object-based analysis is not only able to use spatial feature information of each
object but also to minimize salt-and-pepper noise that is mainly caused when applying
the pixel-based analysis [36]. For conducting the object-based change detection, this study
produced a segmentation image using the multiresolution segmentation method provided
in eCognition software. This method considers both spatial and spectral characteristics
when creating the segmentation image. The bottom-up approach starts with small pixel-
sized image objects and grows highly interrelated adjacent pixels into segmentation objects.
This process selects random seed pixels best suited for potential segments and repeats them
until all pixels in the image are grouped among highly relevant objects through processes
maximizing homogeneity in the same object and heterogeneity between different objects.
The association in this process can be adjusted using the three parameters, which are scale,
shape, and compactness.

The scale parameter affects the segmentation size of the image and is proportional to
the size of the objects. The shape parameter is a deviation of the color parameter, which is
the sum of the weighted standard deviations for all bands in the image. The smaller this
value is, the greater the influence of the spectral characteristics on creating the segmentation
image. The compactness parameter is the ratio of the boundary to the object’s area. The
optimal segmentation parameters depend on the sensor’s characteristics, the purpose of
the data analysis, and the characteristics of the object of interest.
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3.3. Object-Based Building Detection
3.3.1. Vegetation and Shadow Detection

Before extracting useful object features to detect building objects, additional informa-
tion, including vegetation and shadows, was considered to extract to help detect them. For
example, removing the vegetation area before extracting building objects can lead to the
better result. Moreover, using shadow information has an advantage since buildings and
their shadows have characteristic relationships from a location perspective. Specifically,
Site 1 included numerous vegetation areas so that the areas were firstly extracted. The
vegetation index expresses vegetation on the surface using the characteristic reflector that
each band in the image represents for vegetation. Vigorous vegetation absorbs much red (R)
wavelengths of visual spectral by chlorophyll and other pigments and has high reflectivity
for the NIR wavelength. The vegetation at Site 1 was classified using the most widely used
NDVI calculated as Equation (5).

NDVI =
NIR− R
NIR + R

(5)

Spectral characteristics of shadows, which are critical clues when detecting building
objects, are stable compared to other objects. In this study, the shadow intensity (ϕ) was
calculated by using a ratio of the blue (B) and green (G) bands to detect shadow objects
under the consideration that the strong characteristics of the shadow region in the blue
band over the green band [38] (Equation (6)).

ϕ =
4
π

tan−1
(

B− G
B + G

)
(6)

The threshold was subsequently calculated using the Otsu algorithm for NDVI and
shadow intensity. Objects with a NDVI value greater than the Otsu-based threshold were
classified as vegetation. Among the remaining unclassified objects, objects with shadow
intensity values greater than the Otsu threshold were classified as shadows.

3.3.2. Building Candidate Detection

Most buildings in South Korea are hexagonal, resulting in a square shape when
seen from a head-view like satellites or UAVs. Therefore, we considered morphological
characteristics to detect candidate building objects. A rectangular fit, which describes
how well an object fits into a rectangle with the same size of the object, was calculated
in each segment. The analysis of equal area rectangles, which are drawn according to
object moment, was used as a more robust version of minimum bounding rectangle
comparison [39]. The value close to 1 indicates that the object is complete fitting into a
rectangle. Figure 4 shows that a virtual rectangle with the same size of the object was
drawn; the rectangular fit value was then calculated by dividing the number of pixels
within the rectangle by the number of pixels in the object (Equation (7)).

Rectangular fit =
n(Pv ∩ R)

n(Pv)
(7)

where n(Pv) is the number of pixels within an object v, and R is a rectangle of the same size
and proportion as an object v. n(Pv ∩ R) is the number of intersecting pixels between an
object v and a rectangle R.
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Figure 4. Rectangular fit of an image object v.

The GLCM [40] presents texture information based on statistical calculation and is
generated by considering the relationship between pixels within the object. The GLCM
feature calculates the relationship between the brightness value of the reference pixel
and neighboring pixels or the gray level using basic statistics, such as correlation, mean,
contrast, and homogeneity. In this study, an object of building candidates was classified
using the GLCM homogeneity, which represents the uniformity of pixel values in an object.
An artificial structure (i.e., building) is generally constructed with the same material so that
it shows more homogeneous property compared to other objects. A notable change in pixel
values occurs when switching to adjacent objects; therefore, we used the homogeneity to
detect an object of building candidates (Equation (8)).

Homogeneity =
N−1

∑
i, j=0

Pi, j

1 + (i− j)2 (8)

where (i,j) is the pixel coordinates in the object, Pi, j is the normalized pixel value for the
GLCM homogeneity calculation, and N is the number of rows and columns in the object.
After extracting building candidates using the rectangular fit and the GLCM homogeneity
features, the building objects that are adjacent to each other were merged to generate
the object corresponding to each building. Finally, the area of each building candidate
object was calculated to eliminate the object in the case where it is too large or small to
correspond as a building [41]. The objects of the building candidate detected in this way
tend to be over-detected because non-building objects can be included; thus, the shadow of
the building was additionally exploited to exclude the over-detected building objects from
the candidates.

3.3.3. Final Building Detection Using Shadow Information

In high-resolution images, buildings and shadows inevitably exhibit adjacent relation-
ships. Within an image, all shadows casted by buildings are in the same direction around
the building. In this study, the shadow direction was used to detect the final building
among the building candidates. As in Figure 5, the Sun’s azimuth angle determines the
principal direction of the shadow calculated as Equation (9). The building candidate object
was then determined as a final building object if there is a shadow object within a certain

distance along the principal direction (
→
sd) from the object’s centroid (c(x, y)), as shown in

Figure 6.

Shadow direction =

{
azimuth angle + 180◦, i f azimuth angle ≤ 180◦

azimuth angle− 180◦, i f anzimuth angle > 180◦
(9)
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Figure 5. Basic concept of the Sun’s azimuth and elevation angles (left) and shadow direction
according to the azimuth angle (right).

Figure 6. The relationship between the building and its shadow.

3.4. Object-Based Building Change Detection

After detecting building objects in the two images, change detection between the ob-
jects was performed. Here, we employed three different building change detection methods.

The first method detects building changes by considering only overlapping the build-
ing objects between images. Specifically, when a building object in one image has any
portion of the overlap with objects in the other image, it is determined as a no-change
object. Conversely, when a building object has no overlapping portion with other objects
in the other image, this object is judged as a changed object.

The second method compares the size of building objects by considering the sensor’s
elevation angle. An image acquired with a high elevation angle of the sensor (i.e., acquired
close to nadir) tends to have a small relief displacement occurring on a building object.
Conversely, building objects in an image acquired from a small elevation angle occur severe
relief displacement so that the side part of the buildings can be seen in the image; thus,
resulting in large size of the building objects [42]. For example, as shown in Figure 7, the
same building object can have a different size in images, according to the magnitude of the
elevation angles when images were acquired. Therefore, in this method, it is determined
whether the building has changed by comparing the magnitude of the corresponding
building size by considering the elevation angles. To this end, the process of finding the
corresponding building object in the bitemporal images is essential. As similarly done
with the relationship of the shadow and the Sun’s azimuth angle, the sensor’s azimuth
angle determines the principal direction of the building’s relief displacement in each image
(Figure 8). Based on the centroid of the building object detected in an image acquired
with a large elevation angle, the corresponding building candidate in the other image can
be found if the building object is within a certain distance along the principal direction
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from the centroid. After finding the corresponding building object, the sensor’s elevation
angle is considered to determine whether the building object is changed or not. The
lower the sensor’s elevation angle is, the larger the building size; therefore, the size of the
corresponding building objects is compared, and it is determined as a changed building if
the building object size of the image with a lower sensor’s elevation angle is smaller than
the other.

Figure 7. Calculation of direction using centroid coordinates of two buildings.

Figure 8. Direction of building’s relief displacement according to the azimuth angle of the sensor.

The third method considers the direction of objects according to the sensor’s az-
imuth angle. Similar to the second method, it detects the corresponding building objects
in both images (b1, b2) and then obtain their centroids (Xb1 , Yb1) and (Xb2 , Yb2), respec-
tively (Figure 7). The principal direction (θ) between the two objects is obtained using
Equation (10).

θ = tan−1

( ∣∣Yb2 −Yb1

∣∣∣∣Xb2 − Xb1

∣∣
)

(10)

Then, θ is compared with the azimuth angle of the sensor showing lower elevation
angle; the object is determined as a changed building when the difference between two
values (i.e., θ in Equation (10) and azimuth angle of the sensor showing lower elevation
angle) is within an error range.

Threshold values for performing the three building change detection methods should
be determined in consideration of the azimuth and elevation angles of the acquired bitem-
poral imagery. For example, the size of the same building will be different in images
depending on the sensor’s elevation angle. Moreover, even if images were acquired from
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the same elevation angle, the direction of the relief displacement of the building is different
depending on the azimuth angle of the sensor. Therefore, the thresholds must be deter-
mined differently by considering the properties of each image’s acquisition environments.

4. Experimental Results
4.1. Building Detection Results
4.1.1. Site 1: Single-Sensor Imagery

Multiresolution segmentation was applied to each KOMPSAT-3 image for performing
object-based building detection. When generating the segmentation image, parameters
were set to reveal the boundaries of the building object without one building being divided
into too many objects. Therefore, the scale parameter was set to 90, and the compactness
parameter was set to be greater than the shape parameter (Table 6). Figure 9 shows the
segmented images of Site 1 overlaid with object boundaries.

Table 6. Parameter values of multiresolution segmentation and number of generated objects of Site 1.

Images Scale Shape Compactness Number of
Objects

2013 image 90 0.1 0.9 4899
2019 image 90 0.1 0.9 8396

Figure 9. Segmentation results of Site 1 (a) 2013 image (b) 2019 image.

At Site 1, the NDVI and shadow intensity of each object were calculated for improving
the building detection performance. The Otsu algorithm was used to decide thresholds
for the extraction of the vegetation and shadow objects. Objects with NDVI and shadow
intensity values greater than the thresholds were classified as vegetation and shadow
objects, respectively. The detection result of the shadow and vegetation objects is presented
in Figure 10. Although some misdetections of the shadow objects exist, they did not
significantly affect to the building detection because shadows only adjacent to building
objects were considered in this study.

The rectangular fit, the GLCM homogeneity, and the area features were used to
detect building candidate objects on Site 1. Each features’ information was generated and
assigned to each object and used to extract the building candidate objects based on the
thresholds selected through visual analysis and the Otsu algorithm. More specifically,
objects whose rectangular fit is greater than 0.8 and GLCM homogeneity values were
above the threshold selected using the Otsu algorithm were classified as building candidate
objects. Subsequently, the adjacent objects among the objects classified as buildings were
merged into one object. Therefore, most areas misdetected as buildings were merged into a
single object, which was used to remove misdetection using area feature information. If the
area of the building calculated in each image was larger than that of the buildings with the
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largest area, or if the segmentation object detected as an object of building candidates was
too small, it was determined as a false detection. For the 2013 image, if the object’s area is
more than 4300 m2 or less than 300 m2, the object was removed from the object detected
as a building. For the 2019 image, the object was removed from the object detected as a
building if the object’s area was more than 9000 m2 or less than 500 m2. It is worth noting
that the area criteria are different according to the images since the sensor’s elevation
angles can affect the building size in each image due to the relief displacement caused by
the high-rise buildings.

Figure 10. Vegetation (green) and shadow (navy) detection results of Site 1 (a) 2013 image (b) 2019 image.

Figure 11 shows the building candidate detection results using rectangular fit, GLCM
homogeneity, and area features. Despite the process of removing false detection using the
area feature, falsely detected objects are still observed as buildings. Shadow objects were
used to remove them.

Figure 11. Building candidates (yellow) overlaid with shadow detection results (navy) of Site 1
(a) 2013 image (b) 2019 image.

To remove the false-alarmed building objects, the azimuth angle of the KOMPSAT-3
multitemporal images was used to calculate the principal direction of shadows. The
Sun’s azimuth angles in the 2013 and 2019 images were 204.811◦ and 198.504◦, respec-
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tively; therefore, the principal directions of the shadows were calculated as 24.811◦ and
18.504◦, respectively.

After calculating the principal direction of shadows, the final building objects were
detected by considering the positional relationship between the building candidates and
their corresponding shadows. Therefore, the Sun and sensor’s azimuth angles and the
sensor’s elevation angle were considered comprehensively during the time the images
were taken. Accordingly, building candidates were classified as final buildings when a
building was within 25 m and 70 m of the shadow in the centroid of objects detected as
candidates for buildings in the 2013 and 2019 images, respectively (Figure 12). Compared
to the case where numerous false detections occurring when building objects were detected
using only feature information, the number of falsely detected objects in the building were
reduced by considering the adjacent relationship between buildings and their shadows.

Figure 12. Final building detection results of Site 1 (a) 2013 image (b) 2019 image.

The accuracy evaluation of the building detection results was performed when using
only feature information and both the feature and shadow information. Figures 13 and 14
show the building detection results, and Table 7 summarizes the accuracy evaluation result.
The false alarm of the building detection resulted in both the 2013 and 2019 images being
significantly reduced by 30% and 90%, respectively, when considering shadows. The
miss rate, however, was slightly increased because a few building objects were removed
when considering the shadow information. The F1-score, which can identify the overall
proportion of correctly detected objects, had a value higher than 0.8 when considering
shadows for detecting buildings. The results for the 2019 image had a value greater than
0.9. The tendency of these results was similar for Kappa coefficients.

Table 7. Accuracy of building detection in Site 1.

Image Evaluation Indicator without Shadow with Shadow

2013 image

False alarm 0.058 0.041
Miss rate 0.178 0.183
F1-score 0.459 0.824
Kappa 0.433 0.837

2019 image

False alarm 0.095 0.009
Miss rate 0.084 0.059
F1-score 0.694 0.917
Kappa 0.642 0.906
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Figure 13. Building detection results of Site 1 in the 2013 image (a) Reference data (b) without considering shadows
(c) considering shadows.

Figure 14. Building detection results of Site 1 in the 2019 image (a) Reference data (b) without considering shadows (c)
considering shadows.

4.1.2. Site 2: Multi-Sensor Imagery

To conduct the object-based building detection acquired from KOMPSAT-3 and UAV
multi-sensor images, a multiresolution segmentation method was applied to each image
(Figure 15). The KOMPSAT-3 image has a radiometric resolution of 14 bits, resulting in
larger numbers of segmentation objects when generating the segmentation image using
the same scale parameters with the UAV image having a radiometric resolution of 8 bits.
Thus, the UAV image’s scale parameter was set to 30, which is a smaller value than that of
the KOMPSAT-3 image set to 120. The compactness parameter value was set to be large to
identify the boundaries of buildings that show rectangular shapes in Site 2 (Table 8).
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Figure 15. Segmentation results of Site 2 (a) KOMPSAT-3 image (b) UAV image.

Table 8. Parameter values of multiresolution segmentation and number of generated objects of Site 2.

Images Scale Shape Compactness Number of Objects

KOMPSAT-3
image 120 0.1 0.9 1023

UAV image 30 0.1 0.9 725

Objects with shadow intensity values larger than the threshold calculated using the
Otsu algorithm were classified as shadows (navy in Figure 16). Although some water
body areas were misdetected as shadows in the case of KOMPSAT-3 images, they were
not adjacent with building objects, meaning they did not significantly effect building
detection results.

Figure 16. Shadow detection results of Site 2 (a) KOMPSAT-3 image (b) UAV image.

The rectangular fit, the GLCM homogeneity, and the area features were calculated to
each object, after which the objects were classified as building or non-building candidate
objects based on the thresholds selected through visual analysis and the Otsu algorithm.
Specifically, when the rectangular fit value is greater than 0.8 in each image and the GLCM
homogeneity is greater than the threshold selected by the Otsu algorithm, it is classified
as a building candidate object. Applying the Otsu algorithm to the GLCM homogeneity
resulted in 0.628 for the KOMPSAT-3 image and 0.617 for the UAV image. Subsequently, the
adjacent building objects were merged into one object. Then, as with Site 1, to determine
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the appropriate area threshold, we consider the Sun and sensor’s azimuth and elevation
angles, respectively. If the area feature of the buildings estimated in each image is larger
than that of the buildings or if the segmented objects detected by the building candidate
objects are too small, they were determined as misdetected and removed. For KOMPSAT-3
images, the building object was removed when the area was greater than 500 m2 or less
than 25 m2, and for UAV images, it was removed when the area was greater than 588 m2 or
less than 15 m2.

Figure 17 shows the building candidate extraction results overlaid with the shadow
detection results. Despite removing false detection using the area features, objects misde-
tected into buildings were still observed. Therefore, shadow objects were used to further
remove them to improve the building detection result.

Figure 17. Building candidates (yellow) overlaid with shadow detection results (navy) of Site 2 (a)
KOMPSAT-3 image (b) UAV image.

To remove misdetected building objects, the distance between the centroid of the
buildings and their shadows was estimated by comprehensively considering the Sun and
sensor’s azimuth and elevation angles. Accordingly, when shadow objects exist within
15 m of the centroid of building candidate objects in the KOMPSAT-3 image and within
10 m in the UAV image along the shadow direction, the building candidate objects were
classified as the final building objects. Figure 18 shows the detected building objects by
considering the shadow constraints.

Figure 18. Final building detection results of Site 2 (a) KOMPSAT-3 image (b) UAV image.
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In contrast, the edges of the buildings detected in the KOMPSAT-3 image could not
clearly show the building boundaries (Figure 18a), while those in the UAV image, where
most buildings were detected throughout, clearly detected the building objects (Figure 18b).
This problem in the KOMPSAT-3 image was due to the poor contrast compared to the UAV
image and mixed pixels in the boundary of building objects from adjacent shadows or
roads when generating the segmentation image.

The building detection results of Site 2 are shown in binary images (Figures 19 and 20).
The accuracy evaluation results reported in Table 9 confirmed that both the KOMPSAT-3
and UAV images had higher accuracies in detecting buildings when considering shadow
information. False alarms when shadows were not considered in KOMPSAT-3 and UAV
images were 0.152 and 0.065, respectively, whereas 0.008 and 0.006, respectively, when
shadows were considered. These results indicate that the building misdetection rate
is significantly lower when shadows are considered. The miss rate, like in Site 1, was
slightly increased by removing building objects when considering shadow information.
By comparing the F1-scores and Kappa coefficients, the building detection results were
significantly improved by considering shadows, shown by the significant increase in these
two values. Based on the building detection results with numerical assessments on both
sites, we can conclude that the building change detection step can be applied based on the
building detection results using the proposed method.

Figure 19. Building detection results of Site 2 in KOMPSAT-3 image (a) Reference data (b) without considering shadows
(c) considering shadows.

Table 9. Accuracy of building detection in Site 2.

Images Shadow without Shadow with Shadow

KOMPSAT-3 image

False alarm 0.152 0.008
Miss rate 0.155 0.158
F1-score 0.488 0.876
Kappa 0.417 0.865

UAV image

False alarm 0.065 0.006
Miss rate 0.196 0.199
F1-score 0.696 0.867
Kappa 0.651 0.852
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Figure 20. Building detection results of Site 2 in UAV image (a) Reference data (b) without considering shadows
(c) considering shadows.

4.2. Object-Based Building Change Detection Results
4.2.1. Site 1: Single-Sensor Imagery

Based on the building detection results by the proposed method, object-based building
change detection was conducted by applying the three different methods and presented in
Figure 21. Figure 21b shows the building change detection results obtained by considering
the simple overlay rule. When the detected building objects overlap in the bitemporal
images, they were deemed the same building and excluded from the final changed building
object. Therefore, detected building objects that are not overlaid in both images were
extracted as changed buildings.

The second method compared the object size according to the sensor’s elevation angle.
To this end, the sensor’s azimuth angle at the time of taking the images was used to detect
the same buildings in bitemporal images. According to metadata, the azimuth angle of the
2019 image is 207.623◦ so that the main direction of the building is converted to 27.623◦.
For the 2013 image, the direction of the building’s relief displacement is negligible because
of the small incidence angle of 10.240◦, irrespective of the azimuth angle. Therefore,
we only consider the azimuth and elevation angles of the 2019 image to identify the
location relationship of buildings between the bitemporal images. After detecting the
same buildings within the bitemporal images, the final changed buildings were detected
by comparing the size between buildings deemed the same building according to the
elevation angle. The elevation angles of the 2013 and 2019 images were 79.760◦ and 62.328◦,
respectively. Since the elevation angle of the 2019 image is low, the object size of the same
building in the 2019 image will be larger than that of the 2013 image. Figure 21c shows the
building change detection results by considering the size of the corresponding building
objects accordingly.

The third method detected the corresponding building objects between images us-
ing their azimuth angles. The direction between the corresponding objects was ob-
tained and then compared with the azimuth angle of the 2019 image. Objects showing
a calculated direction within 3◦ along with the azimuth angle of the 2019 image (i.e.,
207.623◦ ± 3◦) were determined as unchanged objects and excluded from the changed
building objects. Figure 21d shows the results of detected building change objects using
the direction information.
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Figure 21. Object-based building change detection results of Site 1 (a) Overlaid building detection
results with 2013 and 2019 images (b) Change detection results by overlaying (c) Change detection
results considering object sizes according to the sensors’ elevation angle (d) Change detection results
considering object direction according to the sensors’ azimuth angle.

To compare the change detection results with the reference data, the results obtained
using the three methods are presented in binary images (Figure 22). To relatively evaluate
the performance, MBI-based building change detection method proposed in [19] and
pixel-to-pixel comparison of the building objects extracted by the proposed approach were
conducted. Table 10 summarizes the quantitative results compared to the reference data.
The results of building change detection using the MBI-based method showed the lowest
F1-score and Kappa values of 0.4 and 0.358, respectively. The pixel-based change detection
obtained 0.531 and 0.5 values of both the F1-score and the Kappa coefficient. The values
were improved up to 0.75 by performing the three object-based change detection methods.
Their results showed no significant difference although the direction-based one achieved
slightly lower than others. The detailed analysis of the results will be discussed in the
Discussion section.

Table 10. Accuracy of building change detection in Site 1.

MBI [19]
Pixel-Based
Comparison

Object-Based Method

Considering
Overlay

Considering Size by
Elevation Angle

Considering Direction
by Azimuth Angle

False alarm 0.078 0.062 0.018 0.018 0.020
Miss rate 0.353 0.175 0.175 0.176 0.176
F1-score 0.400 0.531 0.754 0.750 0.739
Kappa 0.358 0.500 0.741 0.737 0.725
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Figure 22. Building change detection results of Site 1 (a) Reference data (b) MBI [19] (c) pixel-based comparison (d)
considering object overlay, (e) considering object size by elevation angle (f) considering object direction by azimuth angle.

4.2.2. Site 2: Multi-Sensor Imagery

As with the experiments conducted for Site 1, building change detection of Site 2 was
conducted using the three methods based on the extracted building objects. Figure 23
shows their results. When using the first method considering the object overlaying
(Figure 23b), changed objects were under-detected because all the objects with a part
of overlapping objects between images were determined as nonchanged objects. Because
of the large relief displacement of the buildings in the KOMPSAT-3 image due to its low
elevation angle, closely located buildings caused the object overlapping although they
were not the corresponding buildings between the images. Hence, for accurate building
change detection, the process of finding the same building objects among the building
objects in the two images is necessary.

The second direction-based method first finds the corresponding building objects
using the azimuth angles of the KOMPSAT-3 and UAV images. Using the sensor’s azimuth
angle, when a building object exists within 6 m of the principal direction between the
images, it was classified as corresponding building objects. Subsequently, final changed
buildings were detected by comparing the size between the corresponding building objects
according to elevation angles. The elevation angle of the KOMPSAT-3 image is lower than
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that of the UAV; therefore, the building area in the KOMPSAT-3 image should be larger
than that in the UAV image. Figure 23c shows the final building change detection result.

Figure 23. Object-based building change detection results of Site 2 (a) Overlaid building detection
results with KOMPSAT-3 and UAV images (b) Change detection results by overlaying (c) Change
detection results by considering object sizes according to the sensors’ elevation angles (d) Change
detection results by considering object direction according to the sensors’ azimuth angles.

The third method detected the same buildings using the azimuth angles of the
KOMPSAT-3 and UAV images. The centroid coordinates of each building were obtained
and the direction between the two building centroids was calculated and then compared
with the azimuth angle of the KOMPSAT-3 image (81.429◦). The corresponding building
objects showing the value difference between the calculated direction and the azimuth
angle less than ± 3◦ were classified as unchanged buildings (Figure 23d).

As with the building detection results, the building change detection results are also
presented as binary images in Figure 24, and the quantitative evaluation results are reported
in Table 11. The MBI-based method and pixel-based comparison had the F1-score values
of 0.369 and 0.470, respectively. Although the three object-based methods significantly
improved the accuracies, unlike Site 1, they showed differences in accuracies. The method
comparing the size of objects according to elevation angles showed a 0.635 F1-score value,
a relatively lower accuracy, since multiple adjacent buildings were determined falsely as
changes. The method considering the direction of objects had the highest F1-score value of
0.886. The detailed analysis of the building change detection performance in Site 2 will be
discussed in the Discussion section.
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Figure 24. Building change detection results of Site 2 (a) Reference data (b) MBI [19] (c) pixel-based comparison
(d) considering object overlay, (e) considering object size by elevation angle (f) considering object direction by azimuth angle.

Table 11. Accuracy of building change detection in Site 2.

MBI [19]
Pixel-Based
Comparison

Object-Based Method

Considering
Overlay

Considering Size by
Elevation Angle

Considering Direction
by Azimuth Angle

False alarm 0.096 0.081 0.003 0.031 0.004
Miss rate 0.476 0.182 0.459 0.202 0.138
F1-score 0.369 0.470 0.677 0.655 0.891
Kappa 0.327 0.433 0.666 0.635 0.886

5. Discussion
5.1. Site 1: Single-Sensor Imagery

Although the 2013 and 2019 images’ building detection results are reliable, the ac-
curacy of the 2013 image is slightly lower than that of the 2019 image. Figure 25 shows
that some buildings were under construction, but they were not detected as changes by
the proposed method. These kinds of on-going changes on buildings are challenging
to identify since the buildings and their shadows are difficult to figure out even with a
visual inspection.
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Figure 25. Detailed example of undetected buildings in the 2013 image (a) Reference data (b) building detection result
overlaid with 2013 image (left) and binary building detection result (right).

As mentioned earlier, building detection results highly affect the building change
detection results. If a building is not detected properly in one image or both bitemporal
images, it reduces the accuracy of building change detection. Furthermore, even if a portion
of a building object is not properly detected, it reduces the accuracy of building change
detection (Figure 26). The first overlaying-based method and the second size-based method
could properly eliminate objects from the change detection results in the case where the
two buildings are different. However, the third method, which considers the direction
between two objects according to the sensor’s azimuth, determined these two objects as
different buildings, contributing to the over-detection of changed building objects.
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Figure 26. Example of falsely detected building shapes affecting object-based building change detection result by the
direction-based method (a) 2013 and 2019 images overlaid with building detection results (b) Reference data of building
change detection (left) and change detection result (right).

5.2. Site 2: Multi-Sensor Imagery

Unlike Site 1, Site 2 did not have any buildings under construction that were difficult
to detect even with a visual inspection. However, buildings in the scene were located
close to each other, resulting in one-too-many correspondences of building objects between
the images. This resulted in a poor building change detection performance when only
considering the overlay of building objects (Figure 27). This tendency can be confirmed by
the fact that the miss rate of the change detection results had a large value of 0.459, and
the F1-score and Kappa values showed low values less than 0.68 when applied with the
overlay method.

When conducting the change detection using the second method, which is based on
the comparison of the object sizes by considering the sensor’s elevation angle, building
detection results were significantly influenced. Some buildings’ shape in the KOMPSAT-3
image was not properly detected, as shown in Figure 28. The size of these objects was thus
calculated as smaller than that of the same buildings in the UAV image, resulting in the
false change detection. Consequently, it showed the lowest F1-score value of 0.655 among
the three methods.
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Figure 27. Detailed example of miss detection of building changes by the overlaying method.

Figure 28. Detailed example of falsely detected building changes by the object size-based method.

The third method, considering the direction between objects according to the sensor’s
azimuth angle, had the highest accuracy over the other methods. Compared to the over-
laying method, it could detect the changed buildings properly although some part of the
objects was overlapped with other adjacent building objects. Unlike the size-based method,
accurate change detection was achieved regardless of the poor detection of building object
boundaries due to its direction-based approach. Moreover, the third method could detect
changed buildings that were lost and reconstructed, as shown in Figure 29, where the other
two methods could not detect them as changed buildings.
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Figure 29. Detailed example of the reconstructed building (a) before and after reconstruction of the building in KOMPSAT-3
and UAV images (b) overlaid building detection results.

6. Conclusions

This study proposed the object-based building detection and building change detec-
tion method using the Sun and sensors’ azimuth and elevation angles. For evaluating the
performance of the proposed method, bitemporal images acquired from a single sensor
and multi-sensors were obtained. The two constructed sites are densely populated with
high-rise buildings that can cause significant relief displacement depending on the sen-
sor’s azimuth and elevation angles. Before conducting the change detection, the building
candidate object was extracted using feature information, and the final building object was
then detected using the position of the building’s shadow according to the Sun’s azimuth
angle. Finally, object-based building change detection was conducted based on the building
detection results using three different methods: the simple overlaying method, the object
size-based method, and the object direction-based method, respectively.

In Site 1, the three methods’ change detection results were not significantly different.
The main reason is that the sensor’s azimuth angles in the bitemporal images were not
significantly different enough to affect the experiment results. There were no cases of mul-
tiple overlapping between adjacent buildings. Furthermore, the difference in the building
object’s size according to the elevation angle was noticeable because the elevation angles
of the bitemporal images differed significantly. Consequently, there were no significant
problems in building change detection using simple overlap, and there were no signifi-
cant disadvantages in comparing the buildings’ sizes according to the elevation angles.
Similarly, the method for comparing the direction between building objects according to
azimuth angles also yielded relatively accurate building change detection results because of
the large independence of each building object in the bitemporal images. In conclusion, Site
1 obtained similar quantitative experimental results for the three building change detection
methods. If high-rise building objects existed independently, such as in Site 1, using only
the simple overlay method would be a considerable option in the efficient perspective.

In the case of Site 2, multiple overlays with adjacent buildings occurred when buildings
in the bitemporal images were nested because of their close distance from adjacent building
objects. Furthermore, the lack of clear boundaries between building objects and shadows
and between building objects and adjacent roads resulted in the misdetection of buildings,
which did not accurately compare the building sizes. Consequently, the third method,
considering the object direction using the sensor’s elevation angle, achieved the highest
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building change detection accuracy compared to other methods. Moreover, the third
method could detect the reconstructed buildings properly as changed buildings. Therefore,
we could conclude that the direction-based method using centroids of the corresponding
building objects is the most suitable regardless of the acquisition conditions of the images.
It was demonstrated that the method showed reliable and stable results in both sites
constructed with single-sensor and multi-sensor images, respectively.

It should be noted that the proposed building change detection method can depend
highly on the building detection performance. Although we detected buildings using object-
based approach with the help of shadow information, any building detection method can
be applicable to carry out the change detection. To improve further the building change
detection result, studies for accurate building object detection will be performed. Further
research will also include additional experiments using images acquired with different
azimuth and elevation angles and large areas where high-rise buildings are concentrated.
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