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Abstract: Although deep learning has achieved great success in aircraft detection from SAR imagery,
its blackbox behavior has been criticized for low comprehensibility and interpretability. Such chal-
lenges have impeded the trustworthiness and wide application of deep learning techniques in SAR
image analytics. In this paper, we propose an innovative eXplainable Artificial Intelligence (XAI)
framework to glassbox deep neural networks (DNN) by using aircraft detection as a case study. This
framework is composed of three parts: hybrid global attribution mapping (HGAM) for backbone
network selection, path aggregation network (PANet), and class-specific confidence scores mapping
(CCSM) for visualization of the detector. HGAM integrates the local and global XAI techniques
to evaluate the effectiveness of DNN feature extraction; PANet provides advanced feature fusion
to generate multi-scale prediction feature maps; while CCSM relies on visualization methods to
examine the detection performance with given DNN and input SAR images. This framework can
select the optimal backbone DNN for aircraft detection and map the detection performance for better
understanding of the DNN. We verify its effectiveness with experiments using Gaofen-3 imagery.
Our XAI framework offers an explainable approach to design, develop, and deploy DNN for SAR
image analytics.

Keywords: eXplainable artificial intelligence (XAI); synthetic aperture radar (SAR) images; transparent
models; deep learning; YOLO

1. Introduction

A synthetic aperture radar (SAR) can provide continuous observation of objects
on the Earth’s surface, something which has been extensively studied in a large body
of object detection work [1]. With the improving resolution of acquired SAR images,
aircraft detection is beginning to be more widely-adopted in advanced image analytics
studies [2]. The challenge of aircraft detection lies in the increasing data volume, the
interference of complex backgrounds, and scattered image features of aircraft as objects for
detection [3]. Among various SAR image analytical methods, machine learning approaches
have attracted considerable interest due to their high accuracy and ability to automatically
process large volumes of SAR imagery [4].

Deep neural networks (DNN), an advanced machine learning method inspired by
the structure and function of the brain system, have been extensively employed in re-
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cent developments of object detection from remotely sensed imagery [5,6]. Numerous
DNNs have been explored for use in aircraft detection. Convolutional neural networks
(CNN) were adopted to achieve accurate aircraft detection results in [7]. Tan et al. [8]
designed a DNN based on attention mechanisms for airport detection. Based on this work,
Wang et al. [2] integrated weighted feature fusion with attention mechanisms, to imple-
ment high-precision aircraft detection by combining the airport mask. New DNN structures
are being continuously proposed and their complexity is growing correspondingly [9].

Most DNN approaches have, however, been criticized for their blackbox behaviors [10],
something that makes exploration of advanced deep learning approaches such as attention
mechanisms and data augmentation techniques more difficult [11]. High accuracy alone is
often insufficient to evaluate the performance of a given DNN, with the extent to which
the functioning of DNN can be understood by users becoming increasingly important [10].

Methods called eXplainable Artificial Intelligence (XAI) begin to reveal which fea-
ture or neurons are important and at which stage of the image analytics they are im-
portant. XAI can provide insights into the inner functioning of DNN, to enhance the
understandability, transparency, traceability, causality and trust in the employment of
DNN [12]. Mandeep et al. [13] justified the results of deep learning-based target classifica-
tion using SAR images. Nonetheless, XAI has not yet been investigated for DNN-based
target detection.

To fill this gap, we propose an innovative XAI framework to glassbox DNN in SAR
image analytics, which offers the selection of optimal backbone network architecture and
visual interpretation of object detection performance. Our XAI framework is designed for
aircraft detection initially but will be extended to other object detection tasks in our future
work. The contribution of this paper can be summarized as:

(1) We propose a new hybrid XAI algorithm to explain DNN, by combining local inte-
grated gradients [14] and the global attribution mapping [15] methods. This hybrid
XAI method is named hybrid global attribution mapping (HGAM), which provides
comprehensive metrics to assess the object detection performance of DNN.

(2) An innovative XAI visualization method called class-specific confidence scores map-
ping (CCSM) is designed and developed as an effective approach for visual under-
standing of the detection head performance. CCSM highlights pivotal information
about the decision-making of aircraft detection from feature maps generated by DNN.

(3) By combining the hybrid XAI algorithm and the metrics of CCSM, we propose an
innovative workflow to glassbox DNN with high understandability. This workflow
does not only select the most suitable backbone DNN, but also offers an explanatory
approach to the effectiveness of feature extraction and object detection with given
input datasets.

The rest of this paper is organized as follows. We highlight the necessity of employing
XAI within deep learning techniques for aircraft detection in Section 2. The methodology
of our proposed XAI framework is outlined in Section 3. Experiments using Geofen-3
imagery for aircraft detection are presented in Section 4; while findings are discussed in
Section 5. Finally, we conclude in Section 6.

2. Problem Statement

Although DNN has been shown to be successful in automatic aircraft detection [2], its
blackbox behaviors have impeded the understandability and wider application of DNN
in SAR image analytics. Therefore, we need to glassbox DNN not only to understand its
feature extraction and decision-making processes, but also obtain more insights about the
selection of backbone networks for the design and development of DNN.

To the best of our knowledge, this is the first work employing XAI in object detection
from SAR imagery. There are some initial XAI works in geospatial image analytics but these
have not yet been extended to aircraft detection. Guo et al. [16] utilized XAI to gain clues
for network pruning in CNN, but their case studies only consider optical remotely-sensed
imagery in land-use classification. Abdollahi and Pradhan [17] conducted feature selection
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based on SHapley Additive exPlanations (SHAP) [18] with aerial photos. SHAP was also
used in [19], but with Landsat-7 images for building damage classification. We note XAI
techniques in these works are all for classification studies, not for object detection.

When we employ XAI for aircraft detection, the foremost challenge comes from the
coordination of local and global XAI techniques towards the determination of backbone
networks. Local XAI focuses on explaining the feature extraction attribution of each layer
in DNN with a given input image; while global XAI usually brings better understandability
of the overall DNN model. It is important to avoid selecting a backbone network with good
object detection performance but poor performance in feature extraction, and it becomes
very necessary to consider the integration of local and global approaches as hybrid XAI
methods for the determination of backbone networks.

Another challenge lies in the customization of XAI techniques for object detection
in SAR image analytics, because most of these techniques have been designed for classi-
fication [20]. In contrast to such classification tasks, DNN in the object detection task is
used to locate and classify (usually multiple) targets in the input images. Thus, we need to
explain the object detection results along with their location information. At present, the
combination of the internal classification results and location information of objects is the
topic of a number of XAI studies.

A third challenge arises from the fact that the feature extraction performance of
detection heads is not understandable, and we still lack an effective metric to depict such
attribution of feature extraction. The performance of detection heads plays a pivotal
role in object detection, with high contribution to the final object detection results [21].
Therefore, we need to understand their behaviors, and a visual interpretation would
improve that understanding.

To address these research challenges, we combine local and global XAI methods to
design and develop a hybrid XAI specifically for explaining object detection in SAR image
analytics. At the same time, we also propose our own visualization method to depict the
attribution of detection heads towards the final object detection results.

3. Methodology
3.1. Overall Methodology Framework

By combining SAR image analytics with XAI methods, an innovative XAI framework
for target detection from SAR images is proposed in this paper. The architecture of the
proposed XAI framework is composed of three parts: backbone network selection, Path
Aggregation Network (PANet) [22], and visualization of the detector, as shown in Figure 1.
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First, different backbone networks are trained using SAR imagery datasets containing
aircraft with 1 m resolution from the Gaofen-3 system, and the optimal weight model is
retained. Then, HGAM is used to analyze each backbone network, and the optimal one
with the best classification results is selected to extract feature maps of aircraft. HGAM is a
new method proposed in this paper, which is composed of integrated gradients (IG) [14]
and global attribution mapping (GAM) [15] (see Section 3.2. for details). Furthermore,
the PANet is introduced to fuse the feature maps (with different resolutions and receptive
fields) output by the last three stages of the backbone network to enrich the expression of
features. After the feature maps are enhanced by the PANet module, they are input into
the YOLOv3 detection head [23] for multi-scale detection and then the detection results in
the form of marked bounding boxes are produced. In order to understand the detection
attributions of the network more comprehensively, the CCSM is proposed in this paper to
visualize the predicted feature maps’ output by the detection head to help us understand
the detection attribution of the network.

3.2. Hybrid Global Attribution Mapping for the Explanation of Backbone Networks

Selecting a backbone network with a strong feature extraction ability plays an impor-
tant role in the fields of target detection and classification. At present, most mainstream net-
works usually adopt the stacking method of feature extraction blocks and down-sampling
modules to extract target features, which can be divided into five stages [24] (as shown
in Figure 1). The effective integration of semantic information and spatial details of fea-
ture maps from different levels is conducive to improve the detection accuracy of the
network [25]. Therefore, in this paper, the output feature maps from the last three stages of
the backbone network are selected for explanation analysis.

3.2.1. Integrated Gradients

Figure 2 depicts the backbone network based on IG in diagrammatic form. The feature
maps output by the backbone network can be represented by a 3-dimensional tensor X.
The global average pooling (GAP) can effectively preserve spatial information and object
location information while reducing the number of parameters and floating point of opera-
tions (FLOPs) of the network [26,27]. Therefore, the GAP is used to compress the spatial
dimension of feature maps output from the backbone network. Then, a 1 × 1 convolution
(the number of convolution kernels are 3 × (5 + C)), and reshape operation are utilized to
produce the two-dimensional vector X1 with size of 3 × (5 + C), where C represents the
number of categories. Here, X1 corresponds to the information of three predicted boxes
under the 1 × 1 grid of the predicted feature map in the YOLO network, which encodes the
position coordinates, object confidence score and conditional category probability score of
each prediction box. By taking the maximum category score box as the final detection result
of the target, the IG method is used to generate local observation attributions (including
positive attributions and negative attributions) to help us understand the importance of
each component in the input feature to the final category prediction.
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The IG consider the gradient value of each point on the path from the input image X
to the baseline image X, which effectively overcomes the gradient saturation problem of
the naive gradient method [28]. To calculate the total cost F

(
X
)
− F(X) of moving from X

to X, the calculation formula of IG is as follows:

F
(
X
)
− F(X) = F(τ(1))− F(τ(0))

=
∫ 1

0
dF(τ(α))

dα dα
=
∫ 1

0 [∇τF(τ(α))× τ′(α)]dα
= ∑

i

∫ 1
0 [∇τF(τ(α))]idα×

[(
X− X

)]
i

(1)

where τ(α) = (1− α)X + αX, which is a parameter curve connecting X and X. τ(0) and
τ(1) represent the original image and the baseline image respectively.

∫ 1
0 [∇τF(τ(α))]idα

indicates the importance of the i-th component of input feature X.
A black image (e.g., all pixel values are zero) with the same size as the input image is

selected as the baseline in this paper to obtain the local observation attributions output by
the network. Then, the positive attribution (PA) and the positive attribution proportion
(PAP) of the feature map in the last three stages of the backbone network are calculated,
as shown in Equations (2) and (3). Combining the values of PA and PAP, the detection
performance analysis of the network on the input samples can be obtained.

PA = relu(attributions_ig) (2)

PAP =
PA−min(attributions_ig)

max(attributions_ig)−min(attributions_ig)
(3)

where the attributions_ig is a 3-dimensional tensor with the same shape as the input fea-
ture map, which represents the local observation attributions output by the network. The
relu indicates the ReLU activation function, which is utilized to screen positive attribu-
tion. The max(·) and min(·) are the functions of caculating maximum and minimum
value, respectively.

3.2.2. Global Attribution Mapping (GAM) for Global Analysis

After obtaining the mean value of PA and PAP of a single input sample in the last
three stages of the backbone network, a reasonable number of testing samples (200 aircraft
testing samples are selected in this paper heuristically) are injected into the network. Then,
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the GAM method is used to analyze the detection performance of each backbone network
globally. The three main steps of GAM are as follows:

(1) Normalize and rank the input attributions. Since each attribution vector (which
consists of the mean value of PA or PAP output by each backbone network) in the
attributions represents the importance of the input sample feature in the four networks
to the final prediction. Thus, the attributions are conjoined rankings. Furthermore,
in order to eliminate the impact of size differences in the original input samples, the
attributions are normalized into the normalized percentage, as shown in Equation (4).

normalize (θw) = |θw|o
1

∑i|ϑw(i)|
(4)

where θw indicates weighted attribution vector, and θw(i) represents the weights of feature
i in attribution vector θw. o is the Hadamard product.

(2) Group similar normalized attributions. Inspired by the idea of clustering, similar
attribution data are grouped to obtain the most concentrated feature importance
vector to form K clusters. K is a hyperparameter. The value of K indicates the
number of interpretative clusters obtained, which can be adjusted to control the
interpretation fineness of global attribution. In grouping, it is necessary to measure the
similarity between local attributions. Based on the consideration of time complexity,
the weighted Spearman’s rho squared rank distance [29,30] is selected, as shown
in Equation (5). Then, K-Medoids [31] and weighted Spearman’s rho squared rank
distances are combined to group similar attributions. Specifically, the initial center
of the K clusters is randomly selected. Then, each input attribution is grouped into
the nearest cluster, and then the cluster center is updated by minimizing the pairwise
similarity attribution value in the cluster, and iterations are repeated to achieve
similarity attribution grouping.

SpearDist(Rσ, Rµ) =
k

∑
i=1
µw(i)σw(i)(Rµ(i)− Rσ(i))2 (5)

where µ and σ represent two normalized attribution vectors. Rµ(i) and Rσ(i) represent
the ranking of feature i in the attribution vectors µ and σ, respectively. µw(i) and σw(i)
indicate the weights of feature i in corresponding ranking Rµ(i) and Rσ(i).

(3) Generate global attributions. The global explanation is obtained by weighted joint
ranking of the importance of attribution features. After grouping similar normalized
attributions, K clusters are obtained as the GAM’s global explanation. Each GAM’s
global explanation produces a feature importance vector that is most centrally located
in the cluster. Moreover, the explanatory power of each global explanation can
be measured based on the size of corresponding clusters. By contrast with other
clustering methods such as k-means, GAM considers the attribution values encoded
in both the rank and weights (named weighted joint ranking) during clustering, which
is a unique advantage of GAM.

3.3. Path Aggregation Network (PANet)

After selecting a specific backbone for aircraft feature extraction, the PANet fusion
module is used to systematically fuse the semantic features and spatial details from the last
three stages of the backbone to enrich the feature expression. As shown in Figure 1, PANet
contains two branches. In one branch, the rich semantic information carried by high-level
feature maps are gradually injected into low-level feature maps, in order to improve the
discrimination between foreground and background. In the other branch, the low-level
feature map that contains a large number of spatial details conducive to target localization,
is gradually transmitted to the high-level feature map. After the feature enhancement by
the PANet module, three prediction feature maps (P1, P2 and P3) with different resolutions
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are input into the detection layer for multi-scale prediction, so as to improve the network’s
ability to capture targets with different scales.

3.4. Class-Specific Confidence Scores Mapping (CCSM)

Our proposed XAI framework adopts the YOLOv3 head for multi-scale object de-
tection. The whole detection process is shown in Figure 3. After the input testing image
passes through the trained model, three prediction feature maps with different scales are
obtained for multi-scale prediction. For each predicted feature map, the information of
three groups of bounding boxes generated under each 1 × 1 grid is encoded into a corre-
sponding vector of 3 × (5 + C) (marked in pink in Figure 3). Each bounding box contains 1
confidence score, four coordinates (center (X, Y), width (W) and height (H)), and C values
of conditional category probability Pr(Class|Object) output by the network. The product
of conditional category probability and the confidence score of each bounding box is called
the category-specific confidence score (CCS), which can better delineate the accuracy of
object category information and positioning coordinates [32].
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In the field of classification, CAM (class activation mapping) [26] enables visualization
of specific predicted category scores on the input image, highlighting discriminative parts
of objects learned by DNN. In order to more intuitively understand the detection results of
the network, the CCSM method is proposed in this paper to visualize the CCS value output
by the detection head to understand the final detection attribution of the network. Inspired
by Score-CAM [33], the heat map of CCSM is up-sampled to the size of the input image
and multiplied by the original input image to obtain the masked image, which forms a
feedback branch. At this time, the masked image mainly retains the key information in the
obtained heatmap, and filters out the interference of redundant background information in
the original image. Then, it is input into the network again for prediction, and an enhanced
heatmap is obtained through secondary correction. The detailed implementation steps of
the CCSM module are as follows:

(1) Specifying categories and confidence scores for visualization. For each grid of ev-
ery predicted feature map, the information of three bounding boxes is generated.
Therefore, it is necessary to take the maximum category score layer_classes and the



Remote Sens. 2021, 13, 3650 8 of 19

maximum confidence score layer_scores for the prediction boxes generated under a
single feature map as the final visualization score.

(2) Normalization. After obtaining the maximum layer_scores and layer_classes specified
on each feature map, they are normalized to the same range with Equations (6) and (7),
which is conducive to the superposition display of the subsequent heatmaps generated
on three independent feature maps with different sizes.

norm(layer_classes) =
layer_classes−min(all_classes)

max(all_classes)−min(all_classes)
(6)

norm(layer_scores) =
layer_scores−min(all_scores)

max(all_scores)−min(all_scores)
(7)

where all_classes and all_scores represent the category score and confidence score carried
in all bounding boxes generated by the detection network on three prediction feature maps
with different sizes, respectively.

(3) Generating the heatmap for a single prediction feature map. The product of layer_classes
and layer_scores is taken as the visualization factor and normalized to generate
the heatmap.

(4) Visualizing key areas in the final detection result. After obtaining the heatmaps
generated on the three prediction feature maps, the heatmaps are up-sampled to the
size of the original input image. The outputs can be used in two ways: firstly, the
heatmaps can be combined with the original input image in turn to visualize the
prediction results layer by layer. Secondly, the three heatmaps (corresponding to the
predicted feature maps at three different scales) are integrated with the original input
image to visualize the final output of the network.

4. Results
4.1. Experimental Data

The experimental environment is: Unbuntu18.04, Pytorch 1.5, Python 3.8 and a single
NVIDIA RTX 2080Ti GPU with 11.00 GB memory. The experimental data adopt 15 large-
scale SAR images including different airports with 1 m resolution from the Gaofen-3 system.
After the aircraft are manually marked and confirmed by SAR experts, these SAR images
are automatically sliced to 512 × 512 pixel samples [34]. A total of 899 samples were
obtained, and then 200 samples were randomly reserved for independent testing sets. For
the remaining samples, we combined the methods of rotation, translation (in width and
height directions), flipping and mirror to enhance the data, and 3495 aircraft data samples
were achieved. The ratio of training set to validation set was 4:1.

4.2. Evaluation Metrics

(1) Evaluation Metrics for Backbone Network

Two effective indicators to comprehensively evaluate the performance of the backbone
network are used in this paper: global positive attribution (GPA) and global positive
attribution proportion (GPAP).

The larger the PA value on a single sample, the stronger the ability of target feature
extraction of the network. However, the large positive attribution cannot express the quality
of network prediction. Therefore, PAP is further proposed to measure the robustness of
network to extract target features. The calculation formulas of PA and PAP can be seen in
Equations (2) and (3) in Section 3.2.1. GPA and GPAP are global indicators evaluated by
combining the global information of PA and PAP based on multiple samples. The specific
calculation formula is as follows:

GPA =
K

∑
i=1

rank(PA)i ×
Ni

N
(8)
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GPAP =
K

∑
i=1

rank(PAP)i ×
Ni

N
(9)

where K represents the number of clusters divided by the GAM method, and N is the total
number of samples. Ni denotes the number of samples in the i-th cluster. rank(PA)i and
rank(GPAP)i are the ranking values of PA and PAP in the i-th cluster, respectively.

(2) Evaluation Metrics for Detection Head

Two evaluation indicators are utilized in this paper: overall box average response
(OBAR) and relative discrimination (RD). The OBAR is used to evaluate the average
responsiveness of the network to the target area. The RD is used to measure the relative
responsiveness of the network to focus on important target areas.

OBAR =
∑N

i=1 BAR(i)
N

(10)

RD =
∑N

i=1 BAR(i)
GAR

(11)

where N represents the number of aircraft labeled boxes on the input image, and BAR (box
averages response) denotes the average response value in each labeled box. GAR is the
global average response over the entire heatmap.

4.3. Backbone Network Selection Experiment

The backbone network with super characteristic expression ability is a significant
cornerstone to maintaining the target detection performance. Meanwhile, the complexity
and efficiency of the network are also important considerations. A lightweight network
with small parameters is conducive to engineering deployment to solve practical problems,
and we have therefore compared three lightweight networks and one network with moder-
ate parameters: ShuffleNetv2 (ShuffleNetv2 × 1.0 Version) [35], MobileNetv3 (MobileNet
v3-small × 1.0 Version) [24], YOLOv5s (YOLOv5-small Version) [36] and the classical
ResNet-50 [37].

4.3.1. Contribution Analysis of Single Sample Based on IG Method

Figure 4 shows the absolute attributions visualization results of four backbone net-
works in stage 3, stage 4 and stage 5. In the input single sample containing aircraft
the attributions are calculated by IG. The attribution value of ShuffleNet v2 (shown in
Figure 4(a1–c1)) in the three stages is low, and the visual significance of an aircraft’s fea-
tures is poor, which show that the feature extraction ability of ShuffleNet v2 network is
weak. In contrast, the aircraft in the absolute attribution figure of MobileNet v3 (shown
in Figure 4(a2–c2)) have a clearer and better visual effect than that of ShuffleNet v2. For
ResNet-50, the overall aircraft information can still be well retained in Figure 4(a3,b3).

With the increase of network depth, aircraft information is gradually submerged by
rich semantic information. In Figure 4(c3), ResNet-50 has large response values (dark red
in the figure) mainly concentrated in the background area, and the proportion of aircraft’s
scattering characteristics is relatively low. Therefore, the aircraft scattering characteristic
information is submerged, which is not conducive to aircraft detection. For YOLOv5s,
the absolute attribution values at stage 3 (shown in Figure 4(a4)) and stage 4 (shown in
Figure 4(b4)) have achieved high response values (the whole picture was dark red). With
the deepening of the network, the semantic information obtained is increasingly abundant,
and the influence of background noise is also reduced. In stage 5 (shown in Figure 4(c4)),
the features of aircraft still have large response values (dark red in the figure) and good
visual effects. It can be seen from this set of experiments that YOLOv5s has an advantage
in the detection performance of the aircraft sample.
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4.3.2. Global Analysis of Multiple Samples by GAM Algorithm

A single sample is not enough to reflect the overall performance evaluation of each
network. Therefore, the GAM algorithm is used to evaluate the global performance of
each network with 200 independent testing samples (including military aircraft and civil
aircraft). In the experiment, K = 2 is selected to generate two clusters. Figures 5 and 6 show
the global ranking of the average positive attribution and the global ranking of the average
positive attribution proportion for the four networks at the last three stages, respectively.
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For the global ranking of positive attribution, in stage 3 (shown in Figure 5(a1,b1))
and stage 4 (shown in Figure 5(a2,b2)), both ResNet-50 and YOLOv5s have a large global
positive attribution ranking, taking first and second place, respectively. ShuffleNet v2 and
MobileNet v3 achieved lower rankings. In stage 5 (shown in Figure 5(a3,b3)), ResNet-50
achieved the highest importance ranking on 167 testing samples (accounting for 83.5%
of the total testing samples), as shown in Figure 5(a3). However, ResNet-50 has the
lowest importance among the remaining 33 testing samples (16.5% of the total testing
samples), accounting for only 1% of the four network rankings, as shown in Figure 5(b3).
Meanwhile, YOLOv5s achieved the most balanced detection attribution in the two clusters.
In cluster 1 (which is composed of 167 testing samples), YOLOv5s accounts for 30%, which
follows ResNet-50 in second place. In cluster 2 (which is composed of the remaining 33 test
samples), YOLOv5s accounts for 52% and obtains the largest positive attribution advantage.
In general, the backbone network of YOLOv5s has the most balanced positive attribution
ranking in stages 3, 4 and 5. Therefore, the YOLOv5s network has good feature extraction
ability, which is very suitable for the construction of an aircraft detection network.
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For the global ranking of positive attribution proportion, whether from the horizontal
comparison of two clusters in a single stage or the vertical comparison of each stage,
intuitively there is little difference in the global positive attribution proportion of each
network, which is shown in Figure 6.

In order to more intuitively understand the attribution contribution of each stage,
Table 1 shows the index values of the global average positive attribution and the global
average positive attribution proportion of the four backbone networks in the last three
stages. In terms of global positive attribution (GPA), ResNet-50 is the highest among
the four networks. Its average GPA is 48.98. YOLOv5s is the second with the average
GPA of 26.67%. The average GPA of MobileNet v3 and ShuffleNet v2 is small, namely,
13.72% and 10.63% respectively. It shows that MobileNet v3 and ShuffleNet v2 have a
weak contribution to feature extraction in aircraft detection. In terms of GPAP, there is
only a slight difference in the last three stages of the four backbone networks. Among the
average GPAP values of each network, the difference between the maximum and minimum
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values does not exceed 1.2%. In the case of a similar value of GPAP, the larger the GPA,
the better the ability of the backbone network to extract effective and robust features of
the aircraft. Overall, ResNet-50 obtained the highest value in GPA and GPAP, followed by
YOLOv5s. This shows that the backbone networks of ResNet-50 and YOLOv5s can extract
more representative and robust aircraft features than MobileNet v3 and ShuffleNet v2.

Table 1. Comparison of GPA and GPAP metrics of four networks in the last three stages.

Network Stage Global Positive Attribution (GPA) (%) Global Positive Attribution Proportion (GPAP) (%)

ShuffleNet v2

Stage 3 13.00 23.96
Stage 4 13.99 25.00
Stage 5 14.16 24.56
Mean 13.72 24.51

MobileNet v3

Stage3 10.60 25.52
Stage 4 9.33 26.01
Stage 5 11.97 25.40
Mean 10.63 25.64

ResNet-50

Stage 3 50.16 25.51
Stage 4 56.54 24.84
Stage 5 40.25 25.36
Mean 48.98 25.52

YOLOv5s

Stage 3 26.24 25.02
Stage 4 20.15 24.16
Stage 5 33.63 24.68
Mean 26.67 24.62

4.4. Visualization of the Detection Head

In this paper, the detection results of two different sizes of aircraft, large civil aircraft
(Scene I) and small aircraft (Scene II), are visually analyzed, which is more conducive to
understanding the detection performance of the network for multi-scale targets.

4.4.1. Scene I

Figure 7 shows the visualized results of the heatmap fused with three branches of the
predicted feature map with different sizes. Figure 7a is part of the scenery of Hongqiao
Airport in China. It can be seen that there are four large civil aircraft parked at the airport
(marked with red boxes). The features of the aircraft are discrete, and the wing imaging
of some aircraft is weak. Due to the relatively obvious overall shape of the fuselage, the
heatmaps generated by the four networks can pay more attention to the areas where the
aircraft are located. MobileNet v3 (shown in Figure 7b) and ResNet-50 (shown in Figure 7d)
have high response in the edge region of the image. In contrast, the ShuffleNet v2 (shown
in Figure 7c) and YOLOv5s (shown in Figure 7e) networks have a good visual effect in
the background area, which is mainly distributed in the lower corresponding color areas
with pixel values between 50–150. This indicates that the background information has
relatively little impact on the final aircraft prediction. It is worth noting that the response
of ShuffleNet v2 is relatively scattered, especially on the second aircraft on the left in the
figure, which does not perform well on the fuselage or wing.
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output by MobileNet v3, ShuffleNet v2, ResNet-50, and YOLOv5s, respectively.

Table 2 shows the values of relative discrimination and overall box average response,
which are used to comprehensively evaluate the network and measure the degree of the
focus in important targets areas. ResNet-50 and MobileNet v3 have a higher value of OBAR,
but the value of RD is lower than that of ShuffleNet v2 and YOLOv5s. This indicates that
the network has high pixel response values in both the aircraft area and background area,
so the discrimination of effective aircraft features is relatively weak. Although the OBAR of
YOLOv5s is very close to ShuffleNet v2 and lower than ResNet-50 and MobileNet v3, it is
worth noting that the YOLOv5s has achieved the highest value of RD of the four backbone
networks, which shows that YOLOv5s has a good discrimination between the aircraft and
the background.

Table 2. Performance analysis of visual heatmap of four networks.

Network Overall Box Average Response (OBAR) Relative Discrimination (RD)

ShuffleNet v2 127 5.98
MobileNet v3 155 5.66

ResNet-50 160 5.83
YOLOv5s 128 6.54
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4.4.2. Scene II

Figure 8 shows the local input image from the Capital Airport in China (the aircraft are
marked with red boxes) and the output heatmaps of the four backbone networks. The size
of the aircraft here is much smaller than that in Scene 1, but the scattering characteristics
of the aircraft are obvious. It can be seen from Figure 8b–e that the four networks can
effectively capture the aircrafts’ characteristics. YOLOv5s (as shown in Figure 8e) has the
best visual effect and includes less background noise than the other three networks. At the
same time, YOLOv5s has high pixel response values in the fuselage of the aircraft, and the
overall aggregation is good. This demonstrates that the YOLOv5s network exhibits superior
ability to focus on important characteristics of aircraft in this sample, and has good anti-
interference ability. There are some significant effects of background clutter in ShuffleNet
v2 (as shown in Figure 8c) and MobileNet v3 (as shown in Figure 8b). In particular, the
background area response value of ResNet-50 network (as shown in Figure 8d) is the
largest among the four networks, which reflects that ResNet-50 is more likely to suffer from
the problem of false detection due to the high impact of background information in the
final prediction result.
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Figure 8. The visualized result of the heatmap for Scene II. (a) is the ground truth of Scene II from
Capital Airport in China, in which the aircraft are marked with red boxes. (b–e) are the heat maps
output by MobileNet v3, ShuffleNet v2, ResNet-50, and YOLOv5s, respectively.

Table 3 shows the performance analysis of visualization heatmap from the four back-
bone networks. All the four networks have achieved a large OBAR value. For RD, YOLOv5s
has a significant advantage over ShuffleNet v2, MobileNet v3 and ResNet-50 with an RD
value of 14.24. Among them, the RD of ResNet-50 network is the lowest, with a value
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of 10.21, which again shows that the influence of background clutter is great, and the
robustness of the ResNet-50 network needs to be further strengthened to obtain better
aircraft detection performance.

Table 3. Performance analysis of visual heatmap of four networks.

Network Overall Box Average Response (OBAR) Relative Discrimination (RD)

ShuffleNet v2 164 12.57
MobileNet v3 175 12.97

ResNet-50 174 10.21
YOLOv5s 146 14.24

4.5. Detection Performance of Network Based on Common Metrics

In order to more objectively understand the detection performance of each backbone
network, Table 4 shows the indices comparison of precision, recall and mAP (mean average
precision) [38]. In the whole experiment, the principle of controlling a single variable
is adopted, and only the selection of backbone network is different. The same PANet
fusion module, YOLOv3 head, and hyperparameter settings are used in the four backbone
networks. All networks are trained on the same dataset, and recorded the metrics on the
testing set. It can be seen that the results of YOLOv5s and ResNet-50 in recall and mAP are
very similar, but the precision of YOLOv5s is 2.38% higher than ResNet-50. This shows
that the robustness of the YOLOv5s network is better than that of ResNet-50. MobileNet v3
is ranked third, with precision, recall and map of 86.82%, 92.14% and 90.33%, respectively.
ShuffleNet v2 has the lowest value of precision, recall and mAP among the four networks,
of which its mAP is 88.06%. This demonstrates that YOLOv5s and ResNet-50 have better
aircraft detection performance than ShuffleNet v2 and MobileNet v3. This is consistent with
the conclusion obtained by using the IG and GAM method to select the backbone networks,
which verifies the effectiveness and feasibility of the backbone networks’ selection method
proposed in this paper.

Table 4. Performance comparison of four object detection networks.

Models Precision (%) Recall (%) mAP (%)

ShuffleNet v2
(PANet + YOLOv3 Head) 83.68 90.61 88.06

MobileNet v3
(PANet + YOLOv3 Head) 86.82 92.14 90.33

ResNet-50
(PANet + YOLOv3 Head) 89.25 93.60 92.02

YOLOv5s
(PANet + YOLOv3 Head) 91.63 93.25 91.58

5. Discussion

Selecting a suitable backbone network has now become as important as optimization
techniques (e.g., hyperparameter tuning) to achieve high performance in object detection
studies. As the network has become increasingly complex, the black-box behaviours of the
network are more prominent, hindering the ability of research scientists to understanding
the attribution of the network. In order to enhance the transparency of the detection
algorithm, an innovative XAI framework for aircraft detection from SAR images based on
YOLO detection is proposed.

Due to the scattered image features of aircraft, the heterogeneity of aircraft sizes, and
the interference of complex backgrounds, aircraft detection from SAR images is a very
challenging task. Therefore, it is particularly important to select a backbone network with
feature extraction, especially for the aircraft. The HGAM is proposed in this paper to select
the most suitable backbone network for feature extraction of aircraft from SAR images.
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According to Table 1, the GPA and GPAP of ResNet-50 and YOLOv5s networks are much
higher than that of ShuffleNet v2 and MobileNet v3 networks, which shows the advantages
of ResNet-50 and YOLOv5s networks in the extraction of effective features for aircraft. As
can be seen from Figure 5, the global positive attributions ranking of YOLOv5s in the three
stages is relatively stable and ranked high. In particular, in cluster 2 of stage 5 (shown in
Figure 5b3), YOLOv5s achieved the highest attributions ranking value of 52% with a great
advantage, while ResNet-50 accounts for only 1% of the global positive attribution rankings.
This means that on some samples, the output capability and reliability of the top-level
module (Stage 5) of ResNet-50 is weaker than that of YOLOv5s. Moreover, combined with
the indicators of the CCSM visualization method, as shown in Tables 2 and 3, YOLOv5s has
good OBAR value, and its RD is the highest among the four networks. This also shows that
background information of YOLOv5s has a minimum impact on the final prediction results,
and YOLOv5s can extract aircraft features with good robustness, which has advantages in
SAR aircraft detection. This is also verified in Table 4.

YOLOv5s not only has the highest precision, but it is also very close to ResNet-50
in terms of mAP and recall, and is significantly better than ShuffleNet v2 and MobileNet
v3. Therefore, the method proposed in this paper can provide a reliable explanation
and analysis of the effectiveness of feature extraction of a given input dataset, and select
the appropriate backbone network, which can provide an important reference for other
scholars to explain DNN in SAR image analytics.

Furthermore, the XAI framework proposed in this paper is only evaluated for aircraft
detection from SAR images (Gaofen-3 images with 1 m resolution). In our future work,
we plan to extend our study to multi-scale SAR imagery, and examine more DNNs using
HGAM for the selection of the backbone network. At the same time, the explanation
of two-stage object detection algorithms (e.g., Faster R-CNN [39]) will be investigated
using the proposed XAI framework, in which we need additional coordination work for
the explanation of object localization and recognition. We plan to design a unified XAI
approach for object detection to promote the understandability and application of DNN in
SAR image analytics.

6. Conclusions

In this paper, an innovative XAI framework has been proposed by combining the
HGAM algorithm, PANet, and the metrics of CCSM, to glassbox DNN with high per-
formance and understandability. This framework offers explanation information for the
determination of backbone networks in object detection from SAR imagery, and provides
visualization of the discriminatory power of detection heads. To the best of our knowledge,
this is the first XAI paper in SAR-based object detection studies, and it paves the path
for future exploration of XAI to enhance the comprehensibility, transparency, traceability,
causality and trust in the employment of DNN.
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